
Lab	–	Android	Development	Environment	
	Setting	up	the	ADT,	Creating,	Running	and	Debugging	Your	First	Application	

Objectives:	
Familiarize	yourself	with	the	Android	Development	Environment	

Important	Note:	This	class	has	many	students	with	a	wide	range	of	previous	experience.	Some	students	
are	fairly	new	to	object-oriented	programming	(OOP).	Some	have	OOP	experience,	but	are	new	to	
Android.	Still	others	have	some	Android	experience	already,	and	want	to	just	freshen	up	their	
knowledge.		

Because	of	this,	I’m	not	expecting	that	everyone	can	finish	this	entire	lab.	I	suggest	that	you	set	a	time	
limit	for	yourself,	say	1	hour.	Work	through	what	you	can	in	that	time	and	then	stop	and	take	a	break.	If	
you	later	feel	that	you	have	some	more	time	for	this	Lab,	then	repeat	the	process.	Again	–	don’t	feel	
that	you	need	to	finish	everything	in	this	lab.	That’s	not	the	goal	here.	

Specifically,	if	you	are	fairly	new	to	programming,	you	should	try	to	complete	Parts	1	–	4	below.	If	you	
are	familiar	with	programming	and	programming	environments,	you	should	try	to	complete	parts	1	–	6	
below.		

This	lab	contains	the	following	Parts.	

1. Set	up	Android	Studio.	
2. Create	a	new	Android	application.	
3. Create	an	Android	Virtual	Device	and	start	the	Android	Emulator.	
4. Run	the	application	you	created	in	Part	2.	
5. Import	an	application	project.	
6. Debug	an	Android	application.	

Additional	helpful	information	can	be	found	on	the	Android	Developer	website:	

• https://developer.android.com/studio/index.html	
• https://developer.android.com/training/basics/firstapp/creating-project.html	
• https://developer.android.com/studio/run/managing-avds.html	
• https://developer.android.com/training/basics/firstapp/running-app.html	

	

	

	 	



Part	1	–	Setting	Up	Android	Studio.	
In	this	part	you	will	download	and	install	Android	Studio	which	will	be	the	Integrated	Development	
Environment	(IDE)	used	for	this	course.	For	the	purposes	of	this	document,	we	installed	Android	Studio	
version	2.3.3	(the	current	latest	stable	release	as	of	9/1/2017)	on	a	Mac	running	Sierra.	All	screenshots	
correspond	to	that	environment.	

1. Download	Android	Studio	from	https://developer.android.com/studio/index.html	.	Click	on	
‘Download	Android	Studio’.	

2. Open	the	executable	file	android-studio-<xxx>.	
3. Once	the	setup	loads,	you	will	see	the	Welcome	Screen.	

	

	
	

4. Click	‘Next	>’	on	the	Welcome	Screen.	
5. When	choosing	components,	ensure	all	of	the	checkboxes	are	checked	in	for	each	component	to	

install.	Once	you	are	done,	click	‘Next	>’.	
6. Agree	to	the	Android	Studio	and	the	Intel	HAXM	License	Agreements	after	reading	them.	
7. Verify	the	install	locations	meet	the	installation	requirements	and	click	‘Next	>’.	
8. You	may	or	may	not	see	the	emulator	setup	settings,	just	click	‘Next	>’	after	selecting	the	RAM	

size.	
	



	
	

9. Finally,	click	‘Install’.	You	will	see	which	operations	are	currently	running	in	the	installation	
process	and	a	progress	bar	displaying	their	progress.	

10. Once	the	installation	process	is	finished	click	‘Next	>’.	
	

	
	

11. Android	Studio	is	now	set	up.	Check	on	‘Start	Android	Studio’	and	click	‘Finish’.	
12. You	will	see	the	Complete	Installation	screen	below.	
13. If	you	had	a	previous	version	of	Android	Studio	installed	prior,	then	check	either	the	first	of	

second	radio	box.	Otherwise,	check	the	last	radio	box	and	hit	‘OK’.	
	



