TREES

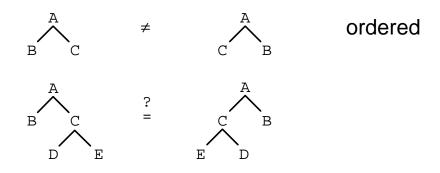
Hanan Samet

Computer Science Department and Center for Automation Research and Institute for Advanced Computer Studies University of Maryland College Park, Maryland 20742 e-mail: hjs@umiacs.umd.edu

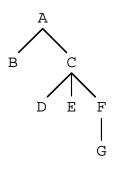
Copyright © 1997 Hanan Samet

These notes may not be reproduced by any means (mechanical or electronic or any other) without the express written permission of Hanan Samet TREE DEFINITION

- TREE \equiv a branching structure between nodes
- A finite set T of one or more nodes such that:
 - 1. one element of the set is distinguished, ROOT(T)
 - 2. the remaining nodes of \top are partitioned into $m \ge 0$ disjoint sets $\top_1, \top_2, \ldots, \top_m$ and each of these sets is in turn a tree.
 - trees $T_1, T_2, \dots T_m$ are the *subtrees* of the root
- Recursive definition easy to prove theorems about properties of trees.
 - Ex: prove true for 1 node assume true for n nodes prove true for *n*+1 nodes
- ORDERED TREE = if the relative order of the subtrees $T_1, T_2, ..., T_m$ is important
- ORIENTED TREE \equiv order is not important

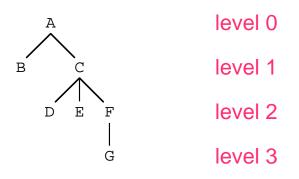


• Computer representation \Rightarrow ordered!



tr2

- Counterintuitive!
- DEGREE = number of subtrees of a node
- Terminal node \equiv *leaf* \equiv degree 0
- BRANCH NODE \equiv non-terminal node
- Root is the *father* of the roots of its subtrees
- Roots of subtrees of a node are brothers
- Roots of subtrees of a node are sons of the node
- The root of the tree has no father!
- A is an *ancestor* of C, E, G, ...
- G is a descendant of A



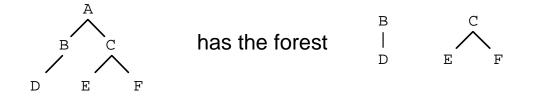
- Counterintuitive!
- DEGREE = number of subtrees of a node
- Terminal node \equiv *leaf* \equiv degree 0
- BRANCH NODE \equiv non-terminal node
- Root is the *father* of the roots of its subtrees
- Roots of subtrees of a node are brothers
- Roots of subtrees of a node are sons of the node
- The root of the tree has no father!
- A is an *ancestor* of C, E, G, ...
- G is a descendant of A



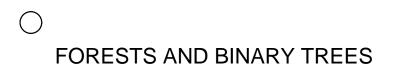
FORESTS AND BINARY TREES

• FOREST = a set (usually ordered) of 0 or more disjoint trees, or equivalently:

the nodes of a tree excluding the root



- BINARY TREE = a finite set of nodes which either is empty or a root and two disjoint binary trees called the *left* and *right* subtrees of the root
- Is a binary tree a special case of a tree?

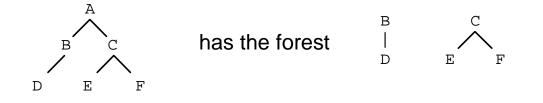


 FOREST = a set (usually ordered) of 0 or more disjoint trees, or equivalently:

2|1

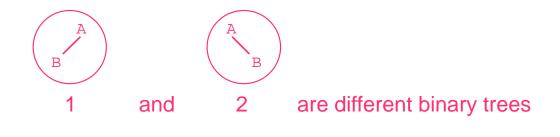
tr3

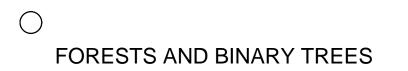
the nodes of a tree excluding the root

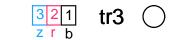


- BINARY TREE = a finite set of nodes which either is empty or a root and two disjoint binary trees called the *left* and *right* subtrees of the root
- Is a binary tree a special case of a tree?

NO! An entirely different concept

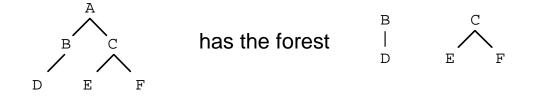






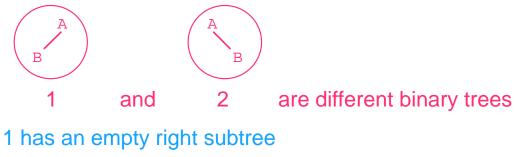
 FOREST = a set (usually ordered) of 0 or more disjoint trees, or equivalently:

the nodes of a tree excluding the root



- BINARY TREE = a finite set of nodes which either is empty or a root and two disjoint binary trees called the *left* and *right* subtrees of the root
- Is a binary tree a special case of a tree?

NO! An entirely different concept

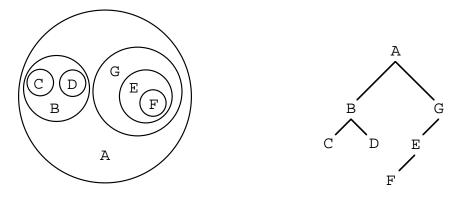


2 has an empty left subtree

But as 'trees' 1 and 2 are identical!

