# WINGED-EDGE DATA STRUCTURE 

Hanan Samet

Computer Science Department and Center for Automation Research and Institute for Advanced Computer Studies<br>University of Maryland<br>College Park, Maryland 20742<br>e-mail: hjs@umiacs.umd.edu

Copyright © 1998 Hanan Samet
These notes may not be reproduced by any means (mechanical or electronic or any other) without the express written permission of Hanan Samet

## EXAMPLE GEOMETRIC DATABASE

- Boundary model (BRep)
- Assume a solid object bounded by compact orientable two-manifold surfaces (i.e., only two faces meet at an edge)
- Primitive topological entities

1. vertices
2. edges
3. faces

- Nonprimitive topological entities for multiply-connected objects (e.g., holes, internal cavities)

1. shell—a maximally connected set of faces

Ex: cube within a cube has two shells (internal and external)
2. loop on a face-closed chain of edges bounding the face

Ex: nut with 2 loops for each of top and bottom faces


## we2

## DESCRIPTION OF THE BOUNDARY OF AN OBJECT

1. Topological description

- adjacency relationships between pairs of individual topological entities (e.g., edge-face, loop-face,...)
- maximum of 25 adjacency relationships (ordered pairs)

2. Geometric description

- shape and location in space of each of the primitive topological entities
a. face: surface equation
b. edge: endpoints, spline curve, etc.
c. vertex: Cartesian coordinates
d. shell and loop: none since a collection of primitive topological entities


## HIERARCHICAL REPRESENTATION



1. Decompose object into shells
2. Each shell is a collection of faces
3. Each face

- surface equation, AND
- collection of its bounding loops

4. Each loop is a chain of edges
5. Each edge is a collection of linear segments
6. Each linear segment is a pair of vertices

## SPECIFYING A BOUNDARY MODEL

1. Set of topological entities defining the object's boundary
2. Subset of 25 different adjacency relationships between pairs of individual entities

- relations are ordered
- edge-face is different from face-edge
a. edge-face associates with each edge the two adjacent faces
b. face-edge associates with each face the edges that bound it


## EXAMPLE BOUNDARY REPRESENTATIONS

1. Symmetric structure uses face-edge, vertex-edge, edge-face, and edge-vertex relationships
2. Face adjacency graph uses face-edge, vertex-face, edge-face, and face-vertex relationships
3. If multiple shells and multiply-connected faces

- edge-face = edge-loop and loop-face relationships
- face-edge = face-loop and loop-edge relationships

4. Edge-based

- drawback of face-edge and vertex-face is that they violate the first normal form (1NF) since a variable amount of information is associated with the second attribute (i.e., edge and face, respectively)
- no such problem with edge-face and edge-vertex relationships since assume 2-manifold surface (e.g., only two faces may meet at a vertex)
- basis of winged-edge representation


## WINGED-EDGE REPRESENTATION

- Physical interpretation of attributes of relations

- Vertex relation:

1. vertex (primary key)

2-4. $x, y, z$ coordinate values (key)
5. identity of an edge which starts at the vertex (ESTART)

- enables extracting set of edges incident at a vertex in time proportional to the number of edges
- Face relation:

1. face (primary key)
2. identity of an edge which is part of the face (ESTART)

- enables extracting set of edges comprising a face in time proportional to the number of edges
- Edge relation:

1. edge (primary key)

2-3. start (VSTART) and end (VEND) vertices (key)
$4-5$. two adjacent faces (FCW and FCCW) (key)
6-7. preceding and next edges in one face (EPCW and ENCW) (key)

8-9. preceding and next edges in other face (EPCCW and ENCCW) (key)

- Question: are the relations in 2NF, 3NF, or BCNF?


