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THREE-DIMENSIONAL DATA

1. Boundary model (BRep)

• decompose boundary into set of faces, edges, and
vertices

• winged-edge representation captures topology
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2. Constructive solid geometry (CSG)

• combine primitive instances using geometric
transformations and regularized Boolean set
operations

∪

∩ −

3. Interior-based
• voxels or uniformly-sized cells (spatial enumeration)
• cells of different size (cell decomposition-e.g., octree)

4. Sweep - volume swept by a planar or a two-
dimensional shape along a curve
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OCTREES

1. Interior (voxels)
• analogous to region quadtree
• approximate object by aggregating similar voxels
• good for medical images but not for objects with

planar faces
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2. Boundary
• adaptation of PM quadtree to three-dimensional data
• decompose until each block contains

a. one face
b. more than one face but all meet at same edge
c. more than one edge but all meet at same vertex

• impose a spatial index on a boundary model (BRep)
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PM-CSG TREES

• Each leaf node refers to a primitive object 
instead of a vertex, edge, or face

• Primitives are not restricted to halfspaces

• Only one primitive object per cell

• Full complement of CSG operations are 
not present

1. set union = gluing

2. set difference = cutting (NO 
set intersection!)

• 5 types of nodes

1. full — completely in 1 primitive object

2. empty — not in any primitive object

3. positive boundary — contains part of 
1 primitive object while rest is empty

4. negative boundary — contains a 
boundary between 2 primitive 
objects O1 and O2 such that O1 is 
being subtracted from O2

• part corresponding to O2 is really empty

5. nasty — at lowest level of resolution such that no 
further decomposition is possible
• e.g., the node may be occupied by more than one 

primitive object
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• Problem:  why no set intersection as in conventional CSG?
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• Problem:  why no set intersection as in conventional CSG?
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• Solution:  if operand primitives are not disjoint, then can’t 
always separate them so each cell has just one primitive
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EXAMPLE OF PM-CSG TREE CONSTRUCTION

• Ex:  two circular objects

1
b

1. Each PM-CSG tree consists of one boundary node1. Each PM-CSG tree consists of one boundary node

A
B
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• taking their difference does not yield a PM-CSG tree leaf 
node

• decompose both trees as neither node is full or empty

2. Each node in the trees is a boundary node
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• taking their difference does not yield any PM-CSG tree 
leaf nodes

• decompose corresponding nodes in both trees as 
none of the nodes resulting from the subtraction is full 
or empty

3. Trees contain empty, full, and boundary nodes
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• boundary minus empty yields positive boundary nodes
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• full minus boundary yields negative boundary nodes
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