RANGE TREES AND PRIORITY SEARCH TREES

Hanan Samet

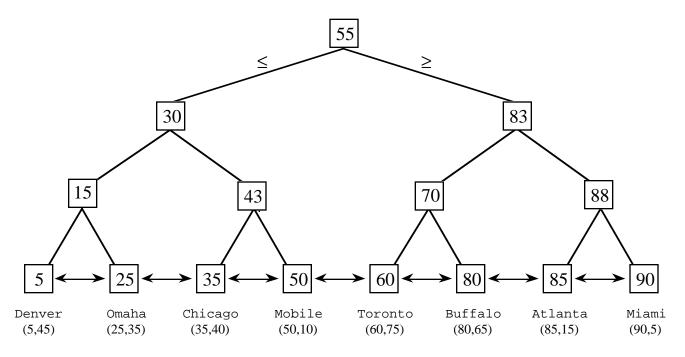
Computer Science Department and Center for Automation Research and Institute for Advanced Computer Studies University of Maryland College Park, Maryland 20742 e-mail: hjs@umiacs.umd.edu

Copyright © 1998 Hanan Samet

These notes may not be reproduced by any means (mechanical or electronic or any other) without the express written permission of Hanan Samet

RANGE TREES

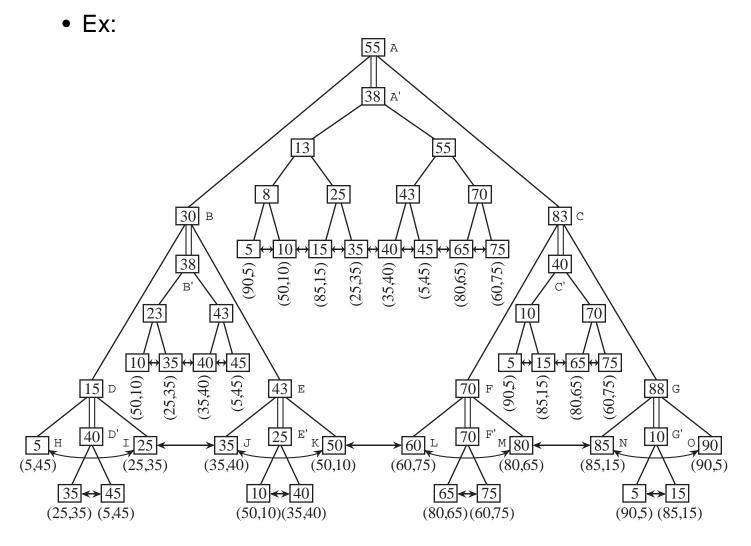
- Balanced binary search tree
- All data stored in the leaf nodes
- Leaf nodes linked in sorted order by a doubly-linked list
- Searching for [B : E]
 - 1. find node with smallest value $\geq B$ or largest $\leq B$
 - 2. follow links until reach node with value >E
- O(log₂ N+F) time to search, O(N · log₂ N) to build, and O(N) space for N points and F answers
- Ex: sort points in 2-d on their x coordinate value



rt1

2-D RANGE TREES

- Binary tree of binary trees
- Sort all points along one dimension (say x) and store them in the leaf nodes of a balanced binary tree such as a range tree (single line)
- Each nonleaf node contains a 1-d range tree of the points in its subtrees sorted along *y* (double lines)



• Actually, don't need the 1-d range tree in y at the root and at the sons of the root