OTHER REPRESENTATIONS OF TREES

• Nested sets (also known as 'bubble diagrams')



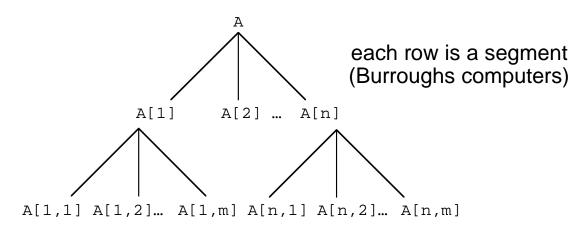
Nested parentheses

Tree	(root subtree ₁ subtree ₂ subtree _n) (A (B (C) (D)) (G (E (F))))
Binary tree	(root left right)
	(A (B (C () ()) (D () ()))
	(G (E (F () ()) ()))
 Indentation 	
A	
В	
C	
D	
G	
E	
F	

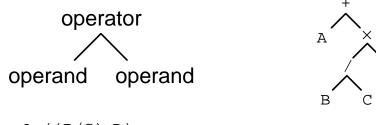
• Dewey decimal notation: 2.1 2.2.2 2.3.4.5

APPLICATIONS

• Segmentation of large rectangular arrays - A[n,m]



• Algebraic formulas



 $A+((B/C)\times D)$

1. no need for parentheses

• but A-B+C = (A-B)+C $\neq A-(B+C)$

2. code generation

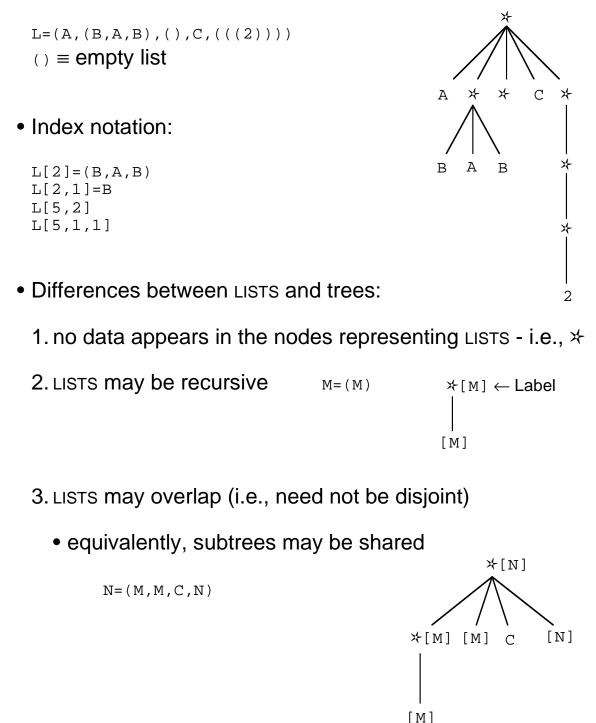
LW	1,A
LW	2,В
DW	2,C
MW	2,D
AW	2,1

Copyright © 1998 by Hanan Samet

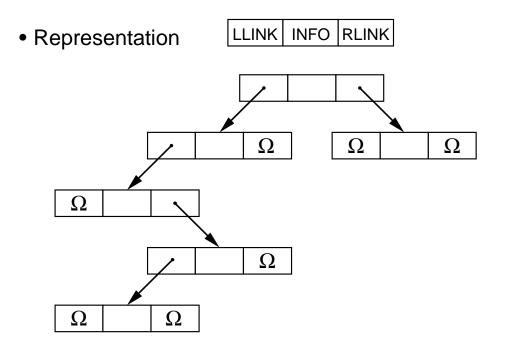
D

LISTs (with a capital L!)

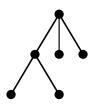
• LIST \equiv a finite sequence of 0 or more atoms or LISTS



TRAVERSING BINARY TREES



- Applications:
 - 1. code generation in compilers
 - 2. game trees in artificial intelligence
 - 3. detect if a structure is really a tree
 - TREE = one path from each node to another node (unlike graph)
 - no cycles



abd **and** acd

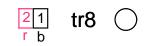
1 tr8 🔿

TRAVERSAL ORDERS

- Preorder = root, left subtree, right subtree
 depth-first search
- 2. Inorder ≡ left subtree, root, right subtree
 binary search tree
- 3. Postorder \equiv left subtree, right subtree, root
 - code generation
- Binary search tree: left < root < right

inorder yields 10 15 20 30 45

- Inorder traversal requires a stack to go back up the tree:
 - D B A



TRAVERSAL ORDERS

- Preorder = root, left subtree, right subtree
 depth-first search
- 2. Inorder ≡ left subtree, root, right subtree
 binary search tree
- 3. Postorder \equiv left subtree, right subtree, root
 - code generation

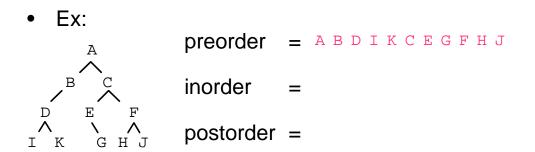
30

15

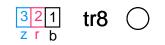
10 20

• Binary search tree: left < root < right

inorder yields 10 15 20 30 45



- Inorder traversal requires a stack to go back up the tree:
 - D B A



TRAVERSAL ORDERS

- Preorder = root, left subtree, right subtree
 depth-first search
- 2. Inorder ≡ left subtree, root, right subtree
 binary search tree
- 3. Postorder \equiv left subtree, right subtree, root
 - code generation

30

15

10 20

• Binary search tree: left < root < right

inorder yields 10 15 20 30 45

• Ex: A preorder = ABDIKCEGFHJ A inorder = IDKBAEGCHFJ D E F A postorder =

- Inorder traversal requires a stack to go back up the tree:
 - D B A

4321 tr8 () g z r b

TRAVERSAL ORDERS

- Preorder = root, left subtree, right subtree
 depth-first search
- 2. Inorder ≡ left subtree, root, right subtree
 binary search tree
- 3. Postorder \equiv left subtree, right subtree, root
 - code generation

