RANGE TREES AND PRIORITY SEARCH TREES

Hanan Samet
Computer Science Department and
Center for Automation Research and
Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

Copyright © 1998 Hanan Samet
These notes may not be reproduced by any means (mechanical or electronic or any other) without the express written permission of Hanan Samet

RANGE TREES

- Balanced binary search tree
- All data stored in the leaf nodes
- Leaf nodes linked in sorted order by a doubly-linked list
- Searching for [B: E]

1. find node with smallest value $\geq B$ or largest $\leq B$
2. follow links until reach node with value $>E$

- $O\left(\log _{2} N+F\right)$ time to search, $O\left(N \cdot \log _{2} N\right)$ to build, and $O(N)$ space for N points and F answers
- Ex: sort points in 2-d on their x coordinate value

2-D RANGE TREES

- Binary tree of binary trees
- Sort all points along one dimension (say x) and store them in the leaf nodes of a balanced binary tree such as a range tree (single line)
- Each nonleaf node contains a 1-d range tree of the points in its subtrees sorted along y (double lines)
- Ex:

- Actually, don't need the 1-d range tree in y at the root and at the sons of the root
rt 3 \bigcirc

SEARCHING 2-D RANGE TREES ([bx:Ex],[By:Ey])

1. Search tree T for nodes $B X$ and EX

- find node $L X$ with a minimum value $\geq B X$
- find node RX with a maximum value \leq EX

2. Find their nearest common ancestor Q
3. Compute $\left\{L_{i}\right\}$ and $\left\{R_{i}\right\}$, the sequences of nodes forming the paths from Q to $L X$ and $R X$, respectively (including LX and RX but excluding Q)

- LEFT (P) and RIGHT (P) are sons of P
- mIDRANGE(P) discriminates on x coordinate value
- RANGE_TREE(P) denotes the 1-d range tree stored at P

4. For each element in the sequences $\left\{L_{i}\right\}$ and $\left\{R_{i}\right\}$ do

SEARCHING 2-D RANGE TREES ([bx:Ex],[bY:Ey])

1. Search tree T for nodes $B X$ and $E X$

- find node $L X$ with a minimum value $\geq B X$
- find node RX with a maximum value $\leq E X$

2. Find their nearest common ancestor Q
3. Compute $\left\{L_{i}\right\}$ and $\left\{R_{i}\right\}$, the sequences of nodes forming the paths from Q to $L X$ and $R X$, respectively (including LX and RX but excluding Q)

- LEFT (P) and RIGHT (P) are sons of P
- mIDRANGE(P) discriminates on x coordinate value
- RANGE_TREE(P) denotes the 1-d range tree stored at P

4. For each element in the sequences $\left\{L_{i}\right\}$ and $\left\{R_{i}\right\}$ do

- if P and $\operatorname{LEFT}(P)$ are in $\left\{L_{\mathrm{j}}\right\}$, then look for [BY,EY] in RANGE_TREE(RIGHT(P))

SEARCHING 2-D RANGE TREES ([bx:Ex],[bY:Ey])

1. Search tree T for nodes $B X$ and $E X$

- find node $L X$ with a minimum value $\geq B X$
- find node $R X$ with a maximum value $\leq E X$

2. Find their nearest common ancestor Q
3. Compute $\left\{\mathrm{L}_{\mathrm{i}}\right\}$ and $\left\{\mathrm{R}_{\mathrm{i}}\right\}$, the sequences of nodes forming the paths from Q to $L X$ and $R X$, respectively (including LX and RX but excluding Q)

- LEFT(P) and RIGHT(P) are sons of P
- mIDRANGE(P) discriminates on x coordinate value
- RANGE_TREE(P) denotes the 1-d range tree stored at P

4. For each element in the sequences $\left\{L_{i}\right\}$ and $\left\{R_{i}\right\}$ do

- if P and $\operatorname{LEFT}(P)$ are in $\left\{L_{\mathrm{j}}\right\}$, then look for [BY,EY] in RANGE_TREE(RIGHT(P))
- if P and RIGHT(P) are in $\left\{\mathrm{R}_{\mathrm{i}}\right\}$, then look for [BY,EY] in RANGE_TREE(LEFT(P))

SEARCHING 2-D RANGE TREES ([bx:Ex],[bY:Ey])

1. Search tree T for nodes $B X$ and $E X$

- find node $L X$ with a minimum value $\geq B X$
- find node RX with a maximum value $\leq E X$

