TREES

Hanan Samet

Computer Science Department and Center for Automation Research and Institute for Advanced Computer Studies University of Maryland College Park, Maryland 20742 e-mail: hjs@umiacs.umd.edu

Copyright © 1997 Hanan Samet

These notes may not be reproduced by any means (mechanical or electronic or any other) without the express written permission of Hanan Samet

TREE DEFINITION

- TREE \equiv a branching structure between nodes
- A finite set T of one or more nodes such that:

1. one element of the set is distinguished, $\operatorname{ROOT}(T)$
2. the remaining nodes of T are partitioned into $m \geq 0$ disjoint sets $T_{1}, T_{2}, \ldots T_{m}$ and each of these sets is in turn a tree.

- trees $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots \mathrm{~T}_{m}$ are the subtrees of the root
- Recursive definition - easy to prove theorems about properties of trees.

Ex: prove true for 1 node
assume true for n nodes prove true for $n+1$ nodes

- ORDERED TREE \equiv if the relative order of the subtrees $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots \mathrm{~T}_{m}$ is important
- ORIENTED TREE \equiv order is not important

- Computer representation \Rightarrow ordered!

TERMINOLOGY

level 0
 level 1
 level 2
 level 3

- Counterintuitive!
- DEGREE \equiv number of subtrees of a node
- Terminal node $\equiv l e a f \equiv$ degree 0
- BRANCH NODE \equiv non-terminal node
- Root is the father of the roots of its subtrees
- Roots of subtrees of a node are brothers
- Roots of subtrees of a node are sons of the node
- The root of the tree has no father!
- A is an ancestor of $\mathrm{C}, \mathrm{E}, \mathrm{G}, \ldots$
${ }^{-}{ }_{G}$ is a descendant of ${ }_{A}$

```
level(X) \equivif father(X)=\Omega then 0
    else 1+level(father(X));
```

Ex: level (G) = $1+$ level (F)

$$
\begin{gathered}
1+\text { level (C) } \\
1+\text { level (A) }
\end{gathered}
$$

FORESTS AND BINARY TREES

- FOREST \equiv a set (usually ordered) of 0 or more disjoint trees, or equivalently:
the nodes of a tree excluding the root

has the forest

- BINARY TREE \equiv a finite set of nodes which either is empty or a root and two disjoint binary trees called the left and right subtrees of the root
- Is a binary tree a special case of a tree?

NO! An entirely different concept

are different binary trees
1 has an empty right subtree
2 has an empty left subtree
But as 'trees' 1 and 2 are identical!

OTHER REPRESENTATIONS OF TREES

- Nested sets (also known as 'bubble diagrams')

- Nested parentheses

Tree
(root subtree ${ }_{1}$ subtree $_{2} \ldots$ subtree $_{n}$)

$$
\left.\left(\begin{array}{llll}
\mathrm{A} & (\mathrm{~B} & (\mathrm{C}) & (\mathrm{D})
\end{array}\right) \quad(\mathrm{G} \quad(\mathrm{E} \quad(\mathrm{~F})))\right)
$$

Binary tree
(root left right)
(A (B (C () ()) (D () ()))
(G (E (F () ()) ()) ()))

- Indentation

```
A
    B
    C
        D
    G
        E
        F
```

- Dewey decimal notation: 2.12 .2 .2 2.3.4.5

APPLICATIONS

- Segmentation of large rectangular arrays $-\mathrm{A}[\mathrm{n}, \mathrm{m}]$

- Algebraic formulas

$$
A+((B-C) \times D)
$$

1. no need for parentheses

- but $A-B+C=(A-B)+C$

$$
\neq A-(B+C)
$$

2. code generation

LW	$1, \mathrm{~A}$
LW	$2, \mathrm{~B}$
DW	$2, \mathrm{C}$
MW	$2, \mathrm{D}$
AW	2,1

LISTs (with a capital L!)