30

15

10 20

45

• Binary search tree: left < root < right

inorder yields 10 15 20 30 45

• Ex: A preorder = A B D I K C E G F H J B C inorder = I D K B A E G C H F J D E F postorder = I K D B G E H J F C A

- Inorder traversal requires a stack to go back up the tree:
 - D B A

INORDER TRAVERSAL ALGORITHM

```
procedure inorder(tree pointer T);
begin
  stack A;
  tree pointer P;
  A \leftarrow \Omega;
  P←T;
  while not(P=\Omega and A=\Omega) do
     begin
       if P=\Omega then
          begin
                                 /* Pop the stack */
            P⇐A;
            visit(ROOT(P));
            P \leftarrow RLINK(P);
          end
       else
          begin
                                /* Push on the stack */
            A⇐P;
            P \leftarrow LLINK(P);
          end;
     end;
end;
```

Using recursion:

```
procedure inorder(tree pointer T);

begin

if T=\Omega then return

else

begin

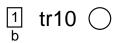
inorder(LLINK(T));

visit(ROOT(T));

inorder(RLINK(T));

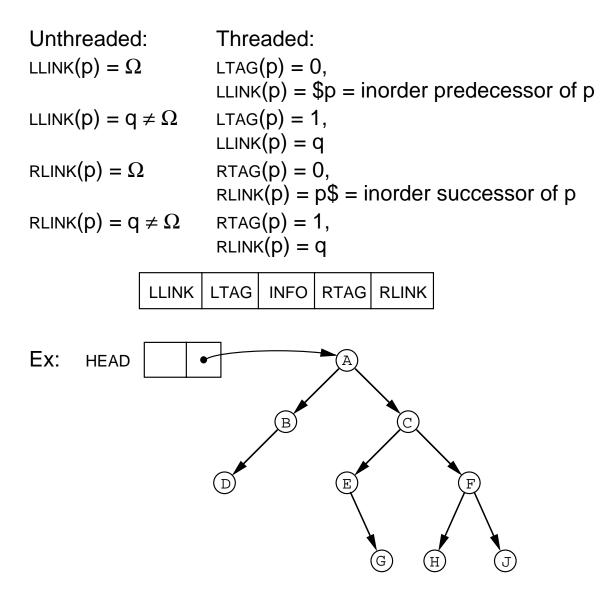
end;

end;
```



THREADED BINARY TREES

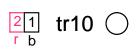
- Binary tree representation has too many Ω links
- Use 1-bit tag fields to indicate presence of a link
- If Ω link, then use field to store links to other parts of the structure to aid the traversal of the tree



- If address of ROOT(T) < address of left and right sons, then don't need the TAG fields
- Threads will point to lower addresses!

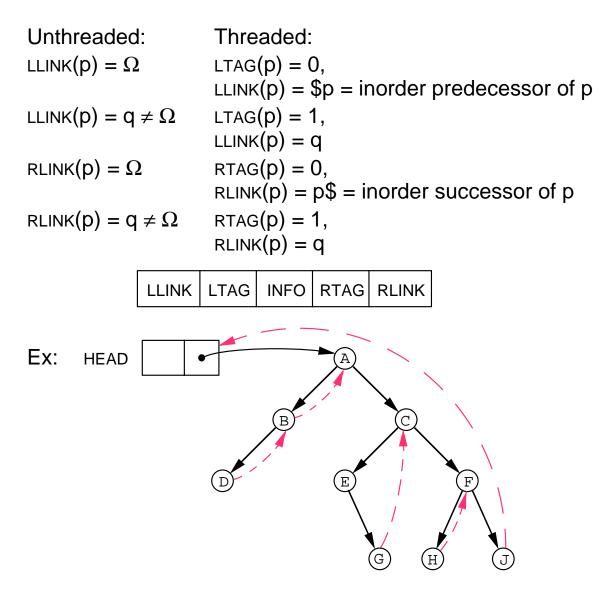
Copyright © 1998 by Hanan Samet

 \bigcirc

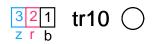


THREADED BINARY TREES

- Binary tree representation has too many Ω links
- Use 1-bit tag fields to indicate presence of a link
- If Ω link, then use field to store links to other parts of the structure to aid the traversal of the tree

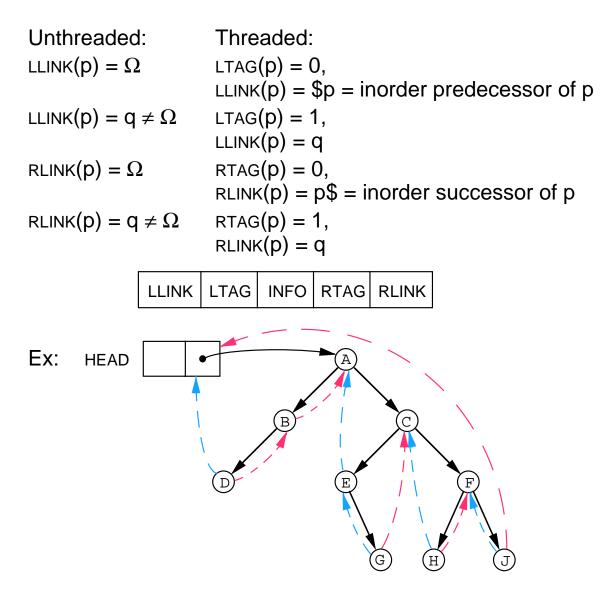


- If address of ROOT(T) < address of left and right sons, then don't need the TAG fields
- Threads will point to lower addresses!