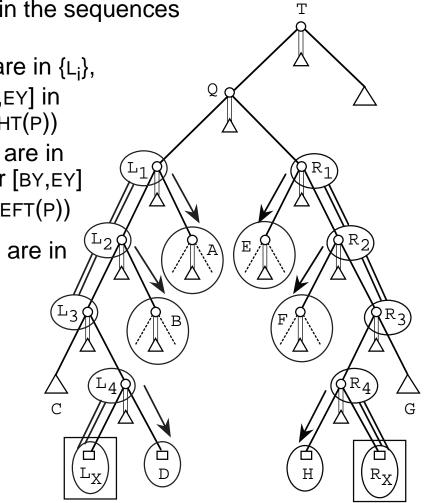
 \bigcirc

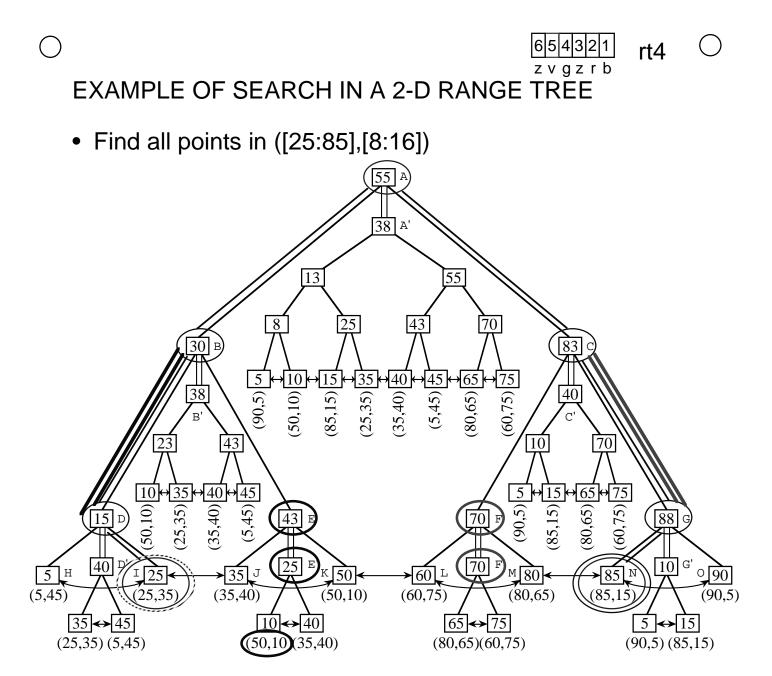
```
rt3
```

5|4|3|2|1|

SEARCHING 2-D RANGE TREES ([BX:EX],[BY:EY])

- 1. Search tree T for nodes BX and EX
 - find node LX with a minimum value \ge BX
 - find node RX with a maximum value \leq EX
- 2. Find their nearest common ancestor Q
- Compute {L_i} and {R_i}, the sequences of nodes forming the paths from Q to LX and RX, respectively (including LX and RX but excluding Q)
 - LEFT(P) and RIGHT(P) are sons of P
 - MIDRANGE(P) discriminates on x coordinate value
 - RANGE_TREE(P) denotes the 1-d range tree stored at P
- 4. For each element in the sequences $\{L_i\}$ and $\{R_i\}$ do
 - if P and LEFT(P) are in {L_i}, then look for [BY,EY] in RANGE_TREE(RIGHT(P))
 - if P and RIGHT(P) are in {R_i}, then look for [BY,EY] in RANGE_TREE(LEFT(P))
- Check if LX and RX are in ([BX:EX],[BY:EY])
- Total $O(\log_2^2 N + F)$ time to search and $O(N \cdot \log_2 N)$ space and time to build for N points and Fanswers

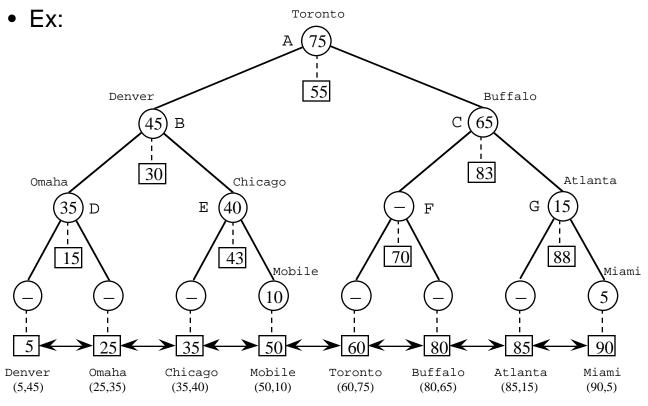




- 1. Find nearest common ancestor i.e., A
- 2. Find paths to LX=25 and RX=85
- 3. Look in subtrees
 - B and B's left son D are in path, so search range tree of B's right son E and report (50,10)
 - C and C's right son G are in path, so search range tree of C's left son F and report none
- 4. Check boundaries of *x* range (i.e., (25,35) and (85,15)) and report (85,15)

PRIORITY SEARCH TREES

- Sort all points by their *x* coordinate value and store them in the leaf nodes of a balanced binary tree (i.e., a range tree)
- Starting at the root, each node contains the point in its subtree with the maximum value for its *y* coordinate that has not been stored at a shallower depth in the tree; if no such node exists, then node is empty
- O(N) space and $O(N \cdot \log_2 N)$ time to build for N points
- Result: range tree in x and heap (i.e., priority queue) in y