2. Find their nearest common ancestor Q
3. Compute $\left\{L_{i}\right\}$ and $\left\{R_{i}\right\}$, the sequences of nodes forming the paths from Q to $L X$ and $R X$, respectively (including LX and RX but excluding Q)

- LEFT (P) and RIGHT (P) are sons of P
- mIDRANGE(P) discriminates on x coordinate value
- RANGE_TREE(P) denotes the 1-d range tree stored at P

4. For each element in the sequences $\left\{L_{i}\right\}$ and $\left\{R_{i}\right\}$ do

- if P and $\operatorname{LEFT}(P)$ are in $\left\{L_{\mathrm{j}}\right\}$, then look for [BY,EY] in RANGE_TREE(RIGHT(P))
- if P and RIGHT (P) are in $\left\{\mathrm{R}_{\mathrm{j}}\right\}$, then look for [BY,EY] in RANGE_TREE(LEFT(P))

5. Check if $L X$ and $R X$ are in ([BX:EX],[BY:EY])

SEARCHING 2-D RANGE TREES ([bx:Ex],[bY:Ey])

1. Search tree T for nodes $B X$ and $E X$

- find node $L X$ with a minimum value $\geq B X$
- find node RX with a maximum value $\leq E X$

2. Find their nearest common ancestor Q
3. Compute $\left\{\mathrm{L}_{\mathrm{i}}\right\}$ and $\left\{\mathrm{R}_{\mathrm{i}}\right\}$, the sequences of nodes forming the paths from Q to $L X$ and $R X$, respectively (including LX and RX but excluding Q)

- LEFT (P) and RIGHT (P) are sons of P
- mIDRANGE(P) discriminates on x coordinate value
- RANGE_TREE(P) denotes the 1-d range tree stored at P

4. For each element in the sequences $\left\{L_{i}\right\}$ and $\left\{R_{i}\right\}$ do

- if P and $\operatorname{LEFT}(P)$ are in $\left\{L_{i}\right\}$, then look for [BY,EY] in RANGE_TREE(RIGHT(P))
- if P and RIGHT (P) are in $\left\{\mathrm{R}_{\mathrm{j}}\right\}$, then look for [BY,EY] in RANGE_TREE(LEFT(P))

5. Check if $L X$ and $R X$ are in ([BX:EX],[BY:EY])

- Total $O\left(\log _{2} 2 N+F\right)$ time to search and $O\left(N \cdot \log _{2} N\right)$ space and time to build for N points and F answers

EXAMPLE OF SEARCH IN A 2-D RANGE TREE

- Find all points in ([25:85],[8:16])

EXAMPLE OF SEARCH IN A 2-D RANGE TREE

- Find all points in ([25:85],[8:16])

1. Find nearest common ancestor - ie., A

EXAMPLE OF SEARCH IN A 2-D RANGE TREE

- Find all points in ([25:85],[8:16])

1. Find nearest common ancestor - ie., A
2. Find paths to $L X=25$ and $R X=85$

EXAMPLE OF SEARCH IN A 2-D RANGE TREE

- Find all points in ([25:85],[8:16])

1. Find nearest common ancestor - ie., A
2. Find paths to $L X=25$ and $R X=85$
3. Look in subtrees

- B and B's left son D are in path, so search range tree of B's right son E and report $(52,10)$

EXAMPLE OF SEARCH IN A 2-D RANGE TREE

- Find all points in ([25:85],[8:16])

1. Find nearest common ancestor - ie., A
2. Find paths to $L X=25$ and $R X=85$
3. Look in subtrees

- B and B's left son D are in path, so search range tree of B's right son E and report $(52,10)$
- C and c's right son G are in path, so search range tree of C's left son F and report none

EXAMPLE OF SEARCH IN A 2-D RANGE TREE

- Find all points in ([25:85],[8:16])

1. Find nearest common ancestor - i.e., A
2. Find paths to $L X=25$ and $R X=85$
3. Look in subtrees

- B and B's left son D are in path, so search range tree of B's right son E and report $(52,10)$
- C and C's right son G are in path, so search range tree of C's left son F and report none

