
sc0

Copyright © 1997 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

SEARCHING TECHNIQUES

Hanan Samet

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

sc1

SEARCHING

• Simplest technique is to look at every record until finding
the one we are looking for (known as sequential search)

• Speeding up sequential search:

1. table-lookup

• assumes existence of 1-1 mapping from dataset
(i.e., one of the key values) to a memory address

• frequently 1-1 mapping does not exist and use
hashing to calculate a good starting point for the
search

2. preprocess data by sorting it

• search is implemented by the repeated application
of a partitioning process to the set of key values until
locating the desired record
a. tree-based

• partitions the set of key values
• e.g., binary search trees, AVL trees, B-trees, …

b. trie-based
• partitions based on the digits or characters that

comprise the domain of the key values
• e.g., digital searching, radix-trees, most

quadtree methods

sc2

SEQUENTIAL SEARCHING

• Simplest way to search

• Two tests:

1. has every record in the file been examined?

2. is the current record the one we want?

• Expected cost of success is 2·n/2 = n tests

• Expected cost of failure is 2n tests

• Speed up sequential search by inserting the record with
the desired key value k at the end of the file

• eliminates need to test if all records have been
examined

• n/2 tests for success and n+1 tests for failure
• halve the execution time at the cost of one additional

location
• assumes we know location of the end of the file for

insertion

• For greater speedups, records need to be sorted

1. sort enables us to know when to stop the search

2. average n/2 comparisons for success and failure

sc3

• Sort by frequency of access rather than by value

• Two variants:
1. all records of equal length

• each time a record is accessed, it is moved to the
start of the file

• Ex:

• drawback is that it rewards rare accesses
• overcome by interchanging the accessed element

with the immediately preceding element
• Ex:

• problem:

2. all records of varying length
• retrieval time may depend on length (e.g., system

tape)
• goal: minimize average retrieval time
• assume record i has length Li and probability pi of

being retrieved
a. average retrieval time =
 p1 · L1 + p2 · (L1 + L2) + … + pn · (L1 + L2 + … + Ln)
b. minimized when p1 /L1 ≥ p2 /L2 ≥ … ≥ pn /Ln

• as pi increases, the record moves to the front
• as Li increases, the record moves to the rear

• Ex:

• results in sorting on the basis of probability per unit
length of a record

1
bSELF-ORGANIZED FILES

0.5 .25 .09 .12 .04

44 55 12 42 94 06 67 18

44 55 12 42 94 06 67 18

2
r

 if always access the same two elements in
alternating order

sc4

BINARY SEARCHING

• Analogous to searching through the phone book

• Repeatedly halve the data set while determining which
partition to search next

• Reduces search time from O (n) to O (log2n)

•Ex: searching through 210 = 1024 elements requires just
10 comparisons

1024

512512

256256
128128

6464

3232
1616

88

44

22
11

• Requires being able to identify the proper half of the list
where the search is to be continued

1. easy with sequential allocation

2. linked allocation requires an intermediate array of
pointers to the linked list

sc5

BINARY SEARCH ALGORITHM

• Search for k through table which is sorted

• Flag found (initially 0) returns the index to the entry in
table containing k

integer procedure BINARY_SEARCH_TABLE(k,table,n);
begin
 value integer k,n;
 value record array table[1:n];
 integer low,high,m;
 low←1;
 high←n;
 while high≥low do
 begin
 m←(low+high)÷2;
 if k<KEY(table[m]) then high←m-1
 else if k=KEY(table[m]) then return(m)
 else low←m+1;
 end;
 return(0);
end;

• Ex: search for 44 in [06 12 18 42 44 55 67 94]

1. low=1 high=8 m=4 [44 55 67 94]

2. low=5 high=8 m=6 [44 55]

3. low=5 high=5 m=5 [44]

• Advantage: search time is reduced from O (n) to O (log2n)

• Disadvantages:

1. records must always be kept sorted

2. insertion and deletion may be expensive as may need
to move records around

sc6

BINARY SEARCH TREES

• Drawbacks of binary searching (e.g., insertion and
deletion) are a property of the implementation of binary
search using sequential allocation