## EXAMPLE OBJECT AND ITS REPRESENTATION



| Vertex Table |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VERTEX $\mathbf{X}$ $\mathbf{Y}$ $\mathbf{Z}$ ESTART <br> $\mathrm{V}_{1}$ $\mathrm{X}_{1}$ $\mathrm{Y}_{1}$ $\mathrm{Z}_{1}$ $\mathrm{E}_{1}$ <br> $\mathrm{~V}_{2}$ $\mathrm{X}_{2}$ $\mathrm{Y}_{2}$ $\mathrm{Z}_{2}$ $\mathrm{E}_{2}$ <br> $\mathrm{~V}_{3}$ $\mathrm{X}_{3}$ $\mathrm{Y}_{3}$ $\mathrm{Z}_{3}$ $\mathrm{E}_{3}$ <br> $\mathrm{~V}_{4}$ $\mathrm{X}_{4}$ $\mathrm{Y}_{4}$ $\mathrm{Z}_{4}$ $\mathrm{E}_{4}$ <br> $\mathrm{~V}_{5}$ $\mathrm{X}_{5}$ $\mathrm{Y}_{5}$ $\mathrm{Z}_{5}$ $\mathrm{E}_{5}$ <br> $\mathrm{~V}_{6}$ $\mathrm{X}_{6}$ $\mathrm{Y}_{6}$ $\mathrm{Z}_{6}$ $\mathrm{E}_{6}$ <br> $\mathrm{~V}_{7}$ $\mathrm{X}_{7}$ $\mathrm{Y}_{7}$ $\mathrm{Z}_{7}$ $\mathrm{E}_{7}$ <br> $\mathrm{~V}_{8}$ $\mathrm{X}_{8}$ $\mathrm{Y}_{8}$ $\mathrm{Z}_{8}$ $\mathrm{E}_{8}$ |  |  |  |  |  |

Face Table

| FACE | ESTART |
| :---: | :---: |
| $F_{1}$ | $E_{1}$ |
| $F_{2}$ | $E_{5}$ |
| $F_{3}$ | $E_{11}$ |
| $F_{4}$ | $E_{9}$ |
| $F_{5}$ | $E_{4}$ |
| $F_{6}$ | $E_{8}$ |

Edge Table

| EDGE | VSTART | VEND | EPCW | ENCW | EPCCW | ENCCW | FCW | FCCW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{E}_{1}$ | $\mathrm{~V}_{1}$ | $\mathrm{~V}_{2}$ | $\mathrm{E}_{4}$ | $\mathrm{E}_{2}$ | $\mathrm{E}_{10}$ | $\mathrm{E}_{9}$ | $\mathrm{~F}_{1}$ | $\mathrm{~F}_{4}$ |
| $\mathrm{E}_{2}$ | $\mathrm{~V}_{2}$ | $\mathrm{~V}_{3}$ | $\mathrm{E}_{1}$ | $\mathrm{E}_{3}$ | $\mathrm{E}_{11}$ | $\mathrm{E}_{10}$ | $\mathrm{~F}_{1}$ | $\mathrm{~F}_{6}$ |
| $\mathrm{E}_{3}$ | $\mathrm{~V}_{3}$ | $\mathrm{~V}_{4}$ | $\mathrm{E}_{2}$ | $\mathrm{E}_{4}$ | $\mathrm{E}_{12}$ | $\mathrm{E}_{11}$ | $\mathrm{~F}_{1}$ | $\mathrm{~F}_{3}$ |
| $\mathrm{E}_{4}$ | $\mathrm{~V}_{4}$ | $\mathrm{~V}_{1}$ | $\mathrm{E}_{3}$ | $\mathrm{E}_{1}$ | $\mathrm{E}_{9}$ | $\mathrm{E}_{12}$ | $\mathrm{~F}_{1}$ | $\mathrm{~F}_{5}$ |
| $\mathrm{E}_{5}$ | $\mathrm{~V}_{5}$ | $\mathrm{~V}_{6}$ | $\mathrm{E}_{8}$ | $\mathrm{E}_{6}$ | $\mathrm{E}_{9}$ | $\mathrm{E}_{10}$ | $\mathrm{~F}_{2}$ | $\mathrm{~F}_{4}$ |
| $\mathrm{E}_{6}$ | $\mathrm{~V}_{6}$ | $\mathrm{~V}_{7}$ | $\mathrm{E}_{5}$ | $\mathrm{E}_{7}$ | $\mathrm{E}_{12}$ | $\mathrm{E}_{9}$ | $\mathrm{~F}_{2}$ | $\mathrm{~F}_{5}$ |
| $\mathrm{E}_{7}$ | $\mathrm{~V}_{7}$ | $\mathrm{~V}_{8}$ | $\mathrm{E}_{6}$ | $\mathrm{E}_{8}$ | $\mathrm{E}_{11}$ | $\mathrm{E}_{12}$ | $\mathrm{~F}_{2}$ | $\mathrm{~F}_{3}$ |
| $\mathrm{E}_{8}$ | $\mathrm{~V}_{8}$ | $\mathrm{~V}_{5}$ | $\mathrm{E}_{7}$ | $\mathrm{E}_{5}$ | $\mathrm{E}_{10}$ | $\mathrm{E}_{11}$ | $\mathrm{~F}_{2}$ | $\mathrm{~F}_{6}$ |
| $\mathrm{E}_{9}$ | $\mathrm{~V}_{1}$ | $\mathrm{~V}_{6}$ | $\mathrm{E}_{1}$ | $\mathrm{E}_{5}$ | $\mathrm{E}_{6}$ | $\mathrm{E}_{4}$ | $\mathrm{~F}_{4}$ | $\mathrm{~F}_{5}$ |
| $\mathrm{E}_{10}$ | $\mathrm{~V}_{5}$ | $\mathrm{~V}_{2}$ | $\mathrm{E}_{5}$ | $\mathrm{E}_{1}$ | $\mathrm{E}_{2}$ | $\mathrm{E}_{8}$ | $\mathrm{~F}_{4}$ | $\mathrm{~F}_{6}$ |
| $\mathrm{E}_{11}$ | $\mathrm{~V}_{3}$ | $\mathrm{~V}_{8}$ | $\mathrm{E}_{3}$ | $\mathrm{E}_{7}$ | $\mathrm{E}_{8}$ | $\mathrm{E}_{2}$ | $\mathrm{~F}_{3}$ | $\mathrm{~F}_{6}$ |
| $\mathrm{E}_{12}$ | $\mathrm{~V}_{7}$ | $\mathrm{~V}_{4}$ | $\mathrm{E}_{7}$ | $\mathrm{E}_{3}$ | $\mathrm{E}_{4}$ | $\mathrm{E}_{6}$ | $\mathrm{~F}_{3}$ | $\mathrm{~F}_{5}$ |