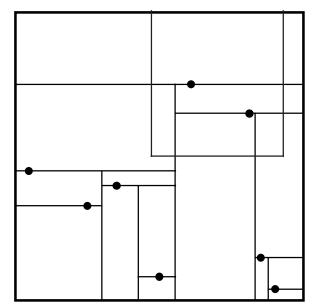
- Good for semi-infinite ranges i.e., ([BX:EX],[BY:∞])
- Can only perform a 2-d range query if find ([BX:EX],[BY:∞]) and discard all points (x,y) such that y > EY
- No need to link leaf nodes unless search for all points in range of x coordinate values

SEMI-INFINITE RANGE QUERY ON A PRIORITY SEARCH TREE ([BX:EX],[BY:∞])

• Procedure

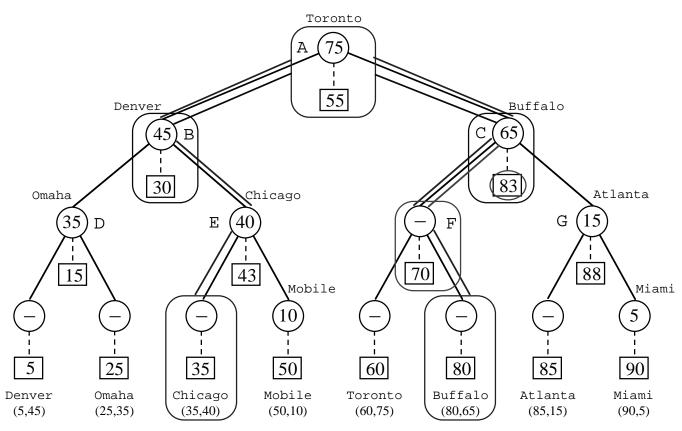
()

- Descend tree looking for the nearest common ancestor of BX and EX — i.e., Q
 - associated with each examined node T is a point P
 - exit if P does not exist as all points in the subtrees have been examined and/or reported
 - exit if P_y < BY as P is point with maximum y coordinate value in T
 - otherwise, output P if P_X is in [BX:EX]
- Once Q has been found, process left and right subtrees applying the tests above to their root nodes ⊤
 - T in left (right) subtree of Q:
 - a. check if BX (EX) in LEFT(T) (RIGHT(T))
 - b. yes: all points in RIGHT(T) (LEFT(T)) are in x range
 - check if in *y* range
 - recursively apply to LEFT(T) (RIGHT(T))
 - c. no: recursively apply to RIGHT(T) (LEFT(T))
- $O(\log_2 N + F)$ time to search for N points and F answers
- Ex: Find all points in ([35:80],[50:∞])



rt7

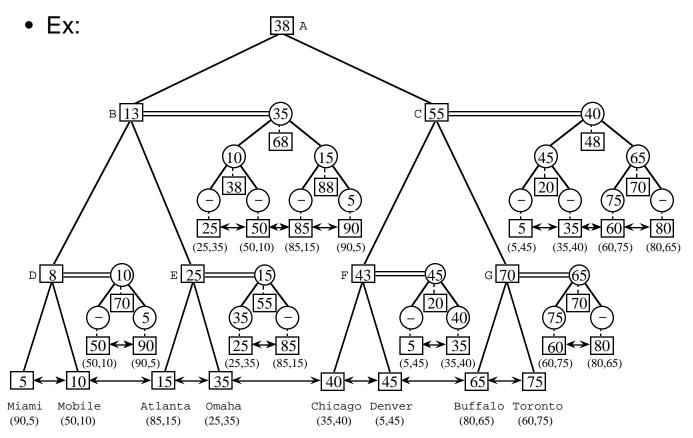
• Find all points in ([35:80],[50:∞])



- 1. Find nearest common ancestor i.e., A
 - output Toronto (60,75) since 60 is in [35:80] and 75≥50
- 2. Process left subtree of A (i.e., B)
 - cease processing as 45<50
- 3. Process right subtree of A (i.e., C)
 - output (80,65) as 65 ≥ 50 and 80 is in [35:80]
- 4. Examine midrange value of C which is 83 and descend left subtree of C (i.e., F)
 - cease processing since no point is associated with F meaning all nodes in the subtree have been examined

