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RANGE TREES

• Balanced binary search tree

• All data stored in the leaf nodes

• Leaf nodes linked in sorted order by a doubly-linked list

• Searching for [B : E]

1. find node with smallest value ≥B or largest ≤B

2. follow links until reach node with value >E

• O (log2 N +F ) time to search, O (N · log2 N ) to build, and
O (N ) space for N points and F answers

• Ex:  sort points in 2-d on their x coordinate value
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2-D RANGE TREES

• Binary tree of binary trees

• Sort all points along one dimension (say x) and store
them in the leaf nodes of a balanced binary tree such as a
range tree (single line)

• Each nonleaf node contains a 1-d range tree of the points
in its subtrees sorted along y (double lines)

• Ex:
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• Actually, don’t need the 1-d range tree in y at the root and
at the sons of the root
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SEARCHING 2-D RANGE TREES ([BX:EX],[BY:EY])

1. Search tree T for nodes BX and EX

• find node LX with a minimum value ≥ BX

• find node RX with a maximum value ≤ EX

2. Find their nearest common ancestor Q

3. Compute {Li} and {Ri}, the sequences of nodes forming 
the paths from Q to LX and RX, respectively (including LX 
and RX but excluding Q)
• LEFT(P) and RIGHT(P) are sons of P
• MIDRANGE(P) discriminates on x coordinate value
• RANGE_TREE(P) denotes the 1-d range tree stored at P

1
b

4. For each element in the sequences 
{Li} and {Ri} do
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r

• if P and LEFT(P) are in {Li}, 
then look for [BY,EY] in 
RANGE_TREE(RIGHT(P))

3
z

• if P and RIGHT(P) are in 
{Ri}, then look for [BY,EY] 
in RANGE_TREE(LEFT(P))

4
g

5. Check if LX and RX are in 
([BX:EX],[BY:EY])

5
v

• Total O (log2
2 N +F ) 

time to search and 
O (N · log2 N ) space 
and time to build for 
N points and F 
answers 
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EXAMPLE OF SEARCH IN A 2-D RANGE TREE

• Find all points in ([25:85],[8:16])
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2
r

1. Find nearest common ancestor — i.e., A

3
z

2. Find paths to LX=25 and RX=85

4
g

3. Look in subtrees
• B and B’s left son D are in path, so search range tree of 

B’s right son E and report (50,10)

5
v

• C and C’s right son G are in path, so search range tree 
of C’s left son F and report none

6
z

4. Check boundaries of x range (i.e., (25,35) and (85,15)) 
and report (85,15)
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PRIORITY SEARCH TREES

• Sort all points by their x coordinate value and store them in
the leaf nodes of a balanced binary tree (i.e., a range tree)

• Starting at the root, each node contains the point in its
subtree with the maximum value for its y coordinate that
has not been stored at a shallower depth in the tree; if no
such node exists, then node is empty

• O (N ) space andO (N · log2 N ) time to build for N points

• Result: range tree in x and heap (i.e., priority queue) in y
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• Ex: 

• Good for semi-infinite ranges — i.e., ([BX:EX],[BY:∞])

• Can only perform a 2-d range query if find ([BX:EX],[BY:∞])
and discard all points (x,y ) such that y > EY

• No need to link leaf nodes unless search for all points in
range of x coordinate values
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SEMI-INFINITE RANGE QUERY ON A
PRIORITY SEARCH TREE ([BX:EX],[BY:∞])

• Procedure
1. Descend tree looking for the nearest common ancestor 

of BX and EX — i.e., Q
• associated with each examined node T is a point P
• exit if P does not exist as all points in the subtrees 

have been examined and/or reported
• exit if Py < BY as P is point with maximum y coordinate 

value in T
• otherwise, output P if Px is in [BX:EX]

2. Once Q has been found, process left and right subtrees 
applying the tests above to their root nodes T
• T in left (right) subtree of Q:

a. check if BX (EX) in LEFT(T) (RIGHT(T))
b. yes:  all points in RIGHT(T) (LEFT(T)) are in x range

• check if in y range
• recursively apply to LEFT(T) (RIGHT(T))

c. no:  recursively apply to RIGHT(T) (LEFT(T))

• O (log2 N +F ) time to search for N points and F answers

• Ex:

1
b

2
r

Find all points in ([35:80],[50:∞])
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EXAMPLE OF A SEARCH IN A PRIORITY SEARCH TREE

• Find all points in ([35:80],[50:∞])

1
b
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2
r

1. Find nearest common ancestor — i.e., A
• output Toronto  (60,75) since 60 is in [35:80] and 75≥50

3
z

2. Process left subtree of A (i.e., B)
• cease processing as 45<50

4
g

3. Process right subtree of A (i.e., C)
• output (80,65) as 65 ≥ 50 and 80 is in [35:80]

5
v

4. Examine midrange value of C which is 83 and descend 
left subtree of C (i.e., F)
• cease processing since no point is associated with F 

meaning all nodes in the subtree have been examined
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RANGE PRIORITY TREES

• Variation on priority search tree

• Inverse priority search tree:  heap node stores point with
minimum y coordinate value that has not been stored in a
shallower depth in the tree (instead of maximum)

• Structure
1. sort all points by their y coordinate value and store in leaf

of a balanced binary tree such as range tree (single lines)

• no need to link leaf nodes unless search for all
points in range of x coordinate values

2. nonleaf node left sons of their father contains a priority
search tree of points in subtree (double lines)

3. nonleaf node right sons of their father contains an inverse
priority search tree of points in subtree (double lines)

• O (N · log2 N ) space and time to build for N points

G
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SEARCHING A RANGE PRIORITY TREE ([BX:EX],[BY:EY])

• Procedure

1. find nearest common ancestor of BY and EY — i.e., Q

1
b

2
r
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2. all points in LEFT(Q) have y coordinate values <EY

• want to retrieve just the ones ≥BY

• find them with ([BX:EX],[BY:∞]) on priority tree of LEFT(Q)
• priority tree is good for retrieving all points with a 

specific lower bound as it stores an upper bound and 
hence irrelevant values can be easily pruned

3
z
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Toronto
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3. all points in RIGHT(Q) have y coordinate values >BY

• want to retrieve just the ones ≤EY

• find them with ([BX:EX],[–∞:EY]) on the inverse priority 
tree of RIGHT(Q)

• inverse priority tree is good for retrieving all points with 
a specific upper bound as it stores a lower bound and 
hence irrelevant values can be easily pruned

4
g

• O (log2 N +F ) time to search for N points and F answers
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G
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EXAMPLE OF A SEARCH IN A RANGE PRIORITY TREE

• Find all points in ([25:60],[15:45])

1
b

2
r

1. Find nearest common ancestor of 15 and 45 — i.e., A

3
z

2. Search for ([25:60],[15:∞]) in priority tree hanging from left 
son of A — i.e., B (all with y ≤45 since a range tree in y 
and in left subtree of a node with y midrange value of 38)

4
r

• output (25,35) as in range

5
g

• reject left subtree as 10 < lower limit of y range

6
v

• reject items in right subtree as out of x range

7
g

3. Search for ([25:60],[–∞:45]) in inverse priority tree 
hanging from right son of A — i.e., C (all with y ≥15 since 
in right subtree of a node with y midrange value of 38)

8
r

• output (35,40) as in range

9
v

• reject unreported items in left subtree as out of x range

10
z

• reject right subtree as 65 > upper limit of y range
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