• Insertion and deletion are cheap when using a tree
instead of a list

• Price is the extra space needed for the links

• O (log2n) search time assumes a balanced binary search
tree

• Binary search trees are inefficient when the data is
inserted in sorted order

Ex: 5 10 15 20 25

5

10

15

20

25

• Can overcome by applying a balancing operation

5

10

15

20

25

sc7

BALANCED BINARY SEARCH TREES

1. Global balance: all leaf nodes are at the maximum
depth or at a depth one less than the maximum

2. Local balance: difference between the maximum
depth of the left and right subtrees of nonleaf node t is
at most 1

• e.g., AVL trees
• use balance factor L, E, R to indicate the left subtree

being one level deeper, equal, or less, respectively
than the right subtree

L

RL

L

RR

R

• maximum depth is ≈ 1.44 log2n implying O (log2n)
search, insertion, and deletion times

3. A Fibonacci tree Td is an AVL tree of depth d having a
minimum number of nodes
• the subtrees of a Fibonacci treeTd are Fibonacci

trees of depth d –1 and d –2

sc8

INSERTION INTO AVL TREES

• Analogous to binary search tree insertion

• Need to update balance factors

1. a node with balance factor L whose left subtree
became deeper

2. a node with balance factor R whose right subtree
became deeper

• Two cases are handled in an analogous manner by use of
rotations

• Rotations involve changing links and no search — i.e.,
O (1) time

sc9

EXAMPLE ROTATIONS IN AVL TREES

• Node a with balance factor L whose left subtree became
deeper

1. balance factor of left son b is L
• single rotation to the right (involves one level)

L
C
d

A
d+1

B
d

b

a

B
d

E

C
d

A
d+1

a E

bL'

2. balance factor of left son b is R
• double rotation to the right (involves two levels)

R

L

D
d

A
d

b

a

C
d

R

B
d-1

c

L

E

D
d

A
d

b

c

C
d

E

B
d-1

a

'

3. balance factor of left son b is E
• impossible as the insertion caused the left subtree of

a to be two deeper than the right subtree of a
• thus the new record had to go into either the left or

right subtrees of b whose depth must have
increased thereby contradicting the fact that they are
equal after the insertion

sc10

• Analogous to insertion

• Difference is that the number of rotations needed may be
as high as the depth of the node being deleted

• Ex:

1
bDELETION FROM AVL TREES

L

RL

L

RR

R

g

d

c

b

a

y

i

j

x

h

e

f

2
r

 delete x

L

RL

L

RR

R

g

d

c

b

a

y

i

jh

e

f

'

3
z

1. depth of right subtree of y exceeds that of the left subtree
by more than 1 so need to rotate y and i to the left

L

L

L

ER

R

g

d

c

b

a

i

jy

h

e

f

'

4
g

2. depth of left subtree of root exceeds that of right
subtree by more than 1 so need a double rotation of e,
b, and a to the right

y

EL

E

RR

R

gd

c

b

e

a

i

j

h

f

sc11

AMORTIZED ANALYSIS

1. An amortized analysis is the cost of performing a
sequence of operations (e.g., on a data structure)
averaged over the number of operations performed
• e.g., if n operations can be performed in total of

O(n log n) time, then the amortized cost of each
operation is O(log n)

• of course, any single operation could take more time

2. Similar to average-case analysis as both involve averaging
• average case

a. expected cost of each operation is derived under
the assumption that the operations are sampled
from some known distribution

b. because it is an expectation, in rare circum-
stances it may be possible to perform the same
excessively costly operation over and over again

c. however, this cannot happen in a data structure
with good amortized performance

• amortized
a. bounds on the cost are derived by averaging over

any sequence of operations
b. even though a single operation in a sequence may

be costly, the entire sequence cannot consist
predominantly of excessively costly operations.

3. Several methods of obtaining an amortization analysis
• Ex: aggregate method: establish an upper bound on

total cost of sequence of n operations T(n)
• properties:

a. amortized cost of an operation is T(n)⁄n
b. same amortized cost for each type of operation
c. amortized cost may be different for other methods

sc12

• Simple binary search trees

• No need for balance factors as in AVL trees

• Search, insertion, and deletion algorithms have an
amortized cost of log2n

• Like a self-organizing file in that whenever a record is
accessed it is moved to the root of the tree, if it is not
already there

• Termed a splay operation and occurs on all updates (i.e.,
insertion, deletion, search)

• If tree T does not contain key k, then splay operation
moves k’s immediate predecessor or successor to the root