	
	

14. As	Android	Studio	starts,	the	splash	screen	will	appear.			
	

	
	

15. After	the	splash	screen	you	may	see	some	additional	setup	operations	run,	such	as	downloading	
components.	
	

	
	

16. Once	it	is	finished,	click	‘Finish’.	
	



	
	

17. Welcome	to	Android	Studio!	In	the	next	part	we	will	start	our	first	project.	
	

	

 
	 	



Part	2	–	Creating	A	New	Project	
In	this	part	you	will	create	a	simple	Android	application	that	displays	the	words,	"Hello	World!"	

1. At	the	Welcome	Screen,	click	on	‘Start	a	new	Android	Studio	project’.	
	

	
	

2. Enter	the	application	name	‘MyFirstApp’	and	note	where	the	project	is	located.	The	
AndroidStudioProjects	folder	is	the	default	location	for	new	projects.	

	



	
	

3. Select	which	devices	you	would	like	your	app	to	run	on.	For	now	we	will	be	working	with	‘Phone	
and	Tablet’.	Make	sure	to	set	the	Minimum	SDK	version	to	API	21	for	this	course.	
	

	
	

4. Select	‘Blank	Activity’	from	the	‘Create	New	Project’	dialog	box	and	click	‘Next’.	
	

	
	

5. In	the	next	window,	leave	all	the	settings	as	default,	and	then	click	Finish.	
6. Android	Studio	will	now	create	the	project	and	build	it.	

	



	
	

7. You	may	see	a	security	alert	if	you	are	on	Windows,	click	‘Allow	access’	to	continue.	
	

	
	

8. Once	the	Android	Studio	IDE	fully	loads,	you	will	see	the	screen	below.	If	you	see	text	rather	
than	the	layout	designer	make	sure	the	‘Design’	tab	is	selected.	
	

	
	



	

9. The	opening	screen	is	the	Design	View	of	the	activity_main.xml	file.	You	can	already	see	the	
words	“Hello	World!”	on	the	App’s	User	Interface.	

10. If	you	click	on	the	Text	tab	you	can	see	the	layout	file	underlying	the	user	interface.	
	

	
	

11. To	view	the	backing	code	for	this	activity,	double	click	on	‘MainActivity’	inside	of	the	Project	
directory	tree.	This	file	is	located	in:	‘java’	>	‘com.example.<user_name>.myfirstapp’	>	
‘MainActivity’.		



	
	

In	Part	4	we	will	show	you	how	to	run	this	app	in	the	Android	Emulator.	

Part	3	–	Using	the	Emulator	
In	this	part	you	will	learn	how	to	set	up	and	use	the	Android	Emulator.	



1. First	start	up	the	Android	Virtual	Device	Manager.	You	can	do	that	by	selecting	Tools	>	Android	>	
AVD	Manager	from	the	Android	Studio	menu	bar.	

	
	

	
2. A	new	dialog	box	will	pop	up.	

	
3. Click	"Create	Virtual	Device"	to	create	a	new	Android	Virtual	Device	(AVD).	



4. Another	dialog	box	will	pop	up	displaying	various	pre-made	AVD	templates.	Select	whichever	
device	you	would	like	to	emulate	and	click	‘Next’.	For	example,	select	the	Nexus	5.	

	

	

5. Select	the	appropriate	System	Image	for	the	virtual	machine.	To	allow	users	with	limited	
computer	memory	to	participate,	all	of	the	class	projects	will	be	tested	against	API	level	21.	If	
you	haven’t	downloaded	that	already,	make	sure	to	download	it	now,	by	clicking	on	the	
“Download”	link.	



	
	

	 	



6. Once	the	Download	is	finished,	click	‘Finish’.	
	

	
	

7. Click	‘Next’	once	you	have	returned	to	the	previous	screen.	
8. You	can	keep	all	of	the	default	selections	in	the	next	screen	and	hit	‘Finish’.	

	

	



	
9. Now	click	on	the	green	‘Play’	icon	to	start	the	emulator,	after	clicking	on	it	you	can	close	the	

Android	Virtual	Device	Manager.	
	

	
	

10. As	the	emulator	starts	up,	you	will	see	a	progress	dialog	appear	in	Android	Studio.	
11. Next,	the	emulator	will	appear	and	start	its	boot	sequence.	

