
rt0

Copyright © 1998 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

RANGE TREES AND PRIORITY SEARCH TREES

Hanan Samet

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

rt1

RANGE TREES

• Balanced binary search tree

• All data stored in the leaf nodes

• Leaf nodes linked in sorted order by a doubly-linked list

• Searching for [B : E]

1. find node with smallest value ≥B or largest ≤B

2. follow links until reach node with value >E

• O (log2 N +F) time to search, O (N · log2 N) to build, and
O (N) space for N points and F answers

• Ex: sort points in 2-d on their x coordinate value

15 43 70 88

30 83

5 25 35 50 60 80 85 90

Denver
(5,45)

Omaha
(25,35)

Chicago
(35,40)

Mobile
(50,10)

Toronto
(60,75)

Buffalo
(80,65)

Atlanta
(85,15)

Miami
(90,5)

55

≥≤

Copyright © 1998 by Hanan Samet

rt2

2-D RANGE TREES

• Binary tree of binary trees

• Sort all points along one dimension (say x) and store
them in the leaf nodes of a balanced binary tree such as a
range tree (single line)

• Each nonleaf node contains a 1-d range tree of the points
in its subtrees sorted along y (double lines)

• Ex:
A

(9
0,

5)

(5
0,

10
)

(8
5,

15
)

(2
5,

35
)

(3
5,

40
)

(5
,4

5)

(8
0,

65
)

(6
0,

75
)

A'

55

AA38

13 55

8 25 43 70
(9

0,
5)

(8
5,

15
)

(8
0,

65
)

(6
0,

75
)

7010

5 15 65 75

(85,15) (90,5)

(90,5) (85,15)

G88

G'10

5 15

85 90N O

(60,75) (80,65)

F70

(80,65)(60,75)

F'70

65 75

60 80L M

C83

C'

40

(5
0,

10
)

(2
5,

35
)

(3
5,

40
)

(5
,4

5)

4323

10 35 40 45

(35,40) (50,10)

(50,10)(35,40)

E43

E'25

10 40

35 50J K

(5,45) (25,35)

D15

(25,35) (5,45)

D'40

35 45

5 25H I

B30

B'

38
105 15 35 40 45 65 75

• Actually, don’t need the 1-d range tree in y at the root and
at the sons of the root

Copyright © 1998 by Hanan Samet

rt3

SEARCHING 2-D RANGE TREES ([BX:EX],[BY:EY])

1. Search tree T for nodes BX and EX

• find node LX with a minimum value ≥ BX

• find node RX with a maximum value ≤ EX

2. Find their nearest common ancestor Q

3. Compute {Li} and {Ri}, the sequences of nodes forming
the paths from Q to LX and RX, respectively (including LX
and RX but excluding Q)
• LEFT(P) and RIGHT(P) are sons of P
• MIDRANGE(P) discriminates on x coordinate value
• RANGE_TREE(P) denotes the 1-d range tree stored at P

1
b

4. For each element in the sequences
{Li} and {Ri} do

T

Q

L1

L2

L3 B

A E

F R3

R2

R1

R4

RX

GC

L4

LX D H

2
r

• if P and LEFT(P) are in {Li},
then look for [BY,EY] in
RANGE_TREE(RIGHT(P))

3
z

• if P and RIGHT(P) are in
{Ri}, then look for [BY,EY]
in RANGE_TREE(LEFT(P))

4
g

5. Check if LX and RX are in
([BX:EX],[BY:EY])

5
v

• Total O (log2
2 N +F)

time to search and
O (N · log2 N) space
and time to build for
N points and F
answers

Copyright © 1998 by Hanan Samet

rt41
b

EXAMPLE OF SEARCH IN A 2-D RANGE TREE

• Find all points in ([25:85],[8:16])
A

(9
0,

5)

(5
0,

10
)

(8
5,

15
)

(2
5,

35
)

(3
5,

40
)

(5
,4

5)

(8
0,

65
)

(6
0,

75
)

A'

55

38

13 55

8 25 43 70

(9
0,

5)

(8
5,

15
)

(8
0,

65
)

(6
0,

75
)

7010

5 15 65 75

(85,15) (90,5)

(90,5) (85,15)

G88

G'10

5 15

85 90N O

(60,75) (80,65)

F70

(80,65)(60,75)

F'70

65 75

60 80L M

C83

C'

40

(5
0,

10
)