• Ex: splay (8,T)

1
bSELF-ADJUSTING BINARY SEARCH

TREES (SPLAY TREES)

24

6 28

4 10 26 30

8 18

7

T =

2
r

24

8 28

6 10 26 30

1874

double left rotation

3
z

6

8

24

4 7 10 28

18 26 30

single right rotation

sc13

IMPLEMENTATION OF SPLAY OPERATIONS

• Use rotations to bring splay value to the root

1. single rotations (2) raise the splay value one level at a
time

C

A B

b

a

B C

A
a

b

2. double rotations (4) raise the splay value two levels at
a time

3. triple rotations (8) raise the splay value three levels at
a time

• Use as many double routations as possible

1. at most one single rotation

2. enables proof that the splay operation has an
amortized cost of O (log2n)

sc14

DOUBLE ROTATIONS

• First two symmetric cases:

D

A

C

B

a

b

c A

D

B

C

c

b

a

• Third case:

D

A

b

a

CB

c

DA

b

c

CB

a

• Fourth case:

A

a

B

D

C

b

c

DC

c

b

BA

a

sc15

• Assume that splay (k,T) yields the immediate predecessor
of k

• Ex: insert 20

1
bINSERTION INTO A SPLAY TREE

24

6 28

4 10 26 30

8 18

7

2
r

24

18 28

10

6

4 8

7

26 30

double left rotation of 18

3
z

18

10 24

6 28

4 26 308

7

single right rotation of 18

20

18 24

10 28

6

4

26 30

8

7

insert 20 between 18 and 24

4
g

sc16

1. Execute splay (k,T) yielding T' with L and R as the left
and right subtrees, respectively

2. Apply splay (∞,L) yielding T'' (equivalent to splay (k,L) as
k > everything in the left subtree)

3. Make R the right subtree of T''

Ex: delete 10

1
bDELETION FROM A SPLAY TREE

6 28

24

4 10 3026

8 18

7

2
r

• splay around 10 via a double right rotation of 10

6 24

10

4 8 2818

26 307

3
z

• splay left subtree around ∞
via a single left rotation of 8

6

8

4 7

4
g

• make the right subtree resulting from the first splay a right
subtree of 8

24

2818

26 30

sc17

COMPARISON

• Shortcoming of binary search is that we must know size
of the dataset and where the partitions start so that we
can repeatedly perform the partitions (i.e., know where
they start)

1. can avoid problem by storing dataset in sequential
locations

2. problem is that updates require moving data
• can avoid by using a linked list, but now can’t access

dataset at random as is needed to perform the partitions

• Solutions:

1. binary search tree
• good expected behavior but bad for certain

permutations of the data (e.g., sorted)

2. AVL trees
• worst-case logarithmic behavior but need extra

storage for balance factors, and rotations are complex

3. self-adjusting binary search tree
• amortized logarithmic behavior but high constant

factors for primitive operations (splay via rotations)
• no need for space for balance factors as in AVL trees

4. hierarchy of linked lists called a skip list serves as a
compromise between:
• conventional list (sequential or list implementation)
• binary search tree (including self-adjusting ones)
• balanced binary search trees

sc18

LIST ARRAY

• Hierarchy of linked lists

1. level 0 contains the elements of the dataset

2. level 1 contains pointers to every other element at
level 0

3. level 2 contains pointers to every fourth element at
level 0

4. continue until a list of just one element

• List header is an array with pointers to the start of each
level’s linked list

 3
 2

 1
 0

LEVEL HEADER

AMY BOB DON FAY LOUKAY TOMSUE

NIL

1 2 3 4 5 6 7 8

• Close resemblance to a complete binary tree

• Similar to a range tree but some differences:

1. in the list array, the value of a node at every level
corresponds to one of the elements of the dataset, and
nodes are linked to each other at every level

2. in the range tree, values of the elements of the dataset
are only stored in the leaf nodes, and only the leaf
nodes are linked to each other

sc19

1. Start at highest level

2. At each level scan the nodes in sequence until
encountering a value ≥ k

3. If value equals k, then halt

4. Else descend a level and repeat steps 2-4 unless at the
lowest level in which case the search is unsuccessful

• Ex: search for RAY

1
bSEARCHING FOR k IN A LIST ARRAY

AMY BOB DON FAY LOUKAY TOMSUE

NIL

1 2 3 4 5 6 7 8

3
2
1
0

LVL HDR

2
r

level 3: starting at the list header, TOM at position 8 is
greater than RAY, so backup to the list header and
descend to level 2

