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TREE DEFINITION

• TREE ≡ a branching structure between nodes

• A finite set T of one or more nodes such that:

  1. one element of the set is distinguished, ROOT(T)

  2. the remaining nodes of T are partitioned into m ≥ 0
   disjoint sets T1, T2, … T   and each of these sets is
   in turn a tree.
   • trees T1, T2, … T   are the subtrees of the root

• Recursive definition – easy to prove theorems about
 properties of trees.

 Ex: prove true for 1 node
   assume true for n nodes
   prove true for n+1 nodes

• ORDERED TREE ≡ if the relative order of the subtrees
     T1, T2, … T   is important

• ORIENTED TREE ≡ order is not important

• Computer representation ⇒  ordered!
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TERMINOLOGY

• Counterintuitive!

• DEGREE ≡ number of subtrees of a node
• Terminal node ≡ leaf ≡ degree 0
• BRANCH NODE ≡ non-terminal node

• Root is the father of the roots of its subtrees
• Roots of subtrees of a node are brothers
• Roots of subtrees of a node are sons of the node
• The root of the tree has no father!
• A is an ancestor of C, E, G, …
• G is a descendant of A

level(X) ≡ if father(X)= Ω then 0

  else 1+level(father(X));

Ex: level(G) = 1+level(F)

                 1+level(C)

                   1+level(A)

                     0
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• BINARY TREE ≡ a finite set of nodes which either is empty or
  a root and two disjoint binary trees called the
  left and right subtrees of the root

• Is a binary tree a special case of a tree?

FORESTS AND BINARY TREES

•  FOREST ≡ a set (usually ordered) of 0 or more disjoint trees,
  or equivalently:
  the nodes of a tree excluding the root
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NO! An entirely different concept
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NO! An entirely different concept
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1 has an empty right subtree
2 has an empty left subtree
But as ‘trees’ 1 and 2 are identical!

Copyright © 1998 by Hanan Samet



OTHER REPRESENTATIONS OF TREES

• Nested sets (also known as ‘bubble diagrams’)

• Nested parentheses

 Tree    (root subtree1 subtree2 ... subtreen)
       (A (B (C) (D)) (G (E (F))))

 Binary tree  (root left right)
       (A (B (C () ()) (D () ()))

          (G (E (F () ()) ()) ()))

• Indentation
  A

   B

    C

    D

   G

    E

     F

• Dewey decimal notation:  2.1 2.2.2 2.3.4.5

B
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F

E
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APPLICATIONS

• Segmentation of large rectangular arrays – A[n,m]

• Algebraic formulas

 1. no need for parentheses
  • but A–B+C = (A–B)+C

     ≠ A–(B+C)

 2. code generation

  LW 1,A
  LW 2,B
  DW 2,C
  MW 2,D
  AW 2,1

A

A[1] A[2] … A[n]

A[1,1] A[1,2]… A[1,m] A[n,1] A[n,2]… A[n,m]

each row is a segment
(Burroughs computers)

operator

operand operand

A+((B⁄C) ×D)

+

A ×

⁄

B C

D
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LISTs (with a capital L!)

• LIST ≡ a finite sequence of 0 or more atoms or LISTS

 L=(A,(B,A,B),(),C,(((2))))

 ()  ≡ empty list

• Index notation:

 L[2]=(B,A,B)
 L[2,1]=B
 L[5,2]
 L[5,1,1]

• Differences between LISTS and trees:

 1. no data appears in the nodes representing LISTS - i.e., ✲

 2. LISTS may be recursive         M=(M)

 3. LISTS may overlap (i.e., need not be disjoint)

  • equivalently, subtrees may be shared

    N=(M,M,C,N)

tr6
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✲[M]  ← Label

[M]
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TRAVERSING BINARY TREES

• Representation

ΩΩΩ

Ω

Ω

Ω

Ω

D

A

B C ABD  and  ACD

• Applications:
 1. code generation in compilers
 2. game trees in artificial intelligence
 3. detect if a structure is really a tree
  • TREE ≡ one path from each node to another node
    (unlike graph)
  • no cycles

 RLINK INFO LLINK
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TRAVERSAL ORDERS

1. Preorder ≡ root, left subtree, right subtree
 • depth-first search
2. Inorder ≡ left subtree, root, right subtree
 • binary search tree
3. Postorder ≡ left subtree, right subtree, root
 • code generation

• Binary search tree: left < root < right

    inorder yields 10 15 20 30 45

• Ex:
    preorder =

    inorder =

    postorder =

• Inorder traversal requires a stack to go back up the tree:

  D
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INORDER TRAVERSAL ALGORITHM

procedure inorder(tree pointer T);
begin
  stack A;
  tree pointer P;
  A ←Ω;
  P ←T;
  while not(P= Ω and A= Ω) do
    begin
      if P= Ω then
        begin
          P ⇐ A;   /* Pop the stack */
          visit( ROOT(P));
          P ←RLINK(P);
        end
      else
        begin
          A ⇐ P;   /* Push on the stack */
          P ←LLINK (P);
        end;
    end;
end;

