
td0

Copyright © 1998 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

HIERARCHICAL REPRESENTATIONS
OF THREE-DIMENSIONAL DATA

HANAN SAMET

COMPUTER SCIENCE DEPARTMENT AND
CENTER FOR AUTOMATION RESEARCH AND

INSTITUTE FOR ADVANCED COMPUTER STUDIES
UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND 20742-3411 USA

td1

THREE-DIMENSIONAL DATA

1. Boundary model (BRep)

• decompose boundary into set of faces, edges, and
vertices

• winged-edge representation captures topology

Copyright © 1998 by Hanan Samet

td2

2. Constructive solid geometry (CSG)

• combine primitive instances using geometric
transformations and regularized Boolean set
operations

∪

∩ −

3. Interior-based
• voxels or uniformly-sized cells (spatial enumeration)
• cells of different size (cell decomposition-e.g., octree)

4. Sweep - volume swept by a planar or a two-
dimensional shape along a curve

Copyright © 1998 by Hanan Samet

td3

OCTREES

1. Interior (voxels)
• analogous to region quadtree
• approximate object by aggregating similar voxels
• good for medical images but not for objects with

planar faces

Ex:

1 2 3 4 13 14 15

12111098765

B

A
14 15

4
9 10

6

1 2

13

1211

5

2. Boundary
• adaptation of PM quadtree to three-dimensional data
• decompose until each block contains

a. one face
b. more than one face but all meet at same edge
c. more than one edge but all meet at same vertex

• impose a spatial index on a boundary model (BRep)

Copyright © 1998 by Hanan Samet

td4
PM-CSG TREES

• Each leaf node refers to a primitive object
instead of a vertex, edge, or face

• Primitives are not restricted to halfspaces

• Only one primitive object per cell

• Full complement of CSG operations are
not present

1. set union = gluing

2. set difference = cutting (NO
set intersection!)

• 5 types of nodes

1. full — completely in 1 primitive object

2. empty — not in any primitive object

3. positive boundary — contains part of
1 primitive object while rest is empty

4. negative boundary — contains a
boundary between 2 primitive
objects O1 and O2 such that O1 is
being subtracted from O2

• part corresponding to O2 is really empty

5. nasty — at lowest level of resolution such that no
further decomposition is possible
• e.g., the node may be occupied by more than one

primitive object

1
b

A B

–

Copyright © 1998 by Hanan Samet

td4
PM-CSG TREES

• Each leaf node refers to a primitive object
instead of a vertex, edge, or face

• Primitives are not restricted to halfspaces

• Only one primitive object per cell

• Full complement of CSG operations are
not present

1. set union = gluing

2. set difference = cutting (NO
set intersection!)

• 5 types of nodes

1. full — completely in 1 primitive object

2. empty — not in any primitive object

3. positive boundary — contains part of
1 primitive object while rest is empty

4. negative boundary — contains a
boundary between 2 primitive
objects O1 and O2 such that O1 is
being subtracted from O2

• part corresponding to O2 is really empty

5. nasty — at lowest level of resolution such that no
further decomposition is possible
• e.g., the node may be occupied by more than one

primitive object

1
b

A B

–

Copyright © 1998 by Hanan Samet

td42
r

+A
+A +A +A

+A
+A +A

+A

+A

+A

+A

+A

Copyright © 1998 by Hanan Samet

td4
PM-CSG TREES

• Each leaf node refers to a primitive object
instead of a vertex, edge, or face

• Primitives are not restricted to halfspaces

• Only one primitive object per cell

• Full complement of CSG operations are
not present

1. set union = gluing

2. set difference = cutting (NO
set intersection!)

• 5 types of nodes

1. full — completely in 1 primitive object

2. empty — not in any primitive object

3. positive boundary — contains part of
1 primitive object while rest is empty

4. negative boundary — contains a
boundary between 2 primitive
objects O1 and O2 such that O1 is
being subtracted from O2

• part corresponding to O2 is really empty

5. nasty — at lowest level of resolution such that no
further decomposition is possible
• e.g., the node may be occupied by more than one

primitive object

1
b

A B

–

Copyright © 1998 by Hanan Samet

td42
r

+A
+A +A +A

+A
+A +A

+A

+A

+A

+A

+A

Copyright © 1998 by Hanan Samet

td43
z

–B

–B

–B

–B

Copyright © 1998 by Hanan Samet

td4
PM-CSG TREES

• Each leaf node refers to a primitive object
instead of a vertex, edge, or face

• Primitives are not restricted to halfspaces

• Only one primitive object per cell

• Full complement of CSG operations are
not present

1. set union = gluing

2. set difference = cutting (NO
set intersection!)

• 5 types of nodes

1. full — completely in 1 primitive object

2. empty — not in any primitive object

3. positive boundary — contains part of
1 primitive object while rest is empty

4. negative boundary — contains a
boundary between 2 primitive
objects O1 and O2 such that O1 is
being subtracted from O2

• part corresponding to O2 is really empty

5. nasty — at lowest level of resolution such that no
further decomposition is possible
• e.g., the node may be occupied by more than one

primitive object

1
b

A B

–

Copyright © 1998 by Hanan Samet

td42
r

+A
+A +A +A

+A
+A +A

+A

+A

+A

+A

+A

Copyright © 1998 by Hanan Samet

td43
z

–B

–B

–B

–B

Copyright © 1998 by Hanan Samet

td44
g

• Problem: why no set intersection as in conventional CSG?