3
z

level 2: starting at the list header, FAY at position 4 is less
than RAY, but TOM at position 8 is greater than RAY,
so backup to position 4 and descend to level 1

4
g

level 1: starting at position 4, LOU at position 6 is less than
RAY, but TOM at position 8 is greater than RAY, so
backup to position 6 and descend to level 0

level 0: starting at position 6, SUE at position 7 is greater
than RAY, which means that RAY is not in the list,
and we exit with failure

5
v

sc20

SKIP LIST

• List array

1. good for searching

2. insertion and deletion may force its reorganization

• e.g., if insert before the first element, then must
rebuild list structure at level 1 and above

• Skip list

1. based on idea that there is no need to restrict nodes at
successive levels of the list array to skip exactly one
node in the list at the immediately lower level

2. expected performance is the same as long as can
guarantee that the expected number of nodes skipped
at the immediately lower level is one

3. data structure
• a list array where the skip increment for the

immediately lower level is generated at random
• expected behavior is made the same as that of the

list array by ensuring that the insertion routine will be
1 p times as likely to generate a skip at level i (or
depth j) as it is at level i+1 (or depth j –1)

 3
 2
 1
 0

LEVEL HEADER

AMY BOB DON FAY LOUKAY TOMSUE

NIL

1 2 3 4 5 6 7 8

• not unique as the skips are generated at random

sc21

1. Search for k as in the list array, and remember the
search path so that the link fields can be properly set
upon the insertion

2. If search is unsuccessful, then found the position at level
0 where k is to be inserted

3. Make the insertion
4. Generate a random number a in [0,1)
5. If a < 0.5, then exit
6. Else if a ≥ 0.5, then ascend a level, say to i+1, and insert k
7. Repeat steps 4–6 as is appropriate

• Ex: insert LEN assuming a probability of 0.5 of ascending a
level upon an insertion

1
bINSERTING k INTO A SKIP LIST

3
2
1
0

LVL HDR

NIL

AMY

1
BOB

2
DON

3
FAY

4
LOU

6
KAY

5
TOM

8
SUE

7

2
r

1. search for LEN and insert it between KAY and LOU

• set the level 0 link field of KAY to LEN

• set the level 0 link field of LEN to LOU

• remember the level 1 and 2 link fields of DON and the
level 3 link field of BOB which are on the path to LEN

LEN

6
7 8 9

3
z

2. generate a random number, say 0.7, which is >0.5 and
thus insert LEN at level 1
• update level 1 link of DON to point at LEN

• update level 1 link of LEN to point at LOU

4
g

3. generate a random number, say 0.4, which is <0.5 and
stop the insertion

sc22

SKIP LIST ANALYSIS BASICS

• Assumptions:

1. n records

2. probability p of ascending a level upon insertion

3. set a bound b on the number of levels

4. b is the level where the expected number of nodes is 1

• b is log1/pn

• obtained by observing that probability of having a
node at level i is p i and solving n ⋅ p i = 1 for i

• Expected cost, in terms of number of nodes examined, of
search, insertion, and deletion is proportional to log1/pn

sc23

SKIP LIST ANALYSIS MECHANICS

1. Show expected length of path from the root to reach a node
at level 0 is proportional to log1/pn + c, where c is a constant

2. Trace search path backwards from a node at level i and
compute its expected length C (j) as climb j levels in an
infinite list
• C (j) is the expected number of transitions that are made
• two possibilities:

a. proceed backwards to a node at level i, from
where j levels must still be climbed

b. climb up one level to level i+1 from where j–1
levels must still be climbed

• solve recurrence relation
C (j) = (1–p) · (1+C (j)) + p · (1+C (j –1)) with C (0)=0
yielding C (j) = j/p

3. Infinite list assumption is a worst-case assumption
• if list is not infinite, then as soon as encounter list header,

continue climbing up without any leftward moves
• cost to go from level 0 to log1/pn is (log1/pn)/p
• expected number of left moves remaining at level

log1/pn is bounded by 1
• move up from level log1/pn to expected maximum level

a. probability of climbing exactly one more level: (1–p)·p
• probability p of climbing one level
• probability (1–p) of climbing no more levels

b. expected number of levels to be climbed is
i ⋅ (1− p) ⋅ p i

i =1
∞∑ = p (1− p)