	

After	the	device	has	booted,	the	emulator	will	be	ready	for	user	interaction.	



Part	4	–	Running	Your	First	App	
In	this	part	you	will	learn	how	to	run	the	application	you	created	in	Part	2	in	the	Android	Emulator.	

1. There	are	two	ways	to	run	the	app.	
		

	
Method	1:	Return	to	Android	Studio	and	simply	click	on	the	“Run	‘app’”	Button	(Shortcut:	
Windows	-	Shift	+	F10,	Mac	-	Ctrl	+	R)	

Method	2:	Return	to	Android	Studio	and	select	Run	>	Run	‘app’.	



2. Next	a	window	will	pop-up	to	ask	you	to	select	which	of	your	pre-configured	AVD	devices	
you	would	like	to	run	the	app	on.	If	you	do	not	have	the	correct	SDK	installed	on	your	
AVD	for	your	app	you	will	be	prompted	to	install	it.	



	

3. In	the	Gradle	Console	panel,	below	the	editor	window,	you	will	see	output	indicating	that	
the	application	is	being	loaded	onto	the	Android	Emulator.		

	

	 	



	

4. Return	to	your	Emulator	instance.	If	necessary,	drag	the	lock	icon	to	unlock	your	device.	

	
	

5. You	should	now	see	your	application,	running	in	the	Android	Emulator.		



	 	



Part	5	–	Importing	and	Running	an	Existing	Application	
In	this	part	you’ll	learn	to	import	a	pre-existing	application	into	Android	Studio	and	then	run	it.	

1. 	TheAnswer	application	exists	in	the	course	source	code	repository.	
	

2. Return	to	Android	Studio.	Select	Open	an	Existing	Android	Studio	Project	from	the	
menu	bar.	Note	all	the	course	example	applications	have	been	built	with	Android	
Studio.		

	
3. Next,	in	the	dialog	box	that	appears,	browse	and	select	the	Project	that	you	want	to	

import.	For	this	example,	select	“The	Answer”	from	where	you	cloned	the	
CMSC436SampleCode	repository	in	your	local	environment.		

	
Then	press	OK	Button	
	



Keep	all	default	settings	and	press	Finish	Button.	

	
4. At	this	point	the	application	should	appear	in	the	project	window	on	the	left	side	of	

the	IDE.	

	



5. Select	Run	>	Run	‘app’	from	the	tool	bar.	

	
	

6. The	Android	Emulator	will	now	open	up	and	run	the	example	application.	

	 	



Part	6	–	Debugging	
In	this	part	of	the	lab	you	will	learn	how	to	use	the	Android	Studio	debugger	to	debug	the	TheAnswer	
application	you	imported	in	Part	5.	

1. Double-click	the	TheAnswer.java	file	under	app	>	src	>	main	>	java	>	
course.examples.theanswer	

	
2. On	this	screen,	click	the	highlighted		area	next	to	the	line:	

	"int	val	=	findAnswer();"	

	 	



3. A	new	breakpoint	will	be	placed	at	that	line,	indicated	by	the	small	circle	that	now	
appears	in	the	highlighted	orange	area	to	the	left	of	the	text.	

	
4. Next,	press	the	Debug	button	in	the	Toolbar	to	start	debugging	the	application	

(Shortcut:	Windows	-	Shift	+	F9,	Mac	-	CTRL+D).		

	 	



Similar	to	Step	2	in	Part	4,	after	you	see	the	BUILD	SUCCESSFUL	message,	a	dialog	
box	will	pop	up	asking	you	to	choose	a	device.	
	

5. If	you	do	not	have	a	running	device,	you	can	choose	an	emulator	to	launch.	The	system	will	
start	an	emulator	and	run	the	app	in	it.	

	 	



6. Your	Emulator	should	load	the	App	and	stop	before	the	words,	“The	answer	to	
life……"	,	are	displayed	on	the	screen.	You	can	see	the	Debug	Window	appears	next	
to	Run	now.	Click	on	it	to	show	Debug	window.	