## REMOVING REDUNDANT INFORMATION IN THE RELATIONS

- Minimum information in the relations:

1. vertex relation: vertex, $x, y, z$
2. face relation: face, ESTART
3. edge relation: edge, VSTART, VEND, FCW, FCCW

- Without FCW and FCCW we cannot get to the faces from the edges and hence we cannot determine the edges that are adjacent to a face
- EPCW and ENCW or EPCCW and ENCCW are inadequate by themselves to identify the edges that are adjacent to a face
- Face relation is not absolutely necessary
- Face relation (ESTART) is only useful to avoid having to perform an O(number of edges) search on the FCW or FCCW fields to determine an edge given a face
- The ESTART field should also be included in the vertex relation


## CW EDGES IN A FACE

1. look up face $F$ in face table and find an edge $E$
2. find E in edge table; repeat until read E again

- if $\mathrm{F}=\mathrm{FCW}(\mathrm{E})$ then next edge is $\mathrm{ENCW}(\mathrm{E})$
- else $\mathrm{F}=\mathrm{FCCW}(\mathrm{E})$ and next edge is $\mathrm{ENCCW}(\mathrm{E})$
- Ex: get edges in face $\mathrm{F}_{3}$ in clockwise order

| FACE | ESTART |
| :---: | :---: |
| $F_{1}$ | $E_{1}$ |
| $F_{2}$ | $E_{5}$ |
| $F_{3}$ | $E_{7}$ |
| $F_{4}$ | $E_{9}$ |
| $F_{5}$ | $E_{4}$ |
| $F_{6}$ | $E_{8}$ |