4. Check boundaries of x range (ie., $(27,35)$ and $(85,15)$) and report $(85,15)$

PRIORITY SEARCH TREES

- Sort all points by their x coordinate value and store them in the leaf nodes of a balanced binary tree (i.e., a range tree)
- Starting at the root, each node contains the point in its subtree with the maximum value for its y coordinate that has not been stored at a shallower depth in the tree; if no such node exists, then node is empty
- $O(N)$ space and $O\left(N \cdot \log _{2} N\right)$ time to build for N points
- Result: range tree in x and heap (i.e., priority queue) in y

- Good for semi-infinite ranges - i.e., ([BX:EX],[BY: $\infty]$)
- Can only perform a $2-\mathrm{d}$ range query if find ([BX:EX],[BY:©]) and discard all points (x, y) such that $y>E Y$
- No need to link leaf nodes unless search for all points in range of x coordinate values

SEMI-INFINITE RANGE QUERY ON A PRIORITY SEARCH TREE ([bx:Ex],[BY: $\infty]$)

- Procedure

1. Descend tree looking for the nearest common ancestor of $B X$ and $E x$ - i.e., Q

- associated with each examined node T is a point P
- exit if P does not exist as all points in the subtrees have been examined and/or reported
- exit if $P_{y}<B Y$ as P is point with maximum y coordinate value in T
- otherwise, output P if P_{X} is in $[B X: E X]$

2. Once Q has been found, process left and right subtrees applying the tests above to their root nodes T

- Tin left (right) subtree of Q:
a. check if $B X(E X)$ in $\operatorname{LEFT}(T)(\operatorname{RIGHT}(T))$
b. yes: all points in $\operatorname{RIGHT}(\mathrm{T})(\operatorname{LEFT}(\mathrm{T})$) are in x range - check if in y range
- recursively apply to LEFT(T) (RIGHT(T))
c. no: recursively apply to RIGHT(T) (LEFT(T))
- $O\left(\log _{2} N+F\right)$ time to search for N points and F answers
- Ex:

SEMI-INFINITE RANGE QUERY ON A PRIORITY SEARCH TREE ([bx:Ex],[by: $\infty]$)

- Procedure

1. Descend tree looking for the nearest common ancestor of $B X$ and $E X$ - i.e., Q

- associated with each examined node T is a point P
- exit if P does not exist as all points in the subtrees have been examined and/or reported
- exit if $P_{y}<B Y$ as P is point with maximum y coordinate value in T
- otherwise, output P if P_{X} is in [$\left.B X: E X\right]$

2. Once Q has been found, process left and right subtrees applying the tests above to their root nodes T

- T in left (right) subtree of Q:
a. check if $B X(E X)$ in $\operatorname{LEFT}(T)(\operatorname{RIGHT}(T))$
b. yes: all points in RIGHT(T) (LEFT(T)) are in x range - check if in y range
- recursively apply to LEFT(T) (RIGHT(T))
c. no: recursively apply to RIGHT(T) (LEFT(T))
- $O\left(\log _{2} N+F\right)$ time to search for N points and F answers
- Ex: Find all points in ([35:80],[50: ∞])

EXAMPLE OF A SEARCH IN A PRIORITY SEARCH TREE

- Find all points in ([35:83],[50: ∞])

EXAMPLE OF A SEARCH IN A PRIORITY SEARCH TREE

- Find all points in ([35:83],[50: ∞)

1. Find nearest common ancestor - i.e., A

- output toronto $(62,77)$ since 62 is in $[35: 80]$ and $77 \geq 50$

EXAMPLE OF A SEARCH IN A PRIORITY SEARCH TREE

- Find all points in ([35:83],[50: ∞])

1. Find nearest common ancestor - i.e., A

- output toronto $(62,77)$ since 62 is in $[35: 80]$ and $77 \geq 50$

2. Process left subtree of A (i.e., B)

- cease processing as $45<50$

EXAMPLE OF A SEARCH IN A PRIORITY SEARCH TREE

- Find all points in ([35:83],[50: ∞)

1. Find nearest common ancestor - i.e., A

- output toronto $(62,77)$ since 62 is in $[35: 80]$ and $77 \geq 50$

2. Process left subtree of A (i.e., B)

- cease processing as $45<50$

3. Process right subtree of A (i.e., C)

- output $(82,65)$ as $65 \geq 50$ and 82 is in [35:83]

EXAMPLE OF A SEARCH IN A PRIORITY SEARCH TREE

- Find all points in ([35:83],[50: ∞)