- LIST \equiv a finite sequence of 0 or more atoms or LISTS

$$
L=(A,(B, A, B),(), C,(((2))))
$$

() \equiv empty list

- Differences between lists and trees:
- Index notation:

```
\(L[2]=(B, A, B)\)
\(\mathrm{L}[2,1]=\mathrm{B}\)
L[5,2]
L[5, 1, 1]
L[2] (B,A,B)
L[5,1,1]
```

1. no data appears in the nodes representing LISTS - i.e., *
2. LISTS may be recursive

[M]
3. LISTS may overlap (i.e., need not be disjoint)

- equivalently, subtrees may be shared

$$
N=(M, M, C, N)
$$

[M]

TRAVERSING BINARY TREES

- Representation \quad	LLINK	INFO	RLINK

- Applications:

1. code generation in compilers
2. game trees in artificial intelligence
3. detect if a structure is really a tree

- TREE \equiv one path from each node to another node (unlike graph)
- no cycles

ABD and ACD

TRAVERSAL ORDERS

1. Preorder \equiv root, left subtree, right subtree

- depth-first search

2. Inorder \equiv left subtree, root, right subtree

- binary search tree

3. Postorder \equiv left subtree, right subtree, root

- code generation
- Binary search tree: left < root < right

- Ex:

$$
\begin{aligned}
& \text { preorder }=\text { ABDIKCEGFHJ } \\
& \text { inorder }=\text { IDKBAEGCHEJ } \\
& \text { postorder }=\text { IKDBGEHJFCA }
\end{aligned}
$$

- Inorder traversal requires a stack to go back up the tree:

D
B

A

INORDER TRAVERSAL ALGORITHM

```
procedure inorder(tree pointer T);
begin
    stack A;
    tree pointer P;
    A\leftarrow\Omega;
    P\leftarrowT;
    while not(P=\Omega and }A=\Omega)\mathrm{ do
        begin
            if P=\Omega then
                    begin
                        P\LeftarrowA; /* Pop the stack */
                        visit(Root(P));
                        P\leftarrowRLINK (P);
                    end
            else
            begin
                        A\LeftarrowP; /* Push on the stack */
                    P\leftarrowLLINK (P);
            end;
        end;
end;
```


Using recursion:

```
procedure inorder(tree pointer T);
begin
    if T=\Omega then return
        else
            begin
                    inorder(LLINK(T));
            visit(ROOT(T));
            inorder(RLINK(T));
        end;
end;
```


THREADED BINARY TREES

- Binary tree representation has too many Ω links
- Use 1 -bit tag fields to indicate presence of a link
- If Ω link, then use field to store links to other parts of the structure to aid the traversal of the tree

Unthreaded: Threaded:
$\operatorname{LLINK}(\mathrm{p})=\Omega$
$\operatorname{LLINK}(\mathrm{p})=\mathrm{q} \neq \Omega$
$\operatorname{RLINK}(\mathrm{p})=\Omega$
$\operatorname{RLINK}(\mathrm{p})=\mathrm{q} \neq \Omega$
$\operatorname{LTAG}(\mathrm{p})=0$,
LLINK(p) $=\$ \mathrm{p}=$ inorder predecessor of p
$\operatorname{LTAG}(\mathrm{p})=1$,
$\operatorname{LLINK}(\mathrm{p})=\mathrm{q}$
$\operatorname{RTAG}(\mathrm{p})=0$,
RLINK $(p)=p \$=$ inorder successor of p
$\operatorname{RTAG}(p)=1$,
$\operatorname{RTAG}(\mathrm{p})=1$,
$\operatorname{RLINK}(\mathrm{p})=\mathrm{q}$

LLINK	LTAG	INFO	RTAG	RLINK

Ex: head

- If address of ROOT(T) < address of left and right sons, then don' heed the tag fields

- Threads will point to lower addresses!

