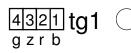
#### TRIANGULATIONS

Hanan Samet

Computer Science Department and Center for Automation Research and Institute for Advanced Computer Studies University of Maryland College Park, Maryland 20742 e-mail: hjs@umiacs.umd.edu

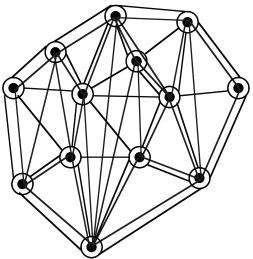
Copyright © 1997 Hanan Samet

These notes may not be reproduced by any means (mechanical or electronic or any other) without the express written permission of Hanan Samet

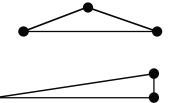


### TRIANGULATION

- 1. Find a complete set of minimal clusters of locations in a scattered data set
- 2. Sample triangulation
  - bad triangulation
  - good triangulation



- 3. Thin triangles are often undesirable (e.g., terrain modeling)
  - involve one or two very small angles which result from connecting vertices using a distance that is much longer than that which can be obtained through the use of more equiangular angles
    - a. two very small interior angles, or
    - b. one very small angle and two angles close to 90°



- elevation values at the vertices of the triangles are used to interpolate (e.g., a weighted average) a surface at a point p in the plane
  - a. use the vertices of the triangle containing p
  - b. the longer and thinner the triangles, the further away are the vertices of the triangles serving as the basis of the triangulation and the higher the likelihood of error

#### TRIANGULATION POINT DATA SETS

## Types

- 1. arbitrary point set
  - edges of convex hull are in all of the triangulations since triangulations are maximal and thus these edges cannot be ruled out by any other edge
  - generally complex
- 2. vertices of a polygon
  - defined to only triangulate the interior of the polygon
  - edges of the convex hull of the vertices are not necessarily in the triangulation as they may lie outside of the original polygon - e.g., a star shaped polygon



- can triangulate vertex set of any simple (i.e., not selfintersecting) polygon with *n* vertices in *O*(*n*) time (Chazelle)
  - 1. quality of triangulation is unknown
  - 2. too complicated to be implemented
- A data set with N data points has  $N \cdot (N-1)/2$  possible edges
  - 1. triangulation is a maximal subset of these edges chosen so that no edge crosses any other edge
  - 2. if convex hull of the points has *M* vertices
    - number of edges =  $3 \cdot N M 3$
    - number of faces (i.e., triangles) =  $2 \cdot N M 2$
    - derive by induction

### INTUITIVE TRIANGULATION PROCEDURES

- Start with an arbitrary triangulation
  - 1. finite set of points (triangle vertices)
  - 2. form a finite collection of line segments (triangle edges)
  - 3. form a collection of triangles (point or edge triples)
  - 4. record triangle adjacencies (edge-triangle triples)
    - · can also be implicit
- Optimize by iterating with a local rule to select more equiangular triangles
  - 1. select shorter of two intersecting quadrilateral diagonals
  - 2. reduce the minimal distance to a triangle vertex
  - 3. select triangle with minimum altitude
  - 4. select triangle with closest circumcenter
  - 5. select triangle with least rate of steepest ascent
- Disadvantages
  - 1. nonuniqueness
  - 2. elongated triangles
  - 3. need for several iterations
  - 4. preprocessing requirements



7.15,3.1)

(8.0,

### EXAMPLE POLYGON TRIANGULATIONS

They work for arbitrary point sets as well

Optimal triangulation (MWT)

- choose triangles so the total length of edges is minimized
- AC and CE
- takes O(N<sup>3</sup>) time for a polygon and much higher for more complex point sets

Greedy triangulation

- exclude an edge if a shorter edge intersects it
- · process edges in order of increasing length
- choose BD first (it is the shortest) followed by AD because it is the shortest of the remaining nonintersecting edges
- $O(N^2\log(N^2)) = O(N^2\log N)$  time as need to sort edges

Delaunay triangulation

- no point lies inside the circumcircle of any other triangle
- choose edges AC and AD because only triangles ABC, ACD, and ADE have empty circumcircles
- O(N logN) time