THREADED BINARY TREES

- Binary tree representation has too many Ω links
- Use 1-bit tag fields to indicate presence of a link
- If Ω link, then use field to store links to other parts of the structure to aid the traversal of the tree

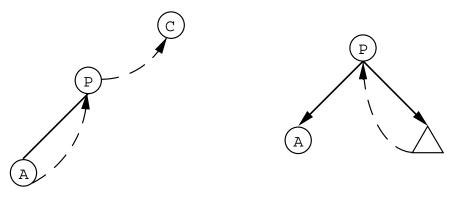


- If address of ROOT(T) < address of left and right sons, then don't need the TAG fields
- Threads will point to lower addresses!

```
1 tr11 ○
```

• Find the inorder successor of node P (P\$)

• Insert node Q as the right subtree of node P



1. $rlink(Q) \leftarrow rlink(P);$ $rtag(Q) \leftarrow rtag(P);$

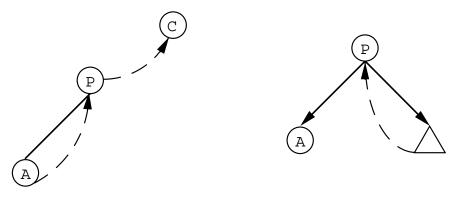
RLINK(P) \leftarrow Q; RTAG(P) \leftarrow 1;

 $\texttt{llink}(Q) \leftarrow \texttt{P}; \qquad \texttt{ltag}(Q) \leftarrow \texttt{0};$

2. if $\operatorname{RTAG}(Q)=1$ then $\operatorname{LLINK}(Q\$) \leftarrow Q;$

• Find the inorder successor of node P (P\$)

• Insert node Q as the right subtree of node P



1. $rlink(Q) \leftarrow rlink(P);$ $rtag(Q) \leftarrow rtag(P);$

 $\texttt{RLINK}(P) \leftarrow Q; \qquad \texttt{RTAG}(P) \leftarrow 1;$

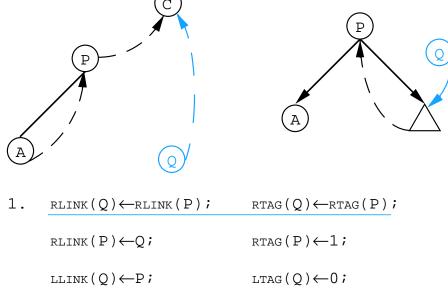
 $\texttt{LLINK}(Q) \leftarrow \texttt{P}; \qquad \texttt{LTAG}(Q) \leftarrow \texttt{0};$

2. if $\operatorname{RTAG}(Q)=1$ then $\operatorname{LLINK}(Q\$) \leftarrow Q;$

tr11 (

3|2|1|

• Find the inorder successor of node P (P\$)



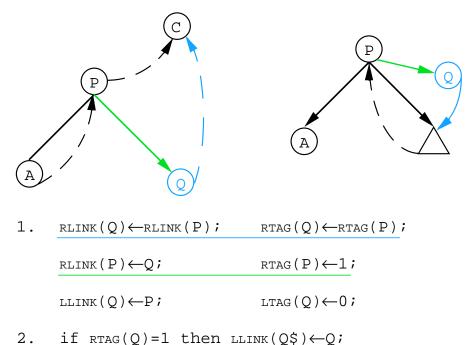
2. if RTAG(Q)=1 then $LLINK(Q$) \leftarrow Q;$

tr11

2

• Find the inorder successor of node P (P\$)

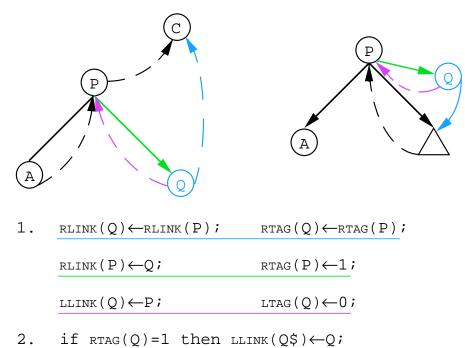
Insert node Q as the right subtree of node P



) 54321 tr11 v g z r b OPERATIONS ON THREADED BINARY TREES

• Find the inorder successor of node P (P\$)

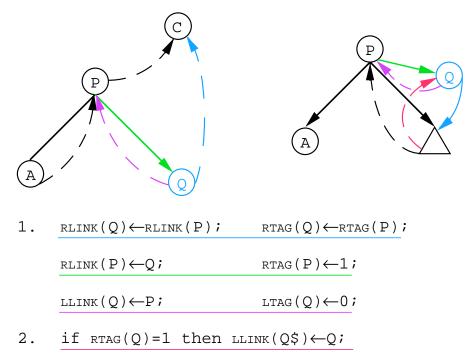
• Insert node Q as the right subtree of node P



) 654321 tr11 C r v g z r b OPERATIONS ON THREADED BINARY TREES

• Find the inorder successor of node P (P\$)

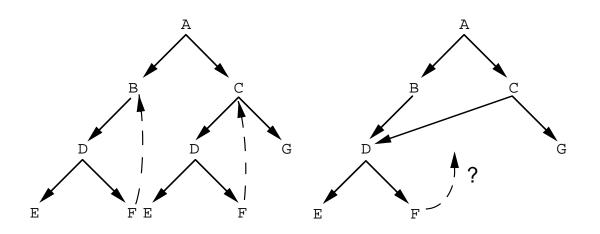
Insert node Q as the right subtree of node P



SUMMARY OF THREADING

- 1. Advantages
 - no need for a stack for traversal
 - will not run out of memory during inorder traversal
 - can find inorder successor of any node without having to traverse the entire tree
- 2. Disadvantages
 - insertion and deletion of nodes is slower
 - can't share common subtrees in the threaded representation