OPERATIONS ON THREADED BINARY TREES

- Find the inorder successor of node P (P\$)

1. $\mathrm{Q} \leftarrow \operatorname{RLINK}(\mathrm{P}) ; \quad / *$ right thread points to $\mathrm{P} \$$ */
2. if RTAG $(P)=1$ then
```
        begin /* not a thread */
            while ltag(Q)=1 do Q\leftarrowLlink(Q);
        end;
```


- Insert node Q as the right subtree of node P

1. Advantages

- no need for a stack for traversal
- will not run out of memory during inorder traversal
- can find inorder successor of any node without having to traverse the entire tree

2. Disadvantages

- insertion and deletion of nodes is slower
- can't share common subtrees in the threaded representation

Ex: two choices for the inorder successor of F

3. Right-threaded trees

- inorder algorithms make little use of left threads
- 'Ltag $(P)=1$ ' test can be replaced by 'LLINK(P)= Ω^{\prime} test

PRINCIPLES OF RECURSION

- Two binary trees T1 and T2 are said to be similar if they have the same shape or structure

- Formally:

1. they are both empty or
2. they are both non-empty and their left
 and right subtrees respectively are similar
```
similar( }\mp@subsup{\textrm{T}}{1}{},\mp@subsup{\textrm{T}}{2}{})
    if empty( (T1) and empty(T}\mp@subsup{T}{2}{})\mathrm{ then T
    else if empty(T}\mp@subsup{T}{1}{})\mathrm{ or empty( (T2) then F
    elsesimilar(left(T}\mp@subsup{|}{1}{}),left(\mp@subsup{T}{2}{})) an
        similar(right(T}\mp@subsup{T}{1}{}),right(T2))
```

- Will similar work?
- No! base case does not handle case when one of the trees is empty and the other one is not
- Simplifying:

```
A and B = if A then B A or B = if A then T
else F else B
    similar( }\mp@subsup{T}{1}{},\mp@subsup{T}{2}{})
        if empty(T}\mp@subsup{T}{1}{})\mathrm{ then empty( T 
        if empty(T}\mp@subsup{T}{2}{})\mathrm{ then T
        else F
        else if empty(T}\mp@subsup{T}{2}{})\mathrm{ then F
        else[if]similar(left (TI}),\operatorname{left}(\mp@subsup{T}{2}{}))[then
            similar(right(T}\mp@subsup{I}{1}{}),right(\mp@subsup{T}{2}{})
        [else F i]
```


EQUIVALENCE OF BINARY TREES

- Two binary trees T1 and T2 are said to be equivalent if they are similar and corresponding nodes contain the same information

NO! we are dealing with binary trees and the left subtree of c is not the same in the two cases

```
equivalent(T1,T2) =
    if empty(T1) and empty(T2) then T
    else if empty(T1) or empty(T2) then F
    else root(T1)=root(T2) and
        equivalent(left(T1),left(T2)) and
        equivalent(right(T1),right(T2));
```


RECURSION SUMMARY

- Avoids having to use an explicit stack in the algorithm
- Problem formulation is analogous to induction
- Base case, inductive case
- Ex: Factorial

$$
\begin{aligned}
& n!=n \cdot(n-1)! \\
& \text { fact }(\mathrm{n})=\begin{aligned}
& \text { if } \mathrm{n}=0 \text { then } 1 \\
& \text { else } \mathrm{n} * \operatorname{fact}(\mathrm{n}-1) ;
\end{aligned}
\end{aligned}
$$

The result is obtained by peeling one's way back along the stack

$$
\begin{aligned}
\operatorname{fact}(3)= & 3 * f a c t(2) \\
& 2 * f a c t(1) \\
& 1 * f a c t(0) \\
= & 1
\end{aligned}
$$

Using an accumulator variable and a call fact $2(\mathrm{n}, 1)$:

$$
\begin{aligned}
\text { fact2(} n, \text { total })= & \text { if } n=0 \text { then total } \\
& \text { else fact2(} n-1, n \star \text { total) ; }
\end{aligned}
$$

Solution is iterative

- Recursion implemented on computer using stack instructions.
- Dec-system 10: push, por, pushu, popu
- Stack pointer format: (count, address)
- Can simulate stack if no stack instructions

$\operatorname{tr} 16$

COMPLETE BINARY TREES

When a binary tree is reasonably complete (most Ω links are at the highest level), use a sequential storage allocation scheme so that links become unnecessary

- If n is the highest level at which a node is found, then at most $2^{n+1}-1$ words are needed
- Storage allocation method:

1. root has address 1
2. left son of x has address $2 * \operatorname{address}(x)$
3. right son of x has address $2 * \operatorname{address}(x)+1$

- When should a complete binary tree be used?
$n=$ highest level of the tree at which a node is found
$x=$ \# of nodes in tree
3 words per node (left link, right link, info)
use a complete binary tree when $x>\left(2^{n+1}-1\right) / 3$

FORESTS

- A forest is an ordered set of 0 or more trees
- There exists a natural correspondence between forests and binary trees

- Rigorous definition of $\mathrm{B}(\mathrm{F})$
$\mathrm{F}=\left(\mathrm{T}_{1}, \mathrm{~T}_{2}, ., . \mathrm{T}_{n}\right)$
$\mathrm{T}_{i, 1}, \mathrm{~T}_{i, 2}, \ldots, \mathrm{~T}_{i, m}$ are subtrees of T_{i}

1. If $n=0, B(F)$ is empty
2. If $n>0$, root of $B(F)$ is $\operatorname{root}\left(T_{1}\right)$

left subtree of $B(F)$ is $B\left(T_{1,1}, T_{1,2}, \ldots, T_{1, m}\right)$
right subtree of $\mathrm{B}(\mathrm{F})$ is $\mathrm{B}\left(\mathrm{T}_{2}, \mathrm{~T}_{3}, \ldots \mathrm{~T}_{n}\right)$

- Traversal of forests preorder:

1. visit root of first tree
2. traverse subtrees of first tree in preorder
3. traverse remaining subtrees in reorder
postorder:
4. traverse subtrees of first tree in postorder
5. visit root of first tree
6. traverse remaining subtrees in postorder
preorder $=$ AB CK DE HF JG
postorder $=\mathrm{B}$ KC A HE J F G D
\equiv inorder of binary tree

EQUIVALENCE RELATION

- Given: relations as to what is equivalent to what ($a=b$)
- Goal: is $x \equiv y$?
- Formal definition of an equivalence relation

1. if $x \equiv y$ and $y \equiv z$ then $x \equiv z$ (transitivity)
2. if $x \equiv y$ then $y \equiv x$ (symmetry)
3. $x \equiv x$ (reflexivity)

- Ex: $S=\{1$.. 9$\}$
$1 \equiv 56 \equiv 87 \equiv 29 \equiv 83 \equiv 74 \equiv 29 \equiv 3$
is $2 \equiv 6$?
Yes, since $2 \equiv 7 \equiv 3 \equiv 9 \equiv 8 \equiv 6$
- Partitions S into disjoint subsets or equivalence classes
- Two elements equivalent iff they belong to same class
- What are the equivalence classes in this example?
$\{1,5\}$ and $\{2,3,4,6,7,8,9\}$

ALGORITHM

- Represent each element as a node in forest of trees
- Trees consist only of father links (nil at roots)
- Each (nonredundant) relation merges two trees into one
- Basic strategy:

```
for each relation a\equivb do
        begin
            find root node r of tree containing a; /* Find step */
            find root node s of tree containing b;
            if they differ, merge the two trees; /* Union step */
        end;
```


 merge (a,b)

- Algorithm (also known as union-find):

```
for every element i do father(i)\leftarrow\Omega
while input_not_exhausted do
    begin
        get_pair(a,b);
        while father(a)\not=\Omega do a\leftarrowfather(a);
        while father(b)\not=\Omega do b\leftarrowfather(b);
        if (a\not=b) then father(a)\leftarrowb;
        end;
```

$1 \equiv 5$ (2) father (k): 5 2 2 2 2 8 2 2 2 8
$6 \equiv 8$
$7 \equiv 2$
$9 \equiv 8$
$3 \equiv 7$
$4 \equiv 2$

$\begin{array}{rlllllllll}\text { father (k): } & 5 & & 2 & 2 & & 8 & 2 & 2 & 8 \\ k: & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
$9 \equiv 3$

- More efficient with path compression and weight balancing
- Execution time "almost linear" (inverse of Ackermann function)