Plane-sweep triangulation

- sort vertices in increasing order of *x* coordinate values
- sweep an infinite line from left to right and draw edges from each encountered vertex to all visible vertices to its left that do not intersect an existing edge
- O(N logN) time as need to sort vertices, sweep (O(N)), and compute visibility at each vertex (O(logN))

#### USE OF TRIANGULATIONS IN ELEVATION MODELS

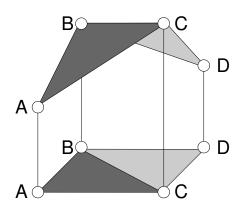
- Assume that elevations of a subset of points in the plane are known
- Use interpolation on triangle faces to determine the elevation of a point that is not a triangle vertex
- Ex: given point  $q = (q_x, q_y)$ , determine  $q_z$ 
  - 1. locate triangle  $t(t_1, t_2, t_3)$  containing q
    - Kirkpatrick's K-structure
    - Edelsbrunner, Guibas, and Stolfi's layered dag
    - store triangulation in a PMR quadtree
      - a. locate *e*—the nearest edge to *q*
      - b. starting at *e*, walk around *q* to extract the enclosing triangle
  - 2.  $q = a_1 \cdot t_1 + a_2 \cdot t_2 + a_3 \cdot t_3$ 
    - $a_1 + a_2 + a_3 = 1$  and  $a_1, a_2, a_3$  are non-negative
    - unique  $a_1 + a_2 + a_3 = 1$  and  $a_1, a_2, a_3$  are known as *vertex* (or *barycentric*) coordinates
    - we know  $q_x$  and  $q_y$ 
      - a.  $q_x = a_1 \cdot t_{1x} + a_2 \cdot t_{2x} + a_3 \cdot t_{3x}$

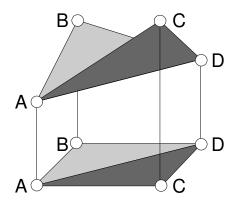
b. 
$$q_y = a_1 \cdot t_{1y} + a_2 \cdot t_{2y} + a_3 \cdot t_{3y}$$

3. solve for  $a_i$  and substitute into  $q_z = a_1 \cdot t_{1z} + a_2 \cdot t_{2z} + a_3 \cdot t_{3z}$ 

#### AMBIGUITY IN CHOOSING TRIANGULATIONS

- Problems in using triangulations for modeling surfaces
  - 1. any four non-coplanar measurements can be viewed as vertices of a tetrahedron in three-dimensional space
  - 2. projection of the tetrahedron in two-dimensional space yields a nonplanar triangulation
    - · only retain one of the diagonals of the quadrilateral
    - the retained diagonal determines whether the surface is convex or concave





#### OPTIMAL TRIANGULATION (MWT)

Def: minimal sum of edge lengths

- Assign triangles to yield the shortest possible total length of edges in a completed network
- Also known as minimum weight triangulation (MWT)
- Several distinct triangulations may have the same total length
- An angular criterion may yield a triangulation where the proportions of the triangles are better for interpolation
- Takes O(N<sup>3</sup>) time for a simple polygon (i.e., not selfintersecting) and much higher for more complex point sets
  - 1. there is an exponential number of possible triangulations for a convex polygon (a Catalan number)
  - 2. impractical to try them all and take the minimum
  - 3. use dynamic programming