Using recursion:

procedure inorder(tree pointer T);
begin
  if T= Ω then return
    else
      begin
        inorder( LLINK (T));
        visit( ROOT(T));
        inorder( RLINK(T));
      end;
end;
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THREADED BINARY TREES

• Binary tree representation has too many Ω links
• Use 1-bit tag fields to indicate presence of a link
• If Ω link, then use field to store links to other parts
 of the structure to aid the traversal of the tree

Unthreaded: Threaded:
LLINK(p) = Ω LTAG(p) = 0,
   LLINK(p) = $p = inorder predecessor of p 
LLINK(p) = q ≠ Ω LTAG(p) = 1,
   LLINK(p) = q
RLINK(p) = Ω RTAG(p) = 0,
   RLINK(p) = p$ = inorder successor of p
RLINK(p) = q ≠ Ω RTAG(p) = 1,
   RLINK(p) = q

Ex: HEAD

• If address of ROOT(T) < address of left and right sons,
 then don't need the TAG fields
• Threads will point to lower addresses!

 LLINK  RLINK LTAG  RTAG INFO

A

B C

D E F

G H J
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OPERATIONS ON THREADED BINARY TREES

• Find the inorder successor of node P (P$)

 1. Q ←RLINK(P); /* right thread points to P$ */
 2. if RTAG(P)=1 then
   begin /* not a thread */
    while LTAG(Q)=1 do Q ←LLINK (Q);
   end;

• Insert node Q as the right subtree of node P

 1.  RLINK(Q) ←RLINK(P); RTAG(Q) ←RTAG(P);

   RLINK(P) ←Q;   RTAG(P) ←1;

   LLINK (Q) ←P;   LTAG(Q) ←0;

 2.  if RTAG(Q)=1 then LLINK (Q$) ←Q;
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SUMMARY OF THREADING

1. Advantages
 • no need for a stack for traversal
 • will not run out of memory during inorder traversal
 • can find inorder successor of any node without
  having to traverse the entire tree

2. Disadvantages
 • insertion and deletion of nodes is slower
 • can’t share common subtrees in the
  threaded representation

  Ex:  two choices for the inorder successor of F

3. Right-threaded trees
 • inorder algorithms make little use of left threads
 • ‘LTAG(P)=1’  test can be replaced by  ‘LLINK(P)=Ω’  test

A

B C

D

E F

G

A

B C

D

E F

GD

E F

?
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PRINCIPLES OF RECURSION

• Two binary trees T1 and T2 are said to be similar if they
 have the same shape or structure
• Formally:
 1. they are both empty or
 2. they are both non-empty and their left
  and right subtrees respectively are similar

 similar(T 1,T 2) =
  if empty(T 1) and empty(T 2) then T

  else similar(left(T 1),left(T 2)) and
    similar(right(T 1),right(T 2));

• Will similar work?

?

A

B C

D A

BC

D
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  else if empty(T 1) or empty(T 2) then F

• No!  base case does not handle case when one of the
   trees is empty and the other one is not
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  else if empty(T 1) or empty(T 2) then F

• No!  base case does not handle case when one of the
   trees is empty and the other one is not
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• Simplifying:
 A and B = if A then B A or B =
  else F
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  else if empty(T 1) or empty(T 2) then F
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• Simplifying:
 A and B = if A then B A or B =
  else F
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    if A then T
    else B

 similar(T 1,T 2) =
   if empty(T 1) then
     if empty(T 2) then T
     else F
   else if empty(T 2) then F
   else if similar(left(T 1),left(T 2)) then
  similar(right(T 1),right(T 2))
   else F ;
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  else if empty(T 1) or empty(T 2) then F

• No!  base case does not handle case when one of the
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• Simplifying:
 A and B = if A then B A or B =
  else F
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    if A then T
    else B

 similar(T 1,T 2) =
   if empty(T 1) then
     if empty(T 2) then T
     else F
   else if empty(T 2) then F
   else if similar(left(T 1),left(T 2)) then
  similar(right(T 1),right(T 2))
   else F ;
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EQUIVALENCE OF BINARY TREES

• Two binary trees T1 and T2 are said to be equivalent
 if they are similar and corresponding nodes contain
 the same information

equivalent(T1,T2) =
  if empty(T1) and empty(T2) then T
  else if empty(T1) or empty(T2) then F
  else root(T1)=root(T2) and
    equivalent(left(T1),left(T2)) and
    equivalent(right(T1),right(T2));
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A

D

B C

A

?
≡
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NO! we are dealing with binary trees and the left
 subtree of C is not the same in the two cases
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RECURSION SUMMARY

• Avoids having to use an explicit stack in the algorithm
• Problem formulation is analogous to induction
• Base case, inductive case

• Ex: Factorial
  n   = n • (n – 1) !

  fact(n) = if n=0 then 1
    else n*fact(n-1);

  The result is obtained by peeling one’s way back
  along the stack

  fact(3) = 3*fact(2)
                 2*fact(1)
                   1*fact(0)
                     1
          = 6

  Using an accumulator variable and a call fact2(n,1) :

  fact2(n,total) = if n=0 then total
     else fact2(n-1,n*total);