| EDGE | VSTART | VEND | EPCW | ENCW | EPCCW | ENCCW | FCW | FCCW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $E_{1}$ | $V_{1}$ | $V_{2}$ | $E_{4}$ | $E_{2}$ | $E_{10}$ | $E_{9}$ | $F_{1}$ | $F_{4}$ |
| $E_{2}$ | $V_{2}$ | $V_{3}$ | $E_{1}$ | $E_{3}$ | $E_{11}$ | $E_{10}$ | $F_{1}$ | $F_{6}$ |
| $\mathrm{E}_{3}$ | $V_{3}$ | $V_{4}$ | $E_{2}$ | $E_{4}$ | $E_{12}$ | $E_{11}$ | $F_{1}$ | $F_{3}$ |
| $E_{4}$ | $V_{4}$ | $V_{1}$ | $E_{3}$ | $E_{1}$ | $E_{9}$ | $E_{12}$ | $F_{1}$ | $F_{5}$ |
| $E_{5}$ | $V_{5}$ | $V_{6}$ | $E_{8}$ | $E_{6}$ | $E_{9}$ | $E_{10}$ | $F_{2}$ | $F_{4}$ |
| $E_{6}$ | $V_{6}$ | $V_{7}$ | $E_{5}$ | $E_{7}$ | $E_{12}$ | $E_{9}$ | $F_{2}$ | $F_{5}$ |
| $E_{7}$ | $V_{7}$ | $V_{8}$ | $E_{6}$ | $E_{8}$ | $E_{11}$ | $E_{12}$ | $F_{2}$ | $F_{3}$ |
| $E_{8}$ | $V_{8}$ | $V_{5}$ | $E_{7}$ | $E_{5}$ | $E_{10}$ | $E_{11}$ | $F_{2}$ | $F_{6}$ |
| $E_{9}$ | $V_{1}$ | $V_{6}$ | $E_{1}$ | $E_{5}$ | $E_{6}$ | $E_{4}$ | $F_{4}$ | $F_{5}$ |
| $E_{10}$ | $V_{5}$ | $V_{2}$ | $E_{5}$ | $E_{1}$ | $E_{2}$ | $E_{8}$ | $F_{4}$ | $F_{6}$ |
| $E_{11}$ | $V_{3}$ | $V_{8}$ | $E_{3}$ | $E_{7}$ | $E_{8}$ | $E_{2}$ | $F_{3}$ | $F_{6}$ |
| $E_{12}$ | $V_{7}$ | $V_{4}$ | $E_{7}$ | $E_{3}$ | $E_{4}$ | $E_{6}$ | $F_{3}$ | $F_{5}$ |

1. look up face $F_{3}$ in face table and find edge $E_{7}$
2. look up edge $\mathrm{E}_{7}$ in edge table and since $\mathrm{F}_{3}=\mathrm{FCCW}\left(\mathrm{E}_{7}\right)$, next edge is $\operatorname{ENCCW}\left(\mathrm{E}_{7}\right)=\mathrm{E}_{12}$
3. look up edge $\mathrm{E}_{12}$ in edge table and since $\mathrm{F}_{3}=\mathrm{FCW}\left(\mathrm{E}_{12}\right)$, next edge is $\operatorname{ENCW}\left(\mathrm{E}_{12}\right)=\mathrm{E}_{3}$
4. look up edge $E_{3}$ in edge table and since $F_{3}=F C C W\left(E_{3}\right)$, next edge is $\operatorname{ENCCW}\left(E_{3}\right)=E_{11}$
5. look up edge $E_{11}$ in edge table and since $F_{3}=F C W\left(E_{11}\right)$, next edge is $\operatorname{ENCW}\left(\mathrm{E}_{11}\right)=\mathrm{E}_{7}$; now, we are done!