# MINIMUM WEIGHT POLYGON TRIANGULATION ALGORITHM

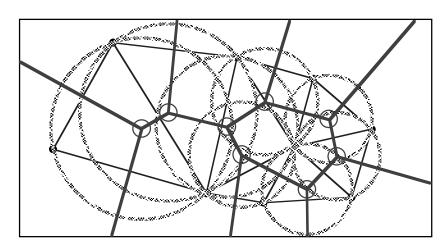
- For each of O(N<sup>2</sup>) possible edges, assume it is in the MWT triangulation and determine the two vertices out of O(N) which form the two triangles of the MWT in which the edge participates
- Algorithm:
  - 1. given polygon Q with vertices  $P_1 P_2 \dots P_N P_1$  in order about Q
  - 2. let  $E_j$  denote an edge from  $P_i$  to  $P_j$
  - 3. let  $T_{ij}$  be the MWT of the polygon with vertices  $P_i P_{i+1}$ ...  $P_j P_i$  and let  $W_{ij}$  be its total edge length
    - if edge  $E_{ij}$  is not a legal edge of a triangulation of Q (i.e., some part of it lies outside Q), then  $T_{ij}$  is undefined and  $W_{ij} = \infty$
    - if edge  $E_{ij}$  is a legal edge, then there exists a vertex  $P_k$  in  $T_{ij}$  such that  $P_i P_j P_k$  form a triangle
      - a.  $P_k$  is found by solving min{ $W_{ik} + W_{kj} | i < k < j$ }, AND
      - b.  $W_{ij} = W_{ik} + W_{kj} + \text{length}(P_{ij})$
  - 5. compute all  $T_{ij}$  and all  $W_{ij}$  in  $O(N^3)$  time using dynamic programming
  - 6. MWT of Q is  $T_{1N}$

#### **GREEDY TRIANGULATION**

- Construct by adding the edges in increasing order of length, excluding a new edge if it intersects an existing edge
- Takes O(N<sup>2</sup> log(N<sup>2</sup>)) = O(N<sup>2</sup> log N) time since have to first sort the edges according to length, and there are O(N<sup>2</sup>) possible edges
- Checking if an edge intersects an existing set of at most N edges (because there are only O(N) edges in a triangulation)
- can be done in  $O(\log N)$  time
- Not unique if two properly intersecting edges have the same length
- Not used much since not even a good approximation to the optimal triangulation (MWT)
  - 1. edges are chosen to optimize a sequential condition
  - choice of edges is somewhat local (i.e., do they intersect some previously selected edge?, which must be smaller by nature of the ordering)
  - 3. in contrast, optimal triangulation (MWT) is optimized on a global condition

### DELAUNAY TRIANGULATION (DT)

Circle Property: no data point lies inside the circumcircle of any other triangle



Delaunay triangles

circumcircles

circumcenters

Voronoi diagram

- Unique as long as no local configuration of four or more points is cocircular
- Maximizes the minimum interior vertex angle
  - 1. biased against large circumcircles
  - 2. biased against "thin" triangles
- Effectively chooses edges connecting nearest natural neighbors
  - 1. i.e., data points at the vertices are closer to their mutual circumcenter than is any other data point
  - 2. a form of local optimization
- Triangles are as close as possible to being equiangular
- Def: Voronoi diagram (also a Thiessen or Dirichlet tessellation)
  - partition of the plane into regions so that each point in a region is closer to its region's *site* (a vertex of the Delaunay triangulation) than to any other site
  - geometric dual of DT with the circumcenters as its vertices

# OUTWARD-GROWING DELAUNAY TRIANGULATION CONSTRUCTION (Watson)

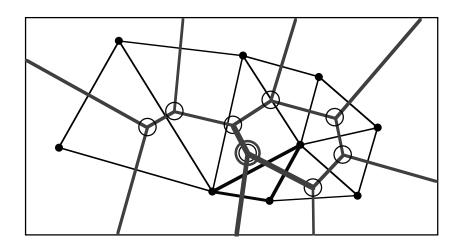
- works for arbitrary dimensions
- Construct a triangle enclosing entire point set (vertices of the triangle need not be in the point set)
- Process data points in arbitrary order, say P (initially there is just one point)
  - 1. find all existing triangles whose circumcircles include P
    - can find them by walking along the edges of the existing triangle that contains P
      - a. if triangle *ABC* along edge *AB* contains *P*, then recursively examine the triangles along edges *AC* and *BC*, ...
      - b. otherwise, continue with edge adjacent to AB
    - takes O(N) time since O(N) triangles
  - 2. remove these triangles and form a polygon from their union without the interior edges
    - new polygon is star-shaped since for each edge AB and triangle ABC that are removed, P lies in the region bounded by AB and the circumcircle of ABC, and thus P can "see" edges AC and BC
  - 3. form new triangles by connecting P with the polygon's edges
    - triangles exist since polygon is star-shaped
    - star-shaped region guarantees that new triangles don' t contain other points
    - in the worst case, O(N) time since no more than O(N) triangles
- In the worst case, may have to examine O(N) circumcircles at each of N steps—hence O(N<sup>2</sup>)
- If points are selected in random order, then the expected time is O(N log<sub>2</sub>N) in two dimensions (Guibas/Knuth/Sharir)