	
7. Now	that	the	app	is	stopped,	you	can	examine	the	app’s	state	and	step	through	the	

app’s	execution	using	the	following	buttons	appearing	in	the	menu	bar.	
1	–	Resume	Program	(F9)	 7	–	Step	Out	(Shift	+	F8)	
2	–	Pause	Program	 	
3	–	Stop	(Ctrl	+	F2)	
4	–	Step	Over	(F8)	
5	–	Step	Into	(F7)	
6	–	Force	Step	Into	(Alt	+	Shift	+	F7)	

	 	

1	

2	

3	

4	 5	 6	 7	



8. Next,	press	the	Resume	icon	to	continue	executing	the	app.	The	app	will	finish	
loading	and	will	display	the	text.		
	

	
9. The	next	debugging	task	will	have	you	create	and	display	informational	messages	to	

the	LogCat	panel,	to	help	you	better	understand	the	application’s	runtime	behavior.	
To	generate	these	messages,	you	will	use	methods	in	the	android.util.Log	class.	You	
will	also	need	to	import	this	class	into	your	application.	Some	LogCat	functions	
include:	
	
1	–	Log.i(…,	…)	–	Sends	an	INFO	LogCat	message	
2	–	Log.d(…,	…)	–	Sends	a	DEBUG	LogCat	message	
3	–	Log.e(…,	…)	–	Sends	an	ERROR	LogCat	message	
4	–	Log.v(…,	…)	–	Sends	a	VERBOSE	LogCat	message	
	
See	https://developer.android.com/reference/android/util/Log.html	for	more	
information.	

	 	



10. Import	the	android.util.Log	library	by	typing,	"import	android.util.Log;"	near	the	
beginning	of	the	code	for	TheAnswer.java.		

	

11. The	Log	class’	methods	require	a	string	called	a	Tag,	which	identifies	the	creator	of	
the	message	and	can	be	used	to	sort	and	filter	the	messages	when	they	are	
displayed.	Create	a	constant	called	TAG	within	the	TheAnswer	class,	by	typing,	for	
example,	"private	static	final	String	TAG	=	"TheAnswer";"	
	

	

	 	



12. Use	the	Log.i()	function	to	create	and	output	a	log	message.	Just	before	the	line	that	
starts,	"int	val	=	…"	type	in	a	new	line:	"Log.i(TAG,	"Printing	the	answer	to	life");"	

	
13. Save	your	changes.	

	

	 	



14. Run	the	application.	(See	Part	4	for	more	details	on	Running	App).	

15. Once	the	app	is	running,	open	the	LogCat	panel	at	the	bottom.	Look	for	drop	down	
menu	and	select	Edit	Filter	Configuration.	

	

16. Enter	"TheAnswer"	in	LogTag	and	hit	OK.	

	



17. You	will	now	see	the	log	message	from	the	TheAnswer	application	in	the	LogCat	
panel.	

	

Extra	Challenge		
	

If	you	finish	all	the	work	above	in	class,	then	do	the	follow	challenge	activity	as	well.	

	

1. Modified	Hello	World	-	Remember	the	first	app	you	made?	Let’s	return	to	that!	
	

2. In	this	part	you’ll	modify	the	original	"Hello	world!"	message	of	your	first	app.	To	do	
this	you	need	to	modify	the	string	value	in	\res\values\string.xml.	
	

	



3. Add	another	string	element	with	the	text:	“My	name	is	<your_name>!”.	

	
4. Now	go	to	the	activity_main.xml	file	inside	of	res/layout.	Edit	the	TextView	element	

so	it	references	the	hello_world	string	element	you	just	created	in	the	previous	step.	

	
	

	 	



5. Now	run	the	app	and	see	the	change!	

	
	
For	more	information,	take	a	look	at:	
https://developer.android.com/guide/topics/resources/string-resource.html	
	

6. Now	add	support	for	another	language	such	as	Spanish!	To	do	this,	you’ll	need	to	
create	an	appropriate	string	file,	run	your	app,	change	the	emulator	instance’s	
default	language	to	Spanish,	and	then	rerun	the	app.	Your	Spanish	string,	could	be:	
"Hola	Mundo!	Me	llamo	[yourname]."	
	
For	more	information,	take	a	look	at:	
https://developer.android.com/training/basics/supporting-devices/languages.html		