Ex: two choices for the inorder successor of F



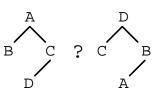
- 3. Right-threaded trees
 - inorder algorithms make little use of left threads
 - 'LTAG(P)=1' test can be replaced by 'LLINK(P)= Ω ' test

```
)
PRINCIPLES OF RECURSION
```

- Two binary trees T1 and T2 are said to be *similar* if they have the same shape or structure
- Formally:
 - 1. they are both empty or
 - 2. they are both non-empty and their left and right subtrees respectively are similar

```
similar(T<sub>1</sub>,T<sub>2</sub>) =
    if empty(T<sub>1</sub>) and empty(T<sub>2</sub>) then T
    elsesimilar(left(T<sub>1</sub>),left(T<sub>2</sub>)) and
        similar(right(T<sub>1</sub>),right(T<sub>2</sub>));
```

• Will similar work?



1

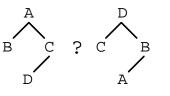
tr13 (

```
)
PRINCIPLES OF RECURSION
```

- Two binary trees T1 and T2 are said to be *similar* if they have the same shape or structure
- Formally:
 - 1. they are both empty or
 - 2. they are both non-empty and their left and right subtrees respectively are similar

```
similar(T<sub>1</sub>,T<sub>2</sub>) =
    if empty(T<sub>1</sub>) and empty(T<sub>2</sub>) then T
    else if empty(T<sub>1</sub>) or empty(T<sub>2</sub>) then F
    else similar(left(T<sub>1</sub>),left(T<sub>2</sub>)) and
        similar(right(T<sub>1</sub>),right(T<sub>2</sub>));
```

- Will similar work?
- No! base case does not handle case when one of the trees is empty and the other one is not



2 1

tr13 (

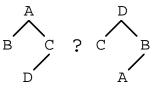
```
)
PRINCIPLES OF RECURSION
```

- Two binary trees T1 and T2 are said to be *similar* if they have the same shape or structure
- Formally:
 - 1. they are both empty or
 - 2. they are both non-empty and their left and right subtrees respectively are similar

```
similar(T<sub>1</sub>,T<sub>2</sub>) =
    if empty(T<sub>1</sub>) and empty(T<sub>2</sub>) then T
    else if empty(T<sub>1</sub>) or empty(T<sub>2</sub>) then F
    else similar(left(T<sub>1</sub>),left(T<sub>2</sub>)) and
        similar(right(T<sub>1</sub>),right(T<sub>2</sub>));
```

- Will similar work?
- No! base case does not handle case when one of the trees is empty and the other one is not
- Simplifying:

A and B = if A then B A or B = else F



321

tr13 (

```
)
PRINCIPLES OF RECURSION
```

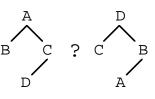
- Two binary trees T1 and T2 are said to be *similar* if they have the same shape or structure
- Formally:
 - 1. they are both empty or
 - 2. they are both non-empty and their left and right subtrees respectively are similar

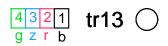
```
similar(T<sub>1</sub>,T<sub>2</sub>) =
    if empty(T<sub>1</sub>) and empty(T<sub>2</sub>) then T
    else if empty(T<sub>1</sub>) or empty(T<sub>2</sub>) then F
    else similar(left(T<sub>1</sub>),left(T<sub>2</sub>)) and
        similar(right(T<sub>1</sub>),right(T<sub>2</sub>));
```

- Will similar work?
- No! base case does not handle case when one of the trees is empty and the other one is not

```
• Simplifying:
```

```
A and B = if A then B A or B = if A then T
else F else B
similar(T<sub>1</sub>,T<sub>2</sub>) =
if empty(T<sub>1</sub>) then
if empty(T<sub>2</sub>) then T
else F
else if empty(T<sub>2</sub>) then F
else if similar(left(T<sub>1</sub>),left(T<sub>2</sub>)) then
similar(right(T<sub>1</sub>),right(T<sub>2</sub>))
else F ;
```





) PRINCIPLES OF RECURSION

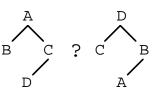
- Two binary trees T1 and T2 are said to be *similar* if they have the same shape or structure
- Formally:
 - 1. they are both empty or
 - 2. they are both non-empty and their left and right subtrees respectively are similar

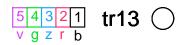
```
similar(T<sub>1</sub>,T<sub>2</sub>) =
    if empty(T<sub>1</sub>) and empty(T<sub>2</sub>) then T
    else if empty(T<sub>1</sub>) or empty(T<sub>2</sub>) then F
    else similar(left(T<sub>1</sub>),left(T<sub>2</sub>)) and
        similar(right(T<sub>1</sub>),right(T<sub>2</sub>));
```

- Will similar work?
- No! base case does not handle case when one of the trees is empty and the other one is not

```
• Simplifying:
```

```
A and B = if A then B A or B = if A then T
else F else B
similar(T<sub>1</sub>,T<sub>2</sub>) =
if empty(T<sub>1</sub>) then empty(T<sub>2</sub>)
[if empty(T<sub>2</sub>) then T
else F
else if empty(T<sub>2</sub>) then F and
else [if] similar(left(T<sub>1</sub>), left(T<sub>2</sub>)) [then]
similar(right(T<sub>1</sub>), right(T<sub>2</sub>))
[else F ;]
```





tr14 1

EQUIVALENCE OF BINARY TREES

• Two binary trees T1 and T2 are said to be *equivalent* if they are similar *and* corresponding nodes contain the same information


```
equivalent(T1,T2) =
    if empty(T1) and empty(T2) then T
    else if empty(T1) or empty(T2) then F
    else root(T1)=root(T2) and
        equivalent(left(T1),left(T2)) and
        equivalent(right(T1),right(T2));
```