## CW EDGES IN A FACE

1. look up face $F$ in face table and find an edge $E$
2. find E in edge table; repeat until read E again

- if $F=F C W(E)$ then next edge is $E P C W(E)$
- else $\mathrm{F}=\mathrm{FCCW}(\mathrm{E})$ and next edge is EPCCW(E)
- Ex: get edges in face $F_{3}$ in counterclockwise order



1. look up face $F_{3}$ in face table and find edge $E_{7}$
2. look up edge $\mathrm{E}_{7}$ in edge table and since $\mathrm{F}_{3}=\mathrm{FCCW}\left(\mathrm{E}_{7}\right)$, next edge is $\operatorname{EPCCW}\left(\mathrm{E}_{7}\right)=\mathrm{E}_{11}$
3. look up edge $\mathrm{E}_{11}$ in edge table and since $\mathrm{F}_{3}=\mathrm{FCW}\left(\mathrm{E}_{11}\right)$, next edge is $\operatorname{EPCW}\left(\mathrm{E}_{11}\right)=\mathrm{E}_{3}$
4. look up edge $E_{3}$ in edge table and since $F_{3}=F C C W\left(E_{3}\right)$, next edge is $\operatorname{EPCCW}\left(\mathrm{E}_{3}\right)=\mathrm{E}_{12}$
5. look up edge $\mathrm{E}_{12}$ in edge table and since $\mathrm{F}_{3}=\mathrm{FCW}\left(\mathrm{E}_{12}\right)$, next edge is $\operatorname{EPCW}\left(\mathrm{E}_{12}\right)=\mathrm{E}_{7}$; now, we are done!
6. look up vertex $v$ in face table and find an edge E
7. find E in edge table; repeat until read E again

- if $\mathrm{V}=\mathrm{VSTART}(\mathrm{E})$ then next edge is EPCW(E)
- else $V=\operatorname{VEND}(E)$ and next edge is EPCCW(E)
- Ex: get edges meeting at vertex $\mathrm{V}_{5}$ in clockwise order

| VERTEX | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ | ESTART |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{1}$ | $\mathrm{X}_{1}$ | $\mathrm{Y}_{1}$ | $\mathrm{Z}_{1}$ | $\mathrm{E}_{1}$ |
| $\mathrm{~V}_{2}$ | $\mathrm{X}_{2}$ | $\mathrm{Y}_{2}$ | $\mathrm{Z}_{2}$ | $\mathrm{E}_{2}$ |
| $\mathrm{~V}_{3}$ | $\mathrm{X}_{3}$ | $\mathrm{Y}_{3}$ | $\mathrm{Z}_{3}$ | $\mathrm{E}_{3}$ |
| $\mathrm{~V}_{4}$ | $\mathrm{X}_{4}$ | $\mathrm{Y}_{4}$ | $\mathrm{Z}_{4}$ | $\mathrm{E}_{4}$ |
| $\mathrm{~V}_{5}$ | $\mathrm{X}_{5}$ | $\mathrm{Y}_{5}$ | $\mathrm{Z}_{5}$ | $\mathrm{E}_{5}$ |
| $\mathrm{~V}_{6}$ | $\mathrm{X}_{6}$ | $\mathrm{Y}_{6}$ | $\mathrm{Z}_{6}$ | $\mathrm{E}_{6}$ |
| $\mathrm{~V}_{7}$ | $\mathrm{X}_{7}$ | $\mathrm{Y}_{7}$ | $\mathrm{Z}_{7}$ | $\mathrm{E}_{7}$ |
| $\mathrm{~V}_{8}$ | $\mathrm{X}_{8}$ | $\mathrm{Y}_{8}$ | $\mathrm{Z}_{8}$ | $\mathrm{E}_{8}$ |