  Solution is iterative

• Recursion implemented on computer using stack instructions.
• Dec-system 10: PUSH, POP, PUSHJ, POPJ

• Stack pointer format:  (count, address)
• Can simulate stack if no stack instructions

!
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COMPLETE BINARY TREES

When a binary tree is reasonably complete (most Ω links
are at the highest level), use a sequential storage allocation
scheme so that links become unnecessary

• If n is the highest level at which a node is found,
 then at most 2n+1 – 1 words are needed

• Storage allocation method:
 1. root has address 1
 2. left son of x has address 2 ∗  address(x)
 3. right son of x has address 2 ∗  address(x) + 1

• When should a complete binary tree be used?
 n = highest level of the tree at which a node is found
 x = # of nodes in tree
 3 words per node (left link, right link, info)
 use a complete binary tree when  x  >  (2n+1 – 1) / 3

1

2

3

4

5

6

7

A

B

C

D

Ω
E

F

A

B C

D E F

level 0

level 1

level 2
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• Rigorous definition of B(F)
 F = (T1, T2, …, Tn)
 Ti,1, Ti,2, …, Ti,m are subtrees of Ti
 1. If n = 0, B(F) is empty
 2. If n > 0, root of B(F) is root(T1)
   left subtree of B(F) is B(T1,1, T1,2, …, T1,m)
   right subtree of B(F) is B(T2, T3, …, Tn)

81
bFORESTS

• A forest is an ordered set of 0 or more trees
• There exists a natural correspondence between forests
 and binary trees

• Traversal of forests
 preorder: postorder:
 1. visit root of first tree 1. traverse subtrees of
 2. traverse subtrees of  first tree in postorder
  first tree in preorder 2. visit root of first tree
 3. traverse remaining 3. traverse remaining
  subtrees in preorder  subtrees in postorder

D

E F

H

G

JK

A

CB

A

C D

E

FH

K

B

GJ
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preorder  = A B C K D E H F J G
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preorder  = A B C K D E H F J G
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postorder  = B K C A H E J F G D
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postorder  = B K C A H E J F G D
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≡ inorder of binary tree
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EQUIVALENCE RELATION

• Given: relations as to what is equivalent to what (a≡b)
• Goal: is x ≡ y?

• Formal definition of an equivalence relation
 1. if x≡y and y≡z then x≡z (transitivity)
 2. if x≡y then y≡x (symmetry)
 3. x≡x  (reflexivity)

• Ex:  S = {1 .. 9}
   1≡5  6≡8  7≡2  9≡8  3≡7  4≡2  9≡3
   is 2 ≡ 6 ?
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EQUIVALENCE RELATION

• Given: relations as to what is equivalent to what (a≡b)
• Goal: is x ≡ y?

• Formal definition of an equivalence relation
 1. if x≡y and y≡z then x≡z (transitivity)
 2. if x≡y then y≡x (symmetry)
 3. x≡x  (reflexivity)

• Ex:  S = {1 .. 9}
   1≡5  6≡8  7≡2  9≡8  3≡7  4≡2  9≡3
   is 2 ≡ 6 ?
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  Yes, since 2≡7≡3≡9≡8≡6

• Partitions S into disjoint subsets or equivalence classes
• Two elements equivalent iff they belong to same class
• What are the equivalence classes in this example?
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EQUIVALENCE RELATION

• Given: relations as to what is equivalent to what (a≡b)
• Goal: is x ≡ y?

• Formal definition of an equivalence relation
 1. if x≡y and y≡z then x≡z (transitivity)
 2. if x≡y then y≡x (symmetry)
 3. x≡x  (reflexivity)

• Ex:  S = {1 .. 9}
   1≡5  6≡8  7≡2  9≡8  3≡7  4≡2  9≡3
   is 2 ≡ 6 ?
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  Yes, since 2≡7≡3≡9≡8≡6

• Partitions S into disjoint subsets or equivalence classes
• Two elements equivalent iff they belong to same class
• What are the equivalence classes in this example?
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{1,5} and {2,3,4,6,7,8,9}

Copyright © 1998 by Hanan Samet



tr19

ALGORITHM

• Represent each element as a node in forest of trees
• Trees consist only of father links (nil at roots)
• Each (nonredundant) relation merges two trees into one
• Basic strategy:

• Algorithm (also known as union-find ):

81
b

for each relation a ≡b do
  begin
    find root node r of tree containing a; /* Find step */  
    find root node s of tree containing b;
    if they differ, merge the two trees; /* Union step */
  end;

for every element i do father(i) ←Ω
while input_not_exhausted do
  begin
    get_pair(a,b);
    while father(a) ≠Ω do a ←father(a);
    while father(b) ≠Ω do b ←father(b);
    if (a ≠b) then father(a) ←b;
  end;

father(k):
 k: 1 2 3 4 5 6 7 8 9

1

5 2

3 4

6

78

9

⇒
merge(a,b)

s

b

r

a

s

b

r

a
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1≡5 5
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• More efficient with path compression and weight balancing

• Execution time “almost linear” (inverse of Ackermann function)
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