EQUIVALENCE OF BINARY TREES

• Two binary trees T1 and T2 are said to be *equivalent* if they are similar *and* corresponding nodes contain the same information

2|1

tr14

NO! we are dealing with binary trees and the left subtree of c is not the same in the two cases

```
equivalent(T1,T2) =
  if empty(T1) and empty(T2) then T
  else if empty(T1) or empty(T2) then F
  else root(T1)=root(T2) and
      equivalent(left(T1),left(T2)) and
      equivalent(right(T1),right(T2));
```

RECURSION SUMMARY

- Avoids having to use an explicit stack in the algorithm
- Problem formulation is analogous to induction
- Base case, inductive case
- •Ex: Factorial
 n! = n (n 1)!
 fact(n) = if n=0 then 1
 else n*fact(n-1);

The result is obtained by peeling one's way back along the stack

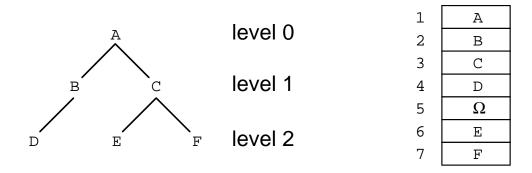
Using an accumulator variable and a call fact2(n,1):

Solution is iterative

- Recursion implemented on computer using stack instructions.
- Dec-system 10: push, pop, pushj, popj
- Stack pointer format: (count, address)
- Can simulate stack if no stack instructions

COMPLETE BINARY TREES

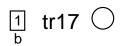
When a binary tree is reasonably *complete* (most Ω links are at the highest level), use a sequential storage allocation scheme so that links become unnecessary



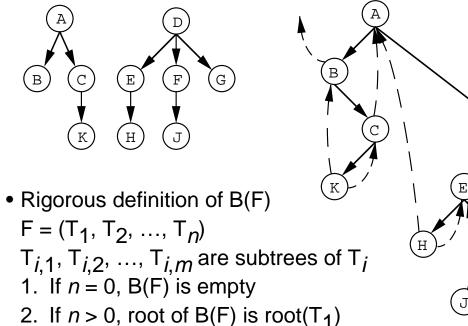
- If *n* is the highest level at which a node is found, then at most $2^{n+1} 1$ words are needed
- Storage allocation method:
 - 1. root has address 1
 - 2. left son of x has address 2 * address(x)
 - 3. right son of x has address 2 * address(x) + 1
- When should a complete binary tree be used?
 n = highest level of the tree at which a node is found
 x = # of nodes in tree

3 words per node (left link, right link, info) use a complete binary tree when $x > (2^{n+1} - 1)/3$

FORESTS



- A forest is an ordered set of 0 or more trees
- There exists a *natural correspondence* between forests and binary trees

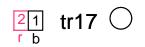


- left subtree of B(F) is $B(T_{1,1}, T_{1,2}, ..., T_{1,m})$ right subtree of B(F) is $B(T_2, T_3, ..., T_n)$
- Traversal of forests preorder:
 - 1. visit root of first tree
 - 2. traverse subtrees of first tree in preorder
 - 3. traverse remaining subtrees in preorder

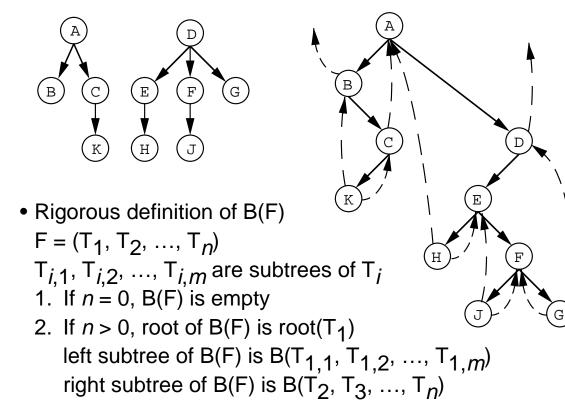
postorder:

- 1. traverse subtrees of first tree in postorder
- 2. visit root of first tree
- 3. traverse remaining subtrees in postorder

FORESTS



- A forest is an ordered set of 0 or more trees
- There exists a *natural correspondence* between forests and binary trees



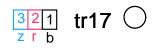
- Traversal of forests preorder:
 - 1. visit root of first tree
 - 2. traverse subtrees of first tree in preorder
 - 3. traverse remaining subtrees in preorder

preorder = ABCKDEHFJG

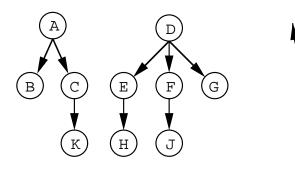
postorder:

- 1. traverse subtrees of first tree in postorder
- 2. visit root of first tree
- 3. traverse remaining subtrees in postorder

FORESTS



- A forest is an ordered set of 0 or more trees
- There exists a natural correspondence between forests and binary trees



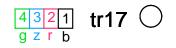
- Rigorous definition of B(F) $F = (T_1, T_2, ..., T_n)$
 - $T_{i,1}, T_{i,2}, \dots, T_{i,m}$ are subtrees of T_i
 - 1. If n = 0, B(F) is empty
 - 2. If n > 0, root of B(F) is root(T₁) left subtree of B(F) is B(T_{1,1}, T_{1,2}, ..., T_{1,m}) right subtree of B(F) is B(T₂, T₃, ..., T_n)
- Traversal of forests preorder:
 - 1. visit root of first tree
 - 2. traverse subtrees of first tree in preorder
 - 3. traverse remaining subtrees in preorder

postorder:

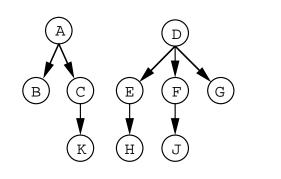
- 1. traverse subtrees of first tree in postorder
- 2. visit root of first tree
- 3. traverse remaining subtrees in postorder

preorder = A B C K D E H F J G postorder = B K C A H E J F G D

FORESTS



- A forest is an ordered set of 0 or more trees
- There exists a natural correspondence between forests and binary trees

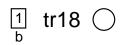


- Rigorous definition of B(F)
 F = (T₁, T₂, ..., T_n)
 - $T_{i,1}, T_{i,2}, \dots, T_{i,m}$ are subtrees of T_i
 - 1. If n = 0, B(F) is empty
 - 2. If n > 0, root of B(F) is root(T₁) left subtree of B(F) is B(T_{1,1}, T_{1,2}, ..., T_{1,m}) right subtree of B(F) is B(T₂, T₃, ..., T_n)
- Traversal of forests preorder:
 - 1. visit root of first tree
 - 2. traverse subtrees of first tree in preorder
 - 3. traverse remaining subtrees in preorder

postorder:

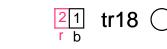
- 1. traverse subtrees of first tree in postorder
- 2. visit root of first tree
- 3. traverse remaining subtrees in postorder

preorder = ABCKDEHFJG postorder = BKCAHEJFGD ≡ inorder of binary tree



EQUIVALENCE RELATION

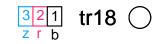
- Given: relations as to what is equivalent to what (a=b)
- Goal: is $x \equiv y$?
- Formal definition of an *equivalence relation*
 - 1. if x=y and y=z then x=z (transitivity)
 - 2. if x=y then y=x (symmetry)
 - 3. $x \equiv x$ (reflexivity)



EQUIVALENCE RELATION

- Given: relations as to what is equivalent to what (a=b)
- Goal: is $x \equiv y$?
- Formal definition of an equivalence relation
 - 1. if x=y and y=z then x=z (transitivity)
 - 2. if $x \equiv y$ then $y \equiv x$ (symmetry)
 - 3. $x \equiv x$ (reflexivity)

- Partitions S into disjoint subsets or equivalence classes
- Two elements equivalent iff they belong to same class
- What are the equivalence classes in this example?



EQUIVALENCE RELATION

- Given: relations as to what is equivalent to what (a=b)
- Goal: is $x \equiv y$?
- Formal definition of an equivalence relation
 - 1. if x=y and y=z then x=z (transitivity)
 - 2. if $x \equiv y$ then $y \equiv x$ (symmetry)
 - 3. $x \equiv x$ (reflexivity)

- Partitions S into disjoint subsets or equivalence classes
- Two elements equivalent iff they belong to same class
- What are the equivalence classes in this example?

{1,5} and {2,3,4,6,7,8,9}

- Represent each element as a node in forest of trees
- Trees consist only of father links (nil at roots)
- Each (nonredundant) relation merges two trees into one

tr19

• Basic strategy:

```
for each relation a≡b do
    begin
      find root node r of tree containing a; /* Find step */
      find root node s of tree containing b;
      if they differ, merge the two trees; /* Union step */
    end;
      r
              S
                         merge(a,b)
   а
• Algorithm (also known as union-find):
 for every element i do father(i) \leftarrow \Omega
 while input_not_exhausted do
    begin
      get_pair(a,b);
      while father(a) \neq \Omega do a \leftarrow father(a);
      while father(b) \neq \Omega do b (father(b);
      if (a \neq b) then father(a) \leftarrow b;
    end;
           (5)
                               father(k):
                       2
                                        k: 1 2 3 4 5 6 7 8 9
               (8)(7)
                      (3)(4)
              9
                 (6
```

- Represent each element as a node in forest of trees
- Trees consist only of father links (nil at roots)
- Each (nonredundant) relation merges two trees into one

tr19

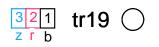
2|1

• Basic strategy:

```
for each relation a≡b do
    begin
      find root node r of tree containing a; /* Find step */
      find root node s of tree containing b;
      if they differ, merge the two trees; /* Union step */
    end;
      r
              S
                         merge(a,b)
   а

    Algorithm (also known as union-find):

 for every element i do father(i) \leftarrow \Omega
 while input_not_exhausted do
    begin
      get_pair(a,b);
      while father(a) \neq \Omega do a \leftarrow father(a);
      while father(b) \neq \Omega do b (father(b);
      if (a \neq b) then father(a) \leftarrow b;
    end;
  1≡5
                               father(k): 5
                                        k: 1 2 3 4 5 6 7 8 9
               (8)(7)
```

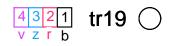


- Represent each element as a node in forest of trees
- Trees consist only of father links (nil at roots)
- Each (nonredundant) relation merges two trees into one
- Basic strategy:

```
for each relation a≡b do
   begin
      find root node r of tree containing a; /* Find step */
      find root node s of tree containing b;
      if they differ, merge the two trees; /* Union step */
   end;
      r
             S
                         merge(a,b)
   а

    Algorithm (also known as union-find):

 for every element i do father(i) \leftarrow \Omega
 while input_not_exhausted do
    begin
      get_pair(a,b);
      while father(a) \neq \Omega do a \leftarrow father(a);
      while father(b) \neq \Omega do b (father(b);
      if (a \neq b) then father(a) \leftarrow b;
    end;
  1≡5
                               father(k): 5
  6≡8
                                        k: 1 2 3 4 5 6 7 8 9
```