4. Total cost:
(log1/ p n) p + 1+ p (1− p) = (log1/ p n) p + 1 (1− p)

sc24

CHOOSING P IN A SKIP LIST IMPLEMENTATION

• Expected number of pointers per node is 1/(1–p)

1. probability of exactly one pointer is 1–p

2. probability of exactly two pointers is (1–p) · p

3. probability of exactly j pointers is (1− p) ⋅ p j −1

4. expected number of pointers per node is

i ⋅(1−p)⋅p i −1

i =1

∞
∑ = 1− p

p
⋅ i ⋅p i

i =1

∞
∑ = 1

1− p

• Let s=1/p denoting how many nodes are skipped on the
average at each level in the skip list

• Cost of searching a skip list of n records is s logs n + 1
assuming that search is started at level where the
expected number of nodes is 1

• Cost is minimized for s = e and is the same for s=2 and
s=4 corresponding to probabilities of 1/2 and 1/4,
respectively

• Usually use s=2 and s=4 as they make it easy to generate
the random number for the insertion process

1. can just pick log2s bits at a time from a randomly
generated stream of bits

2. as s increases, less space is needed as average
number of pointers is s/(s–1), and thus s=4 is a good
choice

sc25

SUMMARY OF SKIP LISTS

1. Advantage over binary search trees is that worst-case
cost is independent of the data

2. Worst-case cost of binary search tree arises when the
data is sorted

3. Worst-case cost of skip list depends on the tree
generation process
• arises when all skip lists with exception of the one at

the lowest level are empty
• search will take n steps
• assuming p=1/2, probability of all insertions at the

lowest level is 1/ 2n— a rare event
• bad case does not depend on the values of the keys
• there are no bad datasets — just bad random number

generator sequences
• no guarantee against worst-case performance using

skip lists

4. Worst-case of skip list is unknown (based on result of a
random number generator) and unlikely to occur, instead
of being known, undesirable, and far more likely to occur
than its probability of occurring were it generated at
random (as is the case with binary search trees)

sc26

1. When data volume is high, tree is too large to fit in
memory

2. Binary search tree is stored on disk pages

3. Branches in a binary search tree contain disk addresses
instead of links to other nodes

4. Each branch corresponds to a disk seek operation
• n records imply log2n disk accesses

• n =2 million implies 21 disk accesses

5. Solution: aggregate results of the comparisons by
delaying the branch to the missing page
• Ex: form groups of 7 key values at every 3 levels of

the tree

1
bEXTERNAL SEARCHING

• search is three times as fast as only need 1/3 as many
disk accesses

• basis of indexed-sequential file organization (ISAM) –
3 level tree

page

page

2
r

a. level 1 = cylinder

3
z

b. level 2 = track

4
g

c. level 3 = pointer to record

sc27

B-TREES

• A B-tree of order m

 has the following properties:
1. every node has ≤ m

 sons
2. every node except for the root and leaves has ≥ m

/

2
sons

3. the root has at least 2 sons (unless it is a leaf)
4. all leaves appear at the same level and carry no keys

• usually omitted from the drawings

5. a non-leaf node with k

 sons contains k

–1 keys

• Guarantee that each node of size m

 is at least 50% full
Ex: m

=5 with 3 levels
all nodes with the exception of the root contain 2, 3,
or 4 keys

25

2 5 7 8 13 14 15 18 22 24 26 27 28 32 35 36 41 42 45 46

10 20 30 40A

B C D

A non-terminal node contains j keys and j+1 pointers:

P0 K1 P1 P2K2 K j PjK 3 K Pj - 1

K1 <K 2 < K3 < K<K j

• m is usually the size of a page and a 1–1 correspondence
between nodes and pages

• Search in a B-tree is similar to that in a binary search tree

sc28

13 14 15 18

1
b

B-TREE INSERTION
Ex: order 5

A 10 20

D 22 24CB 2 5 7 8

2
r

Insert 16

16

3
z

Node C becomes too full (overflow)