RANGE PRIORITY TREES

- Variation on priority search tree
- Inverse priority search tree: heap node stores point with minimum y coordinate value that has not been stored in a shallower depth in the tree (instead of maximum)
- Structure
 - 1. sort all points by their *y* coordinate value and store in leaf of a balanced binary tree such as range tree (single lines)
 - no need to link leaf nodes unless search for all points in range of x coordinate values
 - 2. nonleaf node left sons of their father contains a priority search tree of points in subtree (double lines)
 - 3. nonleaf node right sons of their father contains an inverse priority search tree of points in subtree (double lines)
- $O(N \cdot \log_2 N)$ space and time to build for N points

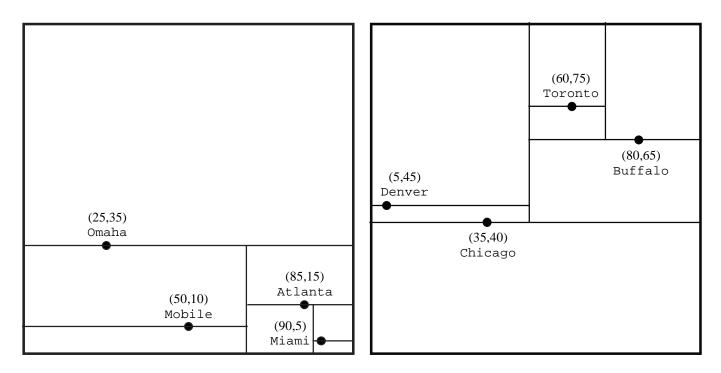


- Procedure
 - 1. find nearest common ancestor of BY and EY i.e., Q
 - 2. all points in LEFT(Q) have y coordinate values <EY
 - want to retrieve just the ones \geq_{BY}
 - find them with ([BX:EX],[BY:∞]) on priority tree of LEFT(Q)

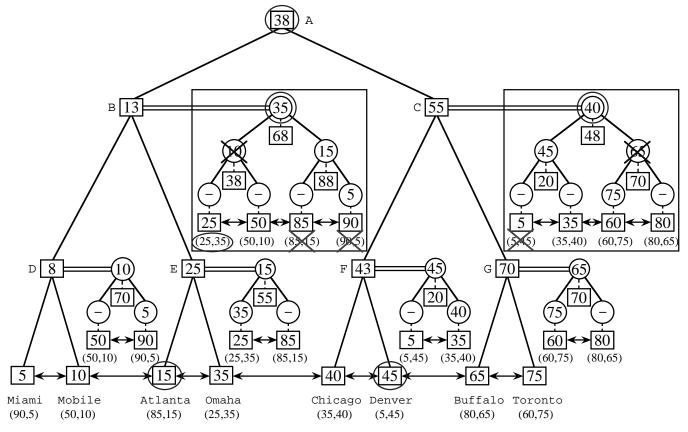
rt9

qzrb

- priority tree is good for retrieving all points with a specific lower bound as it stores an upper bound and hence irrelevant values can be easily pruned
- 3. all points in RIGHT(Q) have y coordinate values >BY
 - want to retrieve just the ones ≤EY
 - find them with ([BX:EX],[-∞:EY]) on the inverse priority tree of RIGHT(Q)
 - inverse priority tree is good for retrieving all points with a specific upper bound as it stores a lower bound and hence irrelevant values can be easily pruned
- O(log₂ N+F) time to search for N points and F answers



• Find all points in ([25:60],[15:45])



- 1. Find nearest common ancestor of 15 and 45 i.e., A
- 2. Search for ([25:60],[15: ∞]) in priority tree hanging from left son of A i.e., B (all with $y \le 45$ since a range tree in y and in left subtree of a node with y midrange value of 38)
 - output (25,35) as in range
 - reject left subtree as 10 < lower limit of *y* range
 - reject items in right subtree as out of x range
- 3. Search for ([25:60],[$-\infty$:45]) in inverse priority tree hanging from right son of A i.e., C (all with $y \ge 15$ since in right subtree of a node with y midrange value of 38)
 - output (35,40) as in range
 - reject unreported items in left subtree as out of *x* range

reject right subtree as 65 > upper limit of y range
Copyright © 1998 by Hanan Samet