| EDGE | VSTART | VEND | EPCW | ENCW | EPCCW | ENCCW | FCW | FCCW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{E}_{1}$ | $\mathrm{~V}_{1}$ | $\mathrm{~V}_{2}$ | $\mathrm{E}_{4}$ | $\mathrm{E}_{2}$ | $\mathrm{E}_{10}$ | $\mathrm{E}_{9}$ | $\mathrm{~F}_{1}$ | $\mathrm{~F}_{4}$ |
| $\mathrm{E}_{2}$ | $\mathrm{~V}_{2}$ | $\mathrm{~V}_{3}$ | $\mathrm{E}_{1}$ | $\mathrm{E}_{3}$ | $\mathrm{E}_{11}$ | $\mathrm{E}_{10}$ | $\mathrm{~F}_{1}$ | $\mathrm{~F}_{6}$ |
| $\mathrm{E}_{3}$ | $\mathrm{~V}_{3}$ | $\mathrm{~V}_{4}$ | $\mathrm{E}_{2}$ | $\mathrm{E}_{4}$ | $\mathrm{E}_{12}$ | $\mathrm{E}_{11}$ | $\mathrm{~F}_{1}$ | $\mathrm{~F}_{3}$ |
| $\mathrm{E}_{4}$ | $\mathrm{~V}_{4}$ | $\mathrm{~V}_{1}$ | $\mathrm{E}_{3}$ | $\mathrm{E}_{1}$ | $\mathrm{E}_{9}$ | $\mathrm{E}_{12}$ | $\mathrm{~F}_{1}$ | $\mathrm{~F}_{5}$ |
| $\mathrm{E}_{5}$ | $\mathrm{~V}_{5}$ | $\mathrm{~V}_{6}$ | $\mathrm{E}_{8}$ | $\mathrm{E}_{6}$ | $\mathrm{E}_{9}$ | $\mathrm{E}_{10}$ | $\mathrm{~F}_{2}$ | $\mathrm{~F}_{4}$ |
| $\mathrm{E}_{6}$ | $\mathrm{~V}_{6}$ | $\mathrm{~V}_{7}$ | $\mathrm{E}_{5}$ | $\mathrm{E}_{7}$ | $\mathrm{E}_{12}$ | $\mathrm{E}_{9}$ | $\mathrm{~F}_{2}$ | $\mathrm{~F}_{5}$ |
| $\mathrm{E}_{7}$ | $\mathrm{~V}_{7}$ | $\mathrm{~V}_{8}$ | $\mathrm{E}_{6}$ | $\mathrm{E}_{8}$ | $\mathrm{E}_{11}$ | $\mathrm{E}_{12}$ | $\mathrm{~F}_{2}$ | $\mathrm{~F}_{3}$ |
| $\mathrm{E}_{8}$ | $\mathrm{~V}_{8}$ | $\mathrm{~V}_{5}$ | $\mathrm{E}_{7}$ | $\mathrm{E}_{5}$ | $\mathrm{E}_{10}$ | $\mathrm{E}_{11}$ | $\mathrm{~F}_{2}$ | $\mathrm{~F}_{6}$ |
| $\mathrm{E}_{9}$ | $\mathrm{~V}_{1}$ | $\mathrm{~V}_{6}$ | $\mathrm{E}_{1}$ | $\mathrm{E}_{5}$ | $\mathrm{E}_{6}$ | $\mathrm{E}_{4}$ | $\mathrm{~F}_{4}$ | $\mathrm{~F}_{5}$ |
| $\mathrm{E}_{10}$ | $\mathrm{~V}_{5}$ | $\mathrm{~V}_{2}$ | $\mathrm{E}_{5}$ | $\mathrm{E}_{1}$ | $\mathrm{E}_{2}$ | $\mathrm{E}_{8}$ | $\mathrm{~F}_{4}$ | $\mathrm{~F}_{6}$ |
| $\mathrm{E}_{11}$ | $\mathrm{~V}_{3}$ | $\mathrm{~V}_{8}$ | $\mathrm{E}_{3}$ | $\mathrm{E}_{7}$ | $\mathrm{E}_{8}$ | $\mathrm{E}_{2}$ | $\mathrm{~F}_{3}$ | $\mathrm{~F}_{6}$ |
| $\mathrm{E}_{12}$ | $\mathrm{~V}_{7}$ | $\mathrm{~V}_{4}$ | $\mathrm{E}_{7}$ | $\mathrm{E}_{3}$ | $\mathrm{E}_{4}$ | $\mathrm{E}_{6}$ | $\mathrm{~F}_{3}$ | $\mathrm{~F}_{5}$ |

1. look up vertex $v_{5}$ in vertex table and find edge $E_{5}$
2. look up edge $E_{5}$ in edge table and since $\mathrm{V}_{5}=\operatorname{VSTART}\left(\mathrm{E}_{5}\right)$, next edge is $\operatorname{EPCW}\left(\mathrm{E}_{5}\right)=\mathrm{E}_{8}$
3. look up edge $E_{8}$ in edge table and since $\mathrm{V}_{5}=\operatorname{VEND}\left(\mathrm{E}_{8}\right)$, next edge is $\operatorname{EPCCW}\left(\mathrm{E}_{8}\right)=\mathrm{E}_{10}$
4. look up edge $\mathrm{E}_{10}$ in edge table and since $\mathrm{V}_{5}=\operatorname{VSTART}\left(\mathrm{E}_{10}\right)$, next edge is $\operatorname{EPCW}\left(\mathrm{E}_{10}\right)=\mathrm{E}_{5}$; now, we are done!

