Register Allocation
(via graph coloring and spilling)
Register allocation

- LLVM IR uses an unbounded set of virtual registers.
- Register allocation yields code in terms of hardware registers.
- These are limited. For example, x86_64 has: 16x general purpose (64bit) registers (plus 16x SSE registers, 2x status registers, 6x 32bit registers, 8x FPU/MMX registers).
- Using registers when possible is crucial to performance. Register access for i7-4770 is ~1 CPU cycle, L1 cache is ~4 cycles, L2 cache is ~12 cycles, L3 cache is ~36-58 cycles.
- Register allocation is as old as intermediate languages. The first FORTRAN compiler (April 1957) had a primitive register allocator.
Register allocation

- **Register pressure** results from a lack of machine registers for the needed virtual registers.

- If there are too many virtual registers live at once, values must be spilled into memory, usually extra space on the stack.

- The goals of performing register allocation well are:
 - To guarantee correct output code.
 - To minimize spill code (added loads and stores).
 - To minimize added spill space on the stack.
Two approaches

• The naïve approach: “local” register allocation.
 • Allocates registers in each basic block separately.
 • Traverses the basic block, maintaining a map from virtual registers to either a machine register or offset on the stack.
 • When a virtual register not currently stored in a machine register is accessed, a machine register is spilled onto the stack using a store instruction and the required register is loaded. The virtual register map is updated for both.

• The graph-coloring approach: “global” register allocation.
 • The new Chez Scheme produces 15-24% faster code.
The naïve approach

Assuming 3 hardware registers: rax, rbx, rcx

\[\begin{align*}
%b &= \text{add} \ %a, 1 \\
%c &= \text{mul} \ %a, %b \\
%d &= \text{add} \ %c, %b \\
%e &= \text{add} \ %b, %a \\
\end{align*} \]

\[\begin{align*}
%a &\rightarrow \ rax
\end{align*} \]
The naïve approach

Assuming 3 hardware registers: rax, rbx, rcx

\[
\begin{align*}
%b &= \text{add} \ %a, 1 \\
%c &= \text{mul} \ %a, %b \\
%d &= \text{add} \ %c, %b \\
%e &= \text{add} \ %b, %a \\
\end{align*}
\]

...
The naïve approach

Assuming 3 hardware registers: \texttt{rax, rbx, rcx}

\[
\begin{align*}
\%b &= \text{add} \ \%a, 1 \\
\%c &= \text{mul} \ \%a, \%b \\
\%d &= \text{add} \ \%c, \%b \\
\%e &= \text{add} \ \%b, \%a
\end{align*}
\]

\[
\begin{align*}
%a &\rightarrow \texttt{rax} \\
%b &\rightarrow \texttt{rbx} \\
%c &\rightarrow \texttt{rcx}
\end{align*}
\]
The naïve approach

Assuming 3 hardware registers: \(\text{rax}, \text{rbx}, \text{rcx} \)

\[
\begin{align*}
%b &= \text{add} \ %a, 1 \\
%c &= \text{mul} \ %a, %b \\
\text{store rax, rsp+0} \\
%d &= \text{add} \ %c, %b \\
%e &= \text{add} \ %b, %a
\end{align*}
\]
The naïve approach

Assuming 3 hardware registers: rax, rbx, rcx

...%b = add %a, 1 %c = mul %a, %b
store rax, rsp+0
%d = add %c, %b
store rcx, rsp+16
store rbx, rsp+8
rbx = load rsp+0
%e = add %d, %a
...

%a → rbx
%b → rsp+8
%c → rsp+16
%d → rax
%e → rcx
Graph-coloring approach

- Interprets register allocation as a graph coloring problem:
 - Given a graph G and number of colors k, a valid solution is an assignment of G's nodes to colors, numbered $[1..k]$, where no two adjacent nodes have the same color.
 - The problem is NP-Hard for $k > 2$.
- The algorithm constructs a register interference graph where:
 - There is a node for each SSA register (or assignment)
 - There is an edge between two nodes when both registers may be live at some point in the code.
 - k is the number of hardware registers in our allocation pool.
Liveness & live ranges

- Begins when a virtual register is assigned (for SSA this is unique).
- Ends when that virtual register is last used.
Register interference graph

- At each instruction S in the procedure, add an edge (a, b) for all pairs of registers, $%a$ and $%b$, live at S.

```
%a = ...
... = %b
%b = ...
... = %a
```
Graph coloring via simplification

• Solve using a heuristic that can’t guarantee an optimal coloring.

• First, reduce the complexity of the problem:

 • While there exists a node R with a degree < k: remove R and push it onto a stack of low-degree nodes.

• Then, either all nodes in the graph are removed, or a node with degree of at least k is left over. Such a virtual register must* be spilled to an address on the stack.

• Last, given an empty graph and stack of nodes of degree < k, each node can be popped and inserted into the graph with a k^{th} color not shared by any of its neighbors.
Graph coloring via simplification

Assuming 3 hardware registers / 3 colors
Graph coloring via simplification

Assuming 3 hardware registers / 3 colors
Graph coloring via simplification

Assuming 3 hardware registers / 3 colors
Graph coloring via simplification

Assuming 3 hardware registers / 3 colors
Graph coloring via simplification

Assuming 3 hardware registers / 3 colors
Graph coloring via simplification

Assuming 3 hardware registers / 3 colors

a

b,c

d

b,e

e

b

b,d

b,c

a
Graph coloring via simplification

Assuming 3 hardware registers / 3 colors
Graph coloring via simplification

Assuming 3 hardware registers / 3 colors
Graph coloring via simplification

Assuming 3 hardware registers / 3 colors

- b
- c
- a
- d
- e
Graph coloring via simplification

Assuming 3 hardware registers / 3 colors
Graph coloring via simplification

Assuming 3 hardware registers / 3 colors

a - b - c - d - e
Graph coloring via simplification

• If, at some point, all remaining nodes have a degree of at least k, then we must spill one of those virtual registers to the stack.

• Pick the virtual register with lowest spill cost by some heuristic.

• There are various strategies for spilling. Two common ones:
 • Reserve a subset of registers for spilled values and wrap every use of the register with a load and store.
 • Split the register into 2^+ virtual registers (connected with a store & load) and recompute live ranges; the next iteration would then begin with larger but simpler graph where the spilled node is replaced by 2^+ lower-degree nodes.