Therefore, split node C and promote 15

A 10 15 20

D 22 2416 18C2C1 13 14B 2 5 7 8

4
g

A 10 18

D 20 22 24C 13 14 15 16B 2 5 7 8

Alternatively, we can apply rotation (i.e., promote 18

to replace 20 in node A and demote 20 to node D)

Note that we cannot promote 13 and rotate 10 to the left (to

node B) because node B is full

sc291
b

HOW DO B-TREES GROW?
Ex: order 5

11 12 13 14C 31 32 33 34ED 21 22 23 25B 1 2 3 4 41 42 43 44F

A 10 20 30 40

2
r

24

Insert 24

3
z

Node D becomes too full (overflow)

Therefore, split node D and promote 23 to node A

A 10 20 23 30 40

E24 25D2D1 21 22B C F

4
g

Now, node A is too full

Split node A and promote 23 creating a new node and the

tree has grown by one level

30 40

E24 25D2D1 21 22B C F

23

10 20

sc301
b

B-TREE DELETION
1. To delete a record R with key K start at the root node

and search for K
2. Once found, locate the next record S with smaller or

larger key (in terminal node N)
3. Replace R with S and delete S from N
4. If N contains < m/2 records, then underflow
Ex: order 5

25 28CB 1 5 8 10

A 20 30

D

deletion of 25 causes
underflow in node C

2
r

20 28CB 1 5 8

A 10 30

D

Promote 10 from B to A and demote 20 to C

3
z

25 28CB 1 5

A 20 30

D

Problem: Suppose there is underflow in adjacent nodes?

20 28CB 1

A 5 30

D

delete 25 and
rotate 5 and 20

⇒

4
g

BC 1 5 20 28 D

A 30

Solution: Merge nodes B and C

The same algorithm is recursively applied to node A which
may underflow if it is not a root node

sc31sc311
b

COMPLEX B-TREE DELETION
Ex: order 5
Delete 120

110 120DC 60 70 80B 10 30

A 50 100

102 104L 112 115M 125 130NE F G H J KI

2
r

Replacing 120 with 115 causes node M to underflow

3
z

Merging nodes M and N and demoting 115 leads to
underflow in D

110DC 60 70 80B 10 30

A 50 100

102 104L 112 115 125 130MNE F G H J KI

4
g

C
D

60 70 80 100 110B 10 30

A 50

L MNH J K

Merging nodes C and D and demoting 100 leads to
overflow in CD

E F G I

5
r

Splitting CD and promoting 80 leads to the desired result

100 110DC 60 70B 10 30

A 50 80

102 104L 112 115 125 130MNE F G H J KI

6
v

Note: rotation could also have been applied (promote 80 and
demote 100)

sc32

SUMMARY OF B-TREES

Advantages of B-trees

• Storage utilization is at least 50% and often much better

• Storage is allocated and released as the file grows and
shrinks

• No congestion problem as is common with hashing

• The natural order among the keys is maintained and
processing along that order is possible (unlike hashing)

• If requests are batched, then can use a prepaging
scheme after sorting the transactions on their keys

Variations

• Eliminate wasted space in terminal nodes

• Increase the utilization of non-terminal nodes by only
storing the key there instead of the entire record (e.g., B+-
tree)

• Use different values of m

 for each level

• Improve storage utilization to n (n + 1) ⋅100% by
stipulating that when node splitting occurs, n

 adjacent
nodes are split to create n

+1 nodes.

• Currently, one node is split to create 2 nodes.

sc33

B+-TREES
25

3 5 7 8 10 13 14 15 22 25 26 27 28 30 32 35 36 40 41 42 45 46

9 16 21 31 40

A

C

B

D

1. Limit information stored in nodes to be just a key value
and a pointer to a node that contains the rest of the
record’s data

2. No need for empty leaf nodes

3. Only nodes at the deepest level (called leaf nodes)
contain key values

• contain between m/2 –1 and m–1 key values
• space for pointers to leaf nodes can now be used for

pointers to nodes containing the rest of the data
associated with the key

4. Nonleaf nodes are used just to provide an index to enable
locating the leaf node containing the desired record
• at times, nonleaf nodes may contain some of the

same key values that are stored in the leaf nodes, but
this need not be so

• Ex: 25 appears in nonleaf node A and leaf node C,
while 40 appears in nonleaf node B and leaf
node D