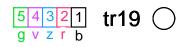


- Represent each element as a node in forest of trees
- Trees consist only of father links (nil at roots)
- Each (nonredundant) relation merges two trees into one
- Basic strategy:

```
for each relation a≡b do
    begin
      find root node r of tree containing a; /* Find step */
      find root node s of tree containing b;
      if they differ, merge the two trees; /* Union step */
    end;
      r
              S
                         merge(a,b)
   а

    Algorithm (also known as union-find):

 for every element i do father(i) \leftarrow \Omega
 while input_not_exhausted do
    begin
      get_pair(a,b);
      while father(a) \neq \Omega do a \leftarrow father(a);
      while father(b) \neq \Omega do b (father(b);
      if (a \neq b) then father(a) \leftarrow b;
    end;
  1≡5
                               father(k): 5
                                                        8 2
  6≡8
                                        k: 1 2 3 4 5 6 7 8 9
  7≡2
```

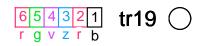


- Represent each element as a node in forest of trees
- Trees consist only of father links (nil at roots)
- Each (nonredundant) relation merges two trees into one
- Basic strategy:

```
for each relation a≡b do
   begin
      find root node r of tree containing a; /* Find step */
      find root node s of tree containing b;
      if they differ, merge the two trees; /* Union step */
   end;
      r
             S
                         merge(a,b)
   а

    Algorithm (also known as union-find):

 for every element i do father(i) \leftarrow \Omega
 while input_not_exhausted do
    begin
      get_pair(a,b);
      while father(a) \neq \Omega do a \leftarrow father(a);
      while father(b) \neq \Omega do b (father(b);
      if (a \neq b) then father(a) \leftarrow b;
    end;
 1≡5
                               father(k): 5
                                                       82
                                                               8
  6≡8
                                        k: 1 2 3 4 5 6 7 8 9
  7≡2
  9≡8
```

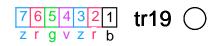


- Represent each element as a node in forest of trees
- Trees consist only of father links (nil at roots)
- Each (nonredundant) relation merges two trees into one
- Basic strategy:

```
for each relation a≡b do
   begin
      find root node r of tree containing a; /* Find step */
      find root node s of tree containing b;
      if they differ, merge the two trees; /* Union step */
   end;
      r
             S
                         merge(a,b)
   а

    Algorithm (also known as union-find):

 for every element i do father(i) \leftarrow \Omega
 while input_not_exhausted do
    begin
      get_pair(a,b);
      while father(a) \neq \Omega do a \leftarrow father(a);
      while father(b) \neq \Omega do b (father(b);
      if (a \neq b) then father(a) \leftarrow b;
    end;
 1≡5
                               father(k): 5 2 8 2
                                                              8
  6≡8
                                       k: 1 2 3 4 5 6 7 8 9
  7≡2
  9≡8
  3≡7
```

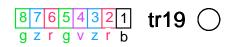


- Represent each element as a node in forest of trees
- Trees consist only of father links (nil at roots)
- Each (nonredundant) relation merges two trees into one
- Basic strategy:

```
for each relation a≡b do
   begin
      find root node r of tree containing a; /* Find step */
      find root node s of tree containing b;
      if they differ, merge the two trees; /* Union step */
   end;
      r
             S
                         merge(a,b)
   а

    Algorithm (also known as union-find):

 for every element i do father(i) \leftarrow \Omega
 while input_not_exhausted do
    begin
      get_pair(a,b);
      while father(a) \neq \Omega do a \leftarrow father(a);
      while father(b) \neq \Omega do b (father(b);
      if (a \neq b) then father(a) \leftarrow b;
    end;
 1≡5
                               father(k): 5 2 2 8 2
                                                              8
  6≡8
                                        k: 1 2 3 4 5 6 7 8 9
  7≡2
  9≡8
  3≡7
  4≡2
```

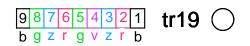


- Represent each element as a node in forest of trees
- Trees consist only of father links (nil at roots)
- Each (nonredundant) relation merges two trees into one
- Basic strategy:

```
for each relation a≡b do
   begin
      find root node r of tree containing a; /* Find step */
      find root node s of tree containing b;
      if they differ, merge the two trees; /* Union step */
   end;
      r
             S
                         merge(a,b)
   а

    Algorithm (also known as union-find):

 for every element i do father(i) \leftarrow \Omega
 while input_not_exhausted do
    begin
      get_pair(a,b);
      while father(a) \neq \Omega do a \leftarrow father(a);
      while father(b) \neq \Omega do b (father(b);
      if (a\neq b) then father(a) \leftarrow b;
    end;
 1≡5
                               father(k): 5
                                                2 2 8 2 2 8
  6≡8
                                        k: 1 2 3 4 5 6 7 8 9
  7≡2
  9≡8
  3≡7
  4≡2
  9≡3
```



- Represent each element as a node in forest of trees
- Trees consist only of father links (nil at roots)
- Each (nonredundant) relation merges two trees into one
- Basic strategy:

```
for each relation a\equiv b do
    begin
      find root node r of tree containing a; /* Find step */
      find root node s of tree containing b;
      if they differ, merge the two trees; /* Union step */
    end;
      r
              S
                         merge(a,b)
   а

    Algorithm (also known as union-find):

 for every element i do father(i) \leftarrow \Omega
 while input_not_exhausted do
    begin
      get_pair(a,b);
      while father(a) \neq \Omega do a \leftarrow father(a);
      while father(b) \neq \Omega do b (father(b);
      if (a\neq b) then father(a) \leftarrow b;
    end;
  1≡5
                               father(k): 5
                                                2 2 8 2 2 8
  6≡8
                                        k: 1 2 3 4 5 6 7 8 9
  7≡2
  9≡8
  3≡7
  4≡2
  9≡3
```

- More efficient with path compression and weight balancing
- Execution time "almost linear" (inverse of Ackermann function)