Copyright © 1998 by Hanan Samet

td4
PM-CSG TREES

• Each leaf node refers to a primitive object
instead of a vertex, edge, or face

• Primitives are not restricted to halfspaces

• Only one primitive object per cell

• Full complement of CSG operations are
not present

1. set union = gluing

2. set difference = cutting (NO
set intersection!)

• 5 types of nodes

1. full — completely in 1 primitive object

2. empty — not in any primitive object

3. positive boundary — contains part of
1 primitive object while rest is empty

4. negative boundary — contains a
boundary between 2 primitive
objects O1 and O2 such that O1 is
being subtracted from O2

• part corresponding to O2 is really empty

5. nasty — at lowest level of resolution such that no
further decomposition is possible
• e.g., the node may be occupied by more than one

primitive object

1
b

A B

–

Copyright © 1998 by Hanan Samet

td42
r

+A
+A +A +A

+A
+A +A

+A

+A

+A

+A

+A

Copyright © 1998 by Hanan Samet

td43
z

–B

–B

–B

–B

Copyright © 1998 by Hanan Samet

td44
g

• Problem: why no set intersection as in conventional CSG?

Copyright © 1998 by Hanan Samet

td45
v

• Solution: if operand primitives are not disjoint, then can’t
always separate them so each cell has just one primitive

Copyright © 1998 by Hanan Samet

td5

EXAMPLE OF PM-CSG TREE CONSTRUCTION

• Ex: two circular objects

1
b

1. Each PM-CSG tree consists of one boundary node1. Each PM-CSG tree consists of one boundary node

A
B

Copyright © 1998 by Hanan Samet

td5

EXAMPLE OF PM-CSG TREE CONSTRUCTION

• Ex: two circular objects

1
b

1. Each PM-CSG tree consists of one boundary node1. Each PM-CSG tree consists of one boundary node

A
B

Copyright © 1998 by Hanan Samet

td52
r

• taking their difference does not yield a PM-CSG tree leaf
node

• decompose both trees as neither node is full or empty

2. Each node in the trees is a boundary node

Copyright © 1998 by Hanan Samet

td5

EXAMPLE OF PM-CSG TREE CONSTRUCTION

• Ex: two circular objects

1
b

1. Each PM-CSG tree consists of one boundary node1. Each PM-CSG tree consists of one boundary node

A
B

Copyright © 1998 by Hanan Samet

td52
r

• taking their difference does not yield a PM-CSG tree leaf
node

• decompose both trees as neither node is full or empty

2. Each node in the trees is a boundary node

Copyright © 1998 by Hanan Samet

td53
z

• taking their difference does not yield any PM-CSG tree
leaf nodes

• decompose corresponding nodes in both trees as
none of the nodes resulting from the subtraction is full
or empty

3. Trees contain empty, full, and boundary nodes

Copyright © 1998 by Hanan Samet

td5

EXAMPLE OF PM-CSG TREE CONSTRUCTION

• Ex: two circular objects

1
b

1. Each PM-CSG tree consists of one boundary node1. Each PM-CSG tree consists of one boundary node

A
B

Copyright © 1998 by Hanan Samet

td52
r

• taking their difference does not yield a PM-CSG tree leaf
node

• decompose both trees as neither node is full or empty

2. Each node in the trees is a boundary node

Copyright © 1998 by Hanan Samet

td53
z

• taking their difference does not yield any PM-CSG tree
leaf nodes

• decompose corresponding nodes in both trees as
none of the nodes resulting from the subtraction is full
or empty

3. Trees contain empty, full, and boundary nodes

Copyright © 1998 by Hanan Samet

td54
g

• boundary minus empty yields positive boundary nodes

+A

+A+A+A

+A

+A

+A

+A

+A

+A+A+A

Copyright © 1998 by Hanan Samet

td5

EXAMPLE OF PM-CSG TREE CONSTRUCTION

• Ex: two circular objects

1
b

1. Each PM-CSG tree consists of one boundary node1. Each PM-CSG tree consists of one boundary node

A
B

Copyright © 1998 by Hanan Samet

td52
r

• taking their difference does not yield a PM-CSG tree leaf
node

• decompose both trees as neither node is full or empty

2. Each node in the trees is a boundary node

Copyright © 1998 by Hanan Samet

td53
z

• taking their difference does not yield any PM-CSG tree
leaf nodes

• decompose corresponding nodes in both trees as
none of the nodes resulting from the subtraction is full
or empty

3. Trees contain empty, full, and boundary nodes

Copyright © 1998 by Hanan Samet

td54
g

• boundary minus empty yields positive boundary nodes

+A

+A+A+A

+A

+A

+A

+A

+A

+A+A+A

Copyright © 1998 by Hanan Samet

td55
v

• full minus boundary yields negative boundary nodes

–B

–B

–B

–B

Copyright © 1998 by Hanan Samet