## COW EDGES MEETING AT A VERTEX

1. look up vertex $v$ in face table and find an edge E
2. find E in edge table; repeat until read E again

- if $\mathrm{V}=\mathrm{VSTART}(\mathrm{E})$ then next edge is ENCCW(E)
- else $V=\operatorname{VEND}(E)$ and next edge is $\operatorname{ENCW}(E)$
- Ex: get edges meeting at $\mathrm{V}_{5}$ in counterclockwise order

| VERTEX | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ | ESTART |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{1}$ | $\mathrm{X}_{1}$ | $\mathrm{Y}_{1}$ | $\mathrm{Z}_{1}$ | $\mathrm{E}_{1}$ |
| $\mathrm{~V}_{2}$ | $\mathrm{X}_{2}$ | $\mathrm{Y}_{2}$ | $\mathrm{Z}_{2}$ | $\mathrm{E}_{2}$ |
| $\mathrm{~V}_{3}$ | $\mathrm{X}_{3}$ | $\mathrm{Y}_{3}$ | $\mathrm{Z}_{3}$ | $\mathrm{E}_{3}$ |
| $\mathrm{~V}_{4}$ | $\mathrm{X}_{4}$ | $\mathrm{Y}_{4}$ | $\mathrm{Z}_{4}$ | $\mathrm{E}_{4}$ |
| $\mathrm{~V}_{5}$ | $\mathrm{X}_{5}$ | $\mathrm{Y}_{5}$ | $\mathrm{Z}_{5}$ | $\mathrm{E}_{5}$ |
| $\mathrm{~V}_{6}$ | $\mathrm{X}_{6}$ | $\mathrm{Y}_{6}$ | $\mathrm{Z}_{6}$ | $\mathrm{E}_{6}$ |
| $\mathrm{~V}_{7}$ | $\mathrm{X}_{7}$ | $\mathrm{Y}_{7}$ | $\mathrm{Z}_{7}$ | $\mathrm{E}_{7}$ |
| $\mathrm{~V}_{8}$ | $\mathrm{X}_{8}$ | $\mathrm{Y}_{8}$ | $\mathrm{Z}_{8}$ | $\mathrm{E}_{8}$ |