## INWARD-GROWING DELAUNAY TRIANGULATION CONSTRUCTION

- Compute the convex hull— $O(N \log N)$  time
- Push all edges of convex hull into a queue with an orientation so that the rest of the point set is to the left of the edge
- While queue is nonempty do
  - 1. pop an edge AB
  - 2. find the point *C* to the left of *AB* so that the circle through *A*, *B*, and *C* is empty
    - guaranteed to exist by circle property
    - O(N) time but could be O(1) if use a grid
  - 3. if *AC* is not in the DT, insert it in the DT and push it on the queue
  - 4. if *CB* is not in the DT, insert it in the DT and push it on the queue
    - steps 3 and 4 require O(N) time but could be O(logN) by assigning each edge a unique encoding and storing the edges in a balanced binary tree
- Total of O(N<sup>2</sup>) time since N iterations and each takes O(N) time

VORONOI DIAGRAM CONSTRUCTION

- Construct <u>perpendicular bisectors</u> of edges of Delaunay triangulation
- <u>Bisectors</u> meet in triplets at the <u>circumcenters</u> of the triangles
- Region surrounding a data point and bounded by the bisectors is a <u>Voronoi region</u> and is closer to that point than to any other point in the set
- Voronoi regions are not closed when the data point lies on the boundary of the set
- Notice that the <u>bisectors</u> of the sides of a triangle T do not necessarily intersect at a <u>point</u> in T



Copyright © 1998 by Hanan Samet

#### tg14

#### PROPERTIES OF DELAUNAY TRIANGULATIONS

- 1. Circle Property: No data point lies inside the circumcircle of any other triangle
  - fully determined by the circle property
  - always exists
- 2. Unique if no subset of four points are co-circular
  - implies non-unique for gridded data as 4 adjacent grid points are always co-circular
  - always unique subject to swapping the diagonals within the polygons whose vertices are co-circular
- 3. Disk Property: if no four points are co-circular, then an edge belongs to the unique Delaunay triangulation iff there exists a disk containing both endpoints and no other data points
- 4. Invariant under any transformation of the point set that preserves circles and circle containment
  - rigid motions, scalings, reflections
  - all combinations (affine transformations)

- 5. DT is planar graph dual of Voronoi diagram (VD)
  - can convert from DT to VD in O(N) time
    - a. compute the circumcenter of each triangle and that of its three adjacent triangles (takes O(1) time)
    - b. connect the circumcenters
  - can convert from VD to DT in O(N) time
    - a. connect two sites if their Voronoi regions share an edge
    - b. easy since each edge usually indicates which regions are adjacent to it
- 6. Maximizes the minimum interior vertex angle
  - avoids small angles which cause distortion
  - does not minimize maximum angle but does limit its size by virtue of the three angles summing up to 180

- 7. Produces the lexicographically largest nondecreasing sequence of angles possible in any triangulation—i.e.,
  - if  $a_1 \le a_2 \le ... \le a_i \le ...$
  - and if another triangulation has  $b_1 \leq b_2 \leq \ldots \leq b_i \leq \ldots$
  - then there exists an *i* such that  $a_i > b_i$
- 8. Can update locally with addition or deletion of vertices
  - local update only affects triangles whose circumcircles contain the new point
  - search and update in O(log N) time with appropriate data structures
- 9.  $O(N \log N)$  building time as a result of need to sort
  - use divide and conquer (not easy!)
- 10. Delaunay triangles are not hierarchical
  - can't be aggregated to form larger triangles
  - subdividing into smaller triangles leads to "elongated" rather than "fat" triangles