(2
5,

35
)

(3
5,

40
)

(5
,4

5)

4323

10 35 40 45

(35,40) (50,10)

(50,10)(35,40)

E43

E'25

10 40

35 50J K

(5,45) (25,35)

D15

(25,35) (5,45)

D'40

35 45

5 25H I

B30

B'

38
105 15 35 40 45 65 75

2
r

1. Find nearest common ancestor — i.e., A

3
z

2. Find paths to LX=25 and RX=85

4
g

3. Look in subtrees
• B and B’s left son D are in path, so search range tree of

B’s right son E and report (50,10)

5
v

• C and C’s right son G are in path, so search range tree
of C’s left son F and report none

6
z

4. Check boundaries of x range (i.e., (25,35) and (85,15))
and report (85,15)

Copyright © 1998 by Hanan Samet

rt5

PRIORITY SEARCH TREES

• Sort all points by their x coordinate value and store them in
the leaf nodes of a balanced binary tree (i.e., a range tree)

• Starting at the root, each node contains the point in its
subtree with the maximum value for its y coordinate that
has not been stored at a shallower depth in the tree; if no
such node exists, then node is empty

• O (N) space andO (N · log2 N) time to build for N points

• Result: range tree in x and heap (i.e., priority queue) in y

35 40 — 15

45 65

5 25 35 50 60 80 85 90
Denver

(5,45)
Omaha
(25,35)

Chicago
(35,40)

Mobile
(50,10)

Toronto
(60,75)

Buffalo
(80,65)

Atlanta
(85,15)

Miami
(90,5)

75

Omaha

Denver

Toronto

Buffalo

AtlantaChicago

D E F G

CB

A

— — — 10 — — — 5

Mobile Miami
15 43 70 88

30

55

83

• Ex:

• Good for semi-infinite ranges — i.e., ([BX:EX],[BY:∞])

• Can only perform a 2-d range query if find ([BX:EX],[BY:∞])
and discard all points (x,y) such that y > EY

• No need to link leaf nodes unless search for all points in
range of x coordinate values

Copyright © 1998 by Hanan Samet

rt6
SEMI-INFINITE RANGE QUERY ON A
PRIORITY SEARCH TREE ([BX:EX],[BY:∞])

• Procedure
1. Descend tree looking for the nearest common ancestor

of BX and EX — i.e., Q
• associated with each examined node T is a point P
• exit if P does not exist as all points in the subtrees

have been examined and/or reported
• exit if Py < BY as P is point with maximum y coordinate

value in T
• otherwise, output P if Px is in [BX:EX]

2. Once Q has been found, process left and right subtrees
applying the tests above to their root nodes T
• T in left (right) subtree of Q:

a. check if BX (EX) in LEFT(T) (RIGHT(T))
b. yes: all points in RIGHT(T) (LEFT(T)) are in x range

• check if in y range
• recursively apply to LEFT(T) (RIGHT(T))

c. no: recursively apply to RIGHT(T) (LEFT(T))

• O (log2 N +F) time to search for N points and F answers

• Ex:

1
b

2
r

Find all points in ([35:80],[50:∞])

Copyright © 1998 by Hanan Samet

rt7

EXAMPLE OF A SEARCH IN A PRIORITY SEARCH TREE

• Find all points in ([35:80],[50:∞])

1
b

35 40 — 15

45 65

5 25 35 50 60 80 85 90
Denver

(5,45)
Omaha
(25,35)

Chicago
(35,40)

Mobile
(50,10)

Toronto
(60,75)

Buffalo
(80,65)

Atlanta
(85,15)

Miami
(90,5)

75

Omaha

Denver

Toronto

Buffalo

AtlantaChicago

D E F G

CB

A

— — — 10 — — — 5

Mobile Miami
15 43 70 88

30

55

83

2
r

1. Find nearest common ancestor — i.e., A
• output Toronto (60,75) since 60 is in [35:80] and 75≥50

3
z

2. Process left subtree of A (i.e., B)
• cease processing as 45<50

4
g

3. Process right subtree of A (i.e., C)
• output (80,65) as 65 ≥ 50 and 80 is in [35:80]

5
v

4. Examine midrange value of C which is 83 and descend
left subtree of C (i.e., F)
• cease processing since no point is associated with F

meaning all nodes in the subtree have been examined

Copyright © 1998 by Hanan Samet

rt8

RANGE PRIORITY TREES

• Variation on priority search tree

• Inverse priority search tree: heap node stores point with
minimum y coordinate value that has not been stored in a
shallower depth in the tree (instead of maximum)