5. Can link up all leaf nodes in the tree to enable traversal
without ever accessing the nonleaf nodes
• efficient support of both random and sequential

access

sc34

PREFIX B+-TREE

• When keys are long strings, nonleaf nodes only need to
store enough characters to enable differentiating
between the key values in the subtrees

• To differentiate between ‘jefferson’ and ‘jones’, ‘je’ is
enough rather than ‘jefferson’ which is longer

sc35

• B-tree is a generalization of a 2-3 tree where each node
has 2 or 3 sons — that is, an order 3 B-tree

• 2-3-4 tree: each node contains between 1 and 3 key
values (i.e., 2 to 4 sons)

• Red-black trees enable the implementation of 2-3 and 2-3-
4 trees as binary trees in a manner analogous to the
natural correspondence between a forest and a binary tree

1
bRED-BLACK TREES

1. black edges connect nodes of the 2-3 and 2-3-4 trees
2. nodes of the 2-3 and 2-3-4 tree are represented as one

level binary trees consisting of red edges
3. implementation needs an additional bit to indicate if the

incoming edge from the father is red or black

• Observations
1. 2-3 tree: one-level binary tree has at most 1 red edge
2. 2-3-4 tree: one-level binary tree has at most 2 red

edges
3. impossible to have 2 successive red edges in a 2-3 or

2-3-4 tree

10 20

5 13 24 28 32

1 2 6 11 14 15 23 26 27 30

20

10 28

5 13

r b

b b

1 11 15

2 14

b b b

r r

6

b

33 24 32

r r

23 30 33

27

b b b

r

26

b

2
r

sc36

B

BEBER BLANCOBARIO

A U
E L

BUENO BUSCAR
E S

TRIE-BASED OR DIGITAL SEARCHING

• Uses a trie structure

1. digits or characters that comprise the domain of the
key values control the branching process

2. each character has M possible values

3. a node at depth i in the trie represents an M-way
branch depending on the i th character or digit

• Analogous to a “thumb-index” in a dictionary

• Ex:

• Organizes the embedding space from which the data is
drawn rather than the data itself as is the case in tree-
based searching

• For n records and M-valued digits, logMn digit positions
must be examined during a random search

• Used in command decoders and file systems to
recognize incompletely specified commands and file
names

• Ex: LO$ yields LOGIN DI$ yields DIRECTORY

sc37

• Practical Algorithm to reTRieve Information Coded In
Alphanumeric

• Digital searching can be made more efficient when 1-way
branches are avoided

• Instead of an M-way branch on the digits, use a 2-way
branch on the bits comprising the digits

• Use a SKIP field with each branch node to indicate which
bit is to be tested next (i.e., how many bits are to be
skipped)

• Ex: use ASCII codes

1
bPATRICIAN TRIES

Word Letter 1 Letter 2 Letter 3 Letter 4 Letter 5 Letter 6
BARIO 1000010 1000001 1010010 1001001 1001111
BEBER 1000010 1000101 1000010 1000101 1010010
BLANCO 1000010 1001100 1000001 1001110 1000011 1001111
BUENO 1000010 1010101 1000101 1001110 1001111
BUSCAR 1000010 1010101 1010011 1000011 1000001 1010010

C

O

U

RSENT

2
r

1. skip to bit position 10 and test

100 1

3
z

2. skip to bit position 10+1 on the left and 10+7 on the right

BUENO BUSCAR

7
0 1

BLANCO

1
0 1

4
g

3. skip to bit position 10+1+1 on the left of the left

BEBERBARIO

1
0 1

sc38

ADVANTAGES OF PATRICIAN TRIES

1. Standard node size

2. Only examine differences between nodes (no 1-way
branches)

3. Good for long keys — e.g., book titles, etc.

4. Data structure is analogous to a program with an
interpreter

sc39

LITERARY APPLICATION OF DIGITAL SEARCHING

• Ex: English dictionary

1. 100,000 words

2. only 309 of the possible 262=676 initial 2-letter
combinations are used

3. only store stems, prefixes, and suffixes of words

• Lookup algorithm:

1. search for the word

2. if not found, then identify a prefix or suffix

3. remove prefix and/or suffix and lookup the word

• Caution must be used not to misidentify the suffixes and
prefixes as this may change the meaning of the word