1. Find nearest common ancestor - ie., A

- output toronto $(62,77)$ since 62 is in $[35: 80]$ and $77 \geq 50$

2. Process left subtree of A (i.e., B)

- cease processing as $45<50$

3. Process right subtree of A (i.e., c)

- output $(82,65)$ as $65 \geq 50$ and 82 is in $[35: 83]$

4. Examine midrange value of c which is 84 and descend left subtree of c (i.e., F)

- cease processing since no point is associated with F meaning all nodes in the subtree have been examined

RANGE PRIORITY TREES

- Variation on priority search tree
- Inverse priority search tree: heap node stores point with minimum y coordinate value that has not been stored in a shallower depth in the tree (instead of maximum)
- Structure

1. sort all points by their y coordinate value and store in leaf of a balanced binary tree such as range tree (single lines)

- no need to link leaf nodes unless search for all points in range of x coordinate values

2. nonleaf node left sons of their father contains a priority search tree of points in subtree (double lines)
3. nonleaf node right sons of their father contains an inverse priority search tree of points in subtree (double lines)

- $O\left(N \cdot \log _{2} N\right)$ space and time to build for N points

- Procedure

1. find nearest common ancestor of BY and EY - ie., Q
\bigcirc

$\frac{211}{\mathrm{r}} \mathrm{rt} \quad \mathrm{r} 9$
 \bigcirc

SEARCHING A RANGE PRIORITY TREE ([bx:Ex],[by:Ey])

- Procedure

1. find nearest common ancestor of $B Y$ and $E Y$ - i.e., Q
2. all points in LEFT(Q) have y coordinate values $<E Y$

- want to retrieve just the ones $\geq B Y$
- find them with ([BX:EX],[BY: $\infty]$) on priority tree of LEFT(Q)
- priority tree is good for retrieving all points with a specific lower bound as it stores an upper bound and hence irrelevant values can be easily pruned

SEARCHING A RANGE PRIORITY TREE ([bx:Ex],[by:ey])

- Procedure

1. find nearest common ancestor of $B Y$ and $E Y$ - i.e., Q
2. all points in LEFT(Q) have y coordinate values $<E Y$

- want to retrieve just the ones $\geq B Y$
- find them with ([BX:EX],[BY: ∞]) on priority tree of LEFT(Q)
- priority tree is good for retrieving all points with a specific lower bound as it stores an upper bound and hence irrelevant values can be easily pruned

3. all points in RIGHT(Q) have y coordinate values $>B Y$

- want to retrieve just the ones SEY
- find them with ([BX:EX],[->:EY]) on the inverse priority tree of RIGHT(Q)
- inverse priority tree is good for retrieving all points with a specific upper bound as it stores a lower bound and hence irrelevant values can be easily pruned

SEARCHING A RANGE PRIORITY TREE ([bx:Ex],[bY:Ey])

- Procedure

1. find nearest common ancestor of BY and EY - i.e., Q
2. all points in LEFT(Q) have y coordinate values $<E Y$

- want to retrieve just the ones $\geq B Y$
- find them with ([BX:EX],[BY: $\infty]$) on priority tree of LEFT(Q)
- priority tree is good for retrieving all points with a specific lower bound as it stores an upper bound and hence irrelevant values can be easily pruned

3. all points in RIGHT(Q) have y coordinate values >BY

- want to retrieve just the ones $\leq E Y$
- find them with ([BX:EX],[->:EY]) on the inverse priority tree of RIGHT(Q)
- inverse priority tree is good for retrieving all points with a specific upper bound as it stores a lower bound and hence irrelevant values can be easily pruned
- $O\left(\log _{2} N+F\right)$ time to search for N points and F answers

EXAMPLE OF A SEARCH IN A RANGE PRIORITY TREE

- Find all points in ([25:60],[15:45])

EXAMPLE OF A SEARCH IN A RANGE PRIORITY TREE

- Find all points in ([25:60],[15:45])

1. Find nearest common ancestor of 15 and 45 - i.e., A

EXAMPLE OF A SEARCH IN A RANGE PRIORITY TREE

- Find all points in ([25:60],[15:45])

1. Find nearest common ancestor of 15 and 45 - i.e., A
2. Search for ([25:60],[15: ∞]) in priority tree hanging from left son of A - i.e., B (all with $y \leq 45$ since a range tree in y and in left subtree of a node with y midrange value of 39)