• Structure
1. sort all points by their y coordinate value and store in leaf

of a balanced binary tree such as range tree (single lines)

• no need to link leaf nodes unless search for all
points in range of x coordinate values

2. nonleaf node left sons of their father contains a priority
search tree of points in subtree (double lines)

3. nonleaf node right sons of their father contains an inverse
priority search tree of points in subtree (double lines)

• O (N · log2 N) space and time to build for N points

G

105 15 35 40 45 65 75

Miami
(90,5)

Mobile
(50,10)

Atlanta
(85,15)

Omaha
(25,35)

Chicago
(35,40)

Denver
(5,45)

Buffalo
(80,65)

Toronto
(60,75)

(50,10)(25,35) (90,5)(85,15) (80,65)(60,75)(35,40)(5,45)

35

10 15

40

– – – 5
8838

68

25 50 85 90

45 65

– – 75 –
7020

48

5 35 60 80

70F 43E 25D 8

(50,10) (90,5) (25,35) (85,15) (80,65)(60,75)

65

(35,40)(5,45)

45

– 40
20

5 35

75 –
70

60 80

15

35 –
55

25 85

10

– 5
70

50 90

B 13 C 55

A38• Ex:

Copyright © 1998 by Hanan Samet

rt9

SEARCHING A RANGE PRIORITY TREE ([BX:EX],[BY:EY])

• Procedure

1. find nearest common ancestor of BY and EY — i.e., Q

1
b

2
r

(50,10)
Mobile

(25,35)
Omaha

(85,15)
Atlanta

(90,5)
Miami

2. all points in LEFT(Q) have y coordinate values <EY

• want to retrieve just the ones ≥BY

• find them with ([BX:EX],[BY:∞]) on priority tree of LEFT(Q)
• priority tree is good for retrieving all points with a

specific lower bound as it stores an upper bound and
hence irrelevant values can be easily pruned

3
z

(60,75)
Toronto

(80,65)
Buffalo

(35,40)
Chicago

(5,45)
Denver

3. all points in RIGHT(Q) have y coordinate values >BY

• want to retrieve just the ones ≤EY

• find them with ([BX:EX],[–∞:EY]) on the inverse priority
tree of RIGHT(Q)

• inverse priority tree is good for retrieving all points with
a specific upper bound as it stores a lower bound and
hence irrelevant values can be easily pruned

4
g

• O (log2 N +F) time to search for N points and F answers

Copyright © 1998 by Hanan Samet

rt10

G

105 15 35 40 45 65 75
Miami
(90,5)

Mobile
(50,10)

Atlanta
(85,15)

Omaha
(25,35)

Chicago
(35,40)

Denver
(5,45)

Buffalo
(80,65)

Toronto
(60,75)

(50,10)(25,35) (90,5)(85,15) (80,65)(60,75)(35,40)(5,45)

35

10 15

40

– – – 5
8838

68

25 50 85 90

45 65

– – 75 –
7020

48

5 35 60 80

70F 43E 25D 8

(50,10) (90,5) (25,35) (85,15) (80,65)(60,75)

65

(35,40)(5,45)

45

– 40
20

5 35

75 –
70

60 80

15

35 –
55

25 85

10

– 5
70

50 90

B 13 C 55

A38

EXAMPLE OF A SEARCH IN A RANGE PRIORITY TREE

• Find all points in ([25:60],[15:45])

1
b

2
r

1. Find nearest common ancestor of 15 and 45 — i.e., A

3
z

2. Search for ([25:60],[15:∞]) in priority tree hanging from left
son of A — i.e., B (all with y ≤45 since a range tree in y
and in left subtree of a node with y midrange value of 38)

4
r

• output (25,35) as in range

5
g

• reject left subtree as 10 < lower limit of y range

6
v

• reject items in right subtree as out of x range

7
g

3. Search for ([25:60],[–∞:45]) in inverse priority tree
hanging from right son of A — i.e., C (all with y ≥15 since
in right subtree of a node with y midrange value of 38)

8
r

• output (35,40) as in range

9
v

• reject unreported items in left subtree as out of x range

10
z

• reject right subtree as 65 > upper limit of y range
Copyright © 1998 by Hanan Samet