| EDGE | VSTART | VEND | EPCW | ENCW | EPCCW | ENCCW | FCW | FCCW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{E}_{1}$ | $\mathrm{~V}_{1}$ | $\mathrm{~V}_{2}$ | $\mathrm{E}_{4}$ | $\mathrm{E}_{2}$ | $\mathrm{E}_{10}$ | $\mathrm{E}_{9}$ | $\mathrm{~F}_{1}$ | $\mathrm{~F}_{4}$ |
| $\mathrm{E}_{2}$ | $\mathrm{~V}_{2}$ | $\mathrm{~V}_{3}$ | $\mathrm{E}_{1}$ | $\mathrm{E}_{3}$ | $\mathrm{E}_{11}$ | $\mathrm{E}_{10}$ | $\mathrm{~F}_{1}$ | $\mathrm{~F}_{6}$ |
| $\mathrm{E}_{3}$ | $\mathrm{~V}_{3}$ | $\mathrm{~V}_{4}$ | $\mathrm{E}_{2}$ | $\mathrm{E}_{4}$ | $\mathrm{E}_{12}$ | $\mathrm{E}_{11}$ | $\mathrm{~F}_{1}$ | $\mathrm{~F}_{3}$ |
| $\mathrm{E}_{4}$ | $\mathrm{~V}_{4}$ | $\mathrm{~V}_{1}$ | $\mathrm{E}_{3}$ | $\mathrm{E}_{1}$ | $\mathrm{E}_{9}$ | $\mathrm{E}_{12}$ | $\mathrm{~F}_{1}$ | $\mathrm{~F}_{5}$ |
| $\mathrm{E}_{5}$ | $\mathrm{~V}_{5}$ | $\mathrm{~V}_{6}$ | $\mathrm{E}_{8}$ | $\mathrm{E}_{6}$ | $\mathrm{E}_{9}$ | $\mathrm{E}_{10}$ | $\mathrm{~F}_{2}$ | $\mathrm{~F}_{4}$ |
| $\mathrm{E}_{6}$ | $\mathrm{~V}_{6}$ | $\mathrm{~V}_{7}$ | $\mathrm{E}_{5}$ | $\mathrm{E}_{7}$ | $\mathrm{E}_{12}$ | $\mathrm{E}_{9}$ | $\mathrm{~F}_{2}$ | $\mathrm{~F}_{5}$ |
| $\mathrm{E}_{7}$ | $\mathrm{~V}_{7}$ | $\mathrm{~V}_{8}$ | $\mathrm{E}_{6}$ | $\mathrm{E}_{8}$ | $\mathrm{E}_{11}$ | $\mathrm{E}_{12}$ | $\mathrm{~F}_{2}$ | $\mathrm{~F}_{3}$ |
| $\mathrm{E}_{8}$ | $\mathrm{~V}_{8}$ | $\mathrm{~V}_{5}$ | $\mathrm{E}_{7}$ | $\mathrm{E}_{5}$ | $\mathrm{E}_{10}$ | $\mathrm{E}_{11}$ | $\mathrm{~F}_{2}$ | $\mathrm{~F}_{6}$ |
| $\mathrm{E}_{9}$ | $\mathrm{~V}_{1}$ | $\mathrm{~V}_{6}$ | $\mathrm{E}_{1}$ | $\mathrm{E}_{5}$ | $\mathrm{E}_{6}$ | $\mathrm{E}_{4}$ | $\mathrm{~F}_{4}$ | $\mathrm{~F}_{5}$ |
| $\mathrm{E}_{10}$ | $\mathrm{~V}_{5}$ | $\mathrm{~V}_{2}$ | $\mathrm{E}_{5}$ | $\mathrm{E}_{1}$ | $\mathrm{E}_{2}$ | $\mathrm{E}_{8}$ | $\mathrm{~F}_{4}$ | $\mathrm{~F}_{6}$ |
| $\mathrm{E}_{11}$ | $\mathrm{~V}_{3}$ | $\mathrm{~V}_{8}$ | $\mathrm{E}_{3}$ | $\mathrm{E}_{7}$ | $\mathrm{E}_{8}$ | $\mathrm{E}_{2}$ | $\mathrm{~F}_{3}$ | $\mathrm{~F}_{6}$ |
| $\mathrm{E}_{12}$ | $\mathrm{~V}_{7}$ | $\mathrm{~V}_{4}$ | $\mathrm{E}_{7}$ | $\mathrm{E}_{3}$ | $\mathrm{E}_{4}$ | $\mathrm{E}_{6}$ | $\mathrm{~F}_{3}$ | $\mathrm{~F}_{5}$ |

1. look up vertex $v_{5}$ in vertex table and find edge $E_{5}$
2. look up edge $E_{5}$ in edge table and since $V_{5}=\operatorname{VSTART}\left(E_{5}\right)$, next edge is $\operatorname{ENCCW}\left(\mathrm{E}_{5}\right)=\mathrm{E}_{10}$
3. look up edge $\mathrm{E}_{10}$ in edge table and since $\mathrm{V}_{5}=\operatorname{VSTART}\left(\mathrm{E}_{10}\right)$, next edge is $\operatorname{ENCCW}\left(\mathrm{E}_{10}\right)=\mathrm{E}_{8}$
4. look up edge $\mathrm{E}_{8}$ in edge table and since $\mathrm{V}_{5}=\operatorname{VEND}\left(\mathrm{E}_{8}\right)$, next edge is $\operatorname{ENCW}\left(\mathrm{E}_{8}\right)=\mathrm{E}_{5}$; now, we are done!