EXAMPLE OF A SEARCH IN A RANGE PRIORITY TREE

- Find all points in ([25:60],[15:45])

1. Find nearest common ancestor of 15 and 45 - i.e., A
2. Search for ([25:60],[15: ∞]) in priority tree hanging from left son of A - i.e., B (all with $y \leq 45$ since a range tree in y and in left subtree of a node with y midrange value of 39)

- output $(27,35)$ as in range

EXAMPLE OF A SEARCH IN A RANGE PRIORITY TREE

- Find all points in ([25:60],[15:45])

1. Find nearest common ancestor of 15 and 45 - i.e., A
2. Search for ([25:60],[15: ∞]) in priority tree hanging from left son of A - i.e., B (all with $y \leq 45$ since a range tree in y and in left subtree of a node with y midrange value of 39)

- output $(27,35)$ as in range
- reject left subtree as 10 < lower limit of y range

EXAMPLE OF A SEARCH IN A RANGE PRIORITY TREE

- Find all points in ([25:60],[15:45])

1. Find nearest common ancestor of 15 and 45 - i.e., A
2. Search for ([25:60],[15: ∞]) in priority tree hanging from left son of A - i.e., B (all with $y \leq 45$ since a range tree in y and in left subtree of a node with y midrange value of 39)

- output $(27,35)$ as in range
- reject left subtree as 10 < lower limit of y range
- reject items in right subtree as out of x range

EXAMPLE OF A SEARCH IN A RANGE PRIORITY TREE

- Find all points in ([25:60],[15:45])

1. Find nearest common ancestor of 15 and 45 - i.e., A
2. Search for ([25:60],[15: ∞]) in priority tree hanging from left son of A - i.e., B (all with $y \leq 45$ since a range tree in y and in left subtree of a node with y midrange value of 39)

- output $(27,35)$ as in range
- reject left subtree as 10 < lower limit of y range
- reject items in right subtree as out of x range

3. Search for ([25:60],[->:45]) in inverse priority tree hanging from right son of A - i.e., c (all with $y \geq 15$ since in right subtree of a node with y midrange value of 39)

EXAMPLE OF A SEARCH IN A RANGE PRIORITY TREE

- Find all points in ([25:60],[15:45])

1. Find nearest common ancestor of 15 and 45 - i.e., A
2. Search for ([25:60],[15: ∞]) in priority tree hanging from left son of A - i.e., B (all with $y \leq 45$ since a range tree in y and in left subtree of a node with y midrange value of 39)

- output $(27,35)$ as in range
- reject left subtree as 10 < lower limit of y range
- reject items in right subtree as out of x range

3. Search for ([25:60],[$-\infty: 45]$) in inverse priority tree hanging from right son of A - i.e., c (all with $y \geq 15$ since in right subtree of a node with y midrange value of 39)

- output $(35,42)$ as in range

EXAMPLE OF A SEARCH IN A RANGE PRIORITY TREE

- Find all points in ([25:60],[15:45])

1. Find nearest common ancestor of 15 and 45 - i.e., A
2. Search for ([25:60],[15: ∞]) in priority tree hanging from left son of A - i.e., B (all with $y \leq 45$ since a range tree in y and in left subtree of a node with y midrange value of 39)

- output $(27,35)$ as in range
- reject left subtree as 10 < lower limit of y range
- reject items in right subtree as out of x range

3. Search for ([25:60],[- -45$]$) in inverse priority tree hanging from right son of A - i.e., c (all with $y \geq 15$ since in right subtree of a node with y midrange value of 39)

- output $(35,42)$ as in range
- reject unreported items in left subtree as out of x range

EXAMPLE OF A SEARCH IN A RANGE PRIORITY TREE

- Find all points in ([25:60],[15:45])

1. Find nearest common ancestor of 15 and 45 - i.e., A
2. Search for ([25:60],[15: ∞]) in priority tree hanging from left son of A - i.e., B (all with $y \leq 45$ since a range tree in y and in left subtree of a node with y midrange value of 39)

- output $(27,35)$ as in range
- reject left subtree as 10 < lower limit of y range
- reject items in right subtree as out of x range

3. Search for ([25:60],[->:45]) in inverse priority tree hanging from right son of A - i.e., c (all with $y \geq 15$ since in right subtree of a node with y midrange value of 39)

- output $(35,42)$ as in range
- reject unreported items in left subtree as out of x range
- reject right subtree as 65 > upper limit of y range

