
Memory management - 1

Memory Management

  Memory management - allocation of memory
chunks to programs and processes!

!1) Operating system requires 50Mb to store a program
to be executed!
!2) Program requests block of memory for an instance of
a structure!

!
  Heap - portion of memory to be managed -

M[0..N-1].!
–  blocks are allocated from the heap!
–  when a block has been allocated it is reserved or in use!
–  blocks can later be freed or deallocated!

Memory management - 2

Factors determining choice of memory
management scheme

  Blocks of fixed size versus blocks of various
sizes.!

–  Some languages (LISP) usually request blocks of fixed
size to build lists!

–  Operating systems request blocks of various sizes to
store programs and their data!

–  C++ programs require blocks of different sizes for
different structures!

  Linked blocks versus unlinked blocks. !
–  If A and B are blocks of allocated memory, and A

contains a pointer to B, then B cannot be moved
without updating references to B from within A.!

  Might need to move B to create a block of a large
size!

–  Leads to dangling pointers!

Memory management - 3

Memory management factors

  Small blocks versus large blocks.!
–  Small blocks can be !

  moved easily!
  initialized efficiently since time spent is proportional to size

of the block!
  Time versus memory. !

–  Trade-offs between utilization of heap and complexity of
managing heap.!

  Explicit versus implicit release. !
–  Operating system can explicitly release blocks of programs no

longer running!
–  Many programs return storage implicitly through “garbage

collection.” !

Memory management - 4

Memory management factors

  Scheduled versus non-scheduled release.!
–  Is information available about the relative order of

allocation and deallocation requests?!
–  Example: Management of run time stack - blocks are

released in a last-in-first-out fashion.!
  Initialized versus un-initialized blocks. !

–  Initialize large structures to value specified by language
semantics or programmer specification!

–  Blank out memory so a program cannot read the results
of a previous occupant of memory!

Memory management - 5

Reference count method –
propagating effects of block de-
allocation

  Reference count - count of the number of
pointers that point to a block!

–  when a new copy of the address of a blockis created, we
increment the cell's reference count!

–  when a copy is destroyed (say by a pointer assignment)
we decrement the reference count!

–  when the reference count goes to 0, we de-allocate!
–  when block, X, is deactivated, the reference count of

any block pointed at by X is decremented.!

Memory management - 6

Disadvantages of reference counts

  Requires storage in each active block for the
reference count!

  Unless the maximum number of references is known
beforehand, can overflow reference count field!

  Doesn't work for circular lists!
–  If X and Y point to one another, then even if there are

no outside references to either, their reference counts
will never go to 0.!

Memory management - 7

Mark and sweep garbage collection
  Wait for the free list to become empty, and

then scavange memory for unused blocks.!
  Associate a mark field (one bit) with each

block. Initially all mark fields are off.!
  A marking process will set the mark fields on

for all blocks that can be reached by some
chain of pointers beginning outside of T!

  Memory is then scanned, and all blocks with
their mark fields off are collected into the
free list. At the same time, the mark fields
of used blocks are turned off to prepare for
the next round of garbage collection.!

  Big question: How do we do the marking?!

Memory management - 8

Marking

•  Marking algorithms are like tree traversals except
 1) blocks can have many pointers and not just 2 -
although we will assume they all have the same
number
 2) blocks may be linked into graphs. But if a
block can be reached by more than one path, it is
marked the first time it is encountered so that it is
not explored when encountered along other
paths.

•  Let C0, C1, ...Ck-1 be the k pointers stored in any
block

•  Atom(P) is true if P points outside the heap (probably
back to a named program variable).

Memory management - 9

Recursive, depth-first marking

  Preorder versions of recursive traversals!
–  preorder is important so we mark a block before marking

its children - this prevent re-entering circular structures!
FullyRecursiveMark(pointer P);!
if not Atom(P) and not marked(P) then!
!Mark(P)!
!for j from 0 to k-1 do!
! FullyRecursiveMark(Cj(P))!

Memory management - 10

Recursive, depth-first marking

  Preorder versions of recursive traversals!
–  preorder is important so we mark a block before marking

its children - this prevent re-entering circular structures!
FullyRecursiveMark(pointer P);!
if not Atom(P) and not marked(P) then!
!Mark(P)!
!for j from 0 to k-1 do!
! FullyRecursiveMark(Cj(P))!

  Problem - stack memory needed can be as
large as number of links traversed before
encountering an atom. But when garbage
collection is called, memory is gone!!

Memory management - 11

Traversing binary trees

 Lindstrom scanning - scan the tree so that
every node is visited, although not
necessarily in any special order.

 Importance of traversal algorithms:
 1) garbage collection based on ideas in
traversal
 2) traversal central to many other problems -
copying, testing for equality of structures,
printing

Memory management - 12

Link Inversion Traversals

 Replace downward pointers with upward pointers
during descent of the tree.

 Restore pointers to their original values during
ascent.

 Each node has a TAG field that indicates which
link field has been reset to point towards its
parent. TAG = 1 if the right link has been reset,
and is 0 otherwise.

 Algorithm can be applied to binary trees with
shared subtrees (subtrees pointed to by more than
one ancestral node in the whole tree).

Memory management - 13

Link inversion for simple lists

 Consider a dictionary stored in a singly linked list.
Given a word, w, suppose we want to find the last
word in the list, L that lexicographically precedes it
and ends in the same last letter.

–  L = (cannery, cat, chickadee, coelacanth, collie, corn, cup)
–  w = crabapple
–  answer = collie

 Can solve this trivially by traversing the list,
remembering the last word we saw that ends in "e"
and halting when we find the entry following
"crabapple"

 But we can also solve it if we could walk backwards in
the list once “cup” was encountered

Memory management - 14

Link inversion

  Could also solve the problem with a
stack of pointers
– as we traverse the list push the pointers onto the

stack
– when we want to back up, start popping the

pointers until we reach the record of interest

 But we can avoid the stack by turning
around the pointers in the list itself in a
way that lets us restore the list at the end
of the algorithm

Memory management - 15

Link inversion

 Algorithm uses two pointers
 1) Q - points to the first unvisited cell in
the remainder of the list. Following link
fields from Q will take us in the forward
direction to the tail of L from some point
on:xi, xi+1, ..., xn.
 2) P - points to the cell containing xi-1.
This cell's link field has been changed to
point to xi-2 and so on. Following links from
P gets us back to the front of the list.

Memory management - 16

Link inversion

P Q

P Q

Memory management - 17

Link inversion

 Following operations can be used to move around
the list using link inversion:

1) Start a traversal
 P<- nil
 Q <- L (first node on list)

2) Move forward
 P <- Q
 Q <- link(Q)
 link(Q) <- P

NOTE: On the left hand side are the new values -
all values on the right are old values.
simultaneous assignment.

Memory management - 18

Link inversion

 3) Move backwards in the list; Simultaneous assignment:
 P <- link(P)
 link(P) <- Q
 Q <- P

P Q

P Q

Memory management - 19

Link inversion

 Note:
 1) restoring the list to its original form involves
completely backing out of the list
 2) no other use of the list can be accomplished
while this traversal is going on - can't be used if
several processes require concurrent access to
the same data structure

• We'll now generalize this to (almost) stackless
traversal of trees

Memory management - 20

Tree traversal with link inversion

  Algorithm will descend through the tree by following
L and R links

 The pointer followed will be changed to point to its
parent, so the stack used by the recursive algorithm
is (mostly) stored in the tree itself

 When we ascend the tree, we will restore the pointers
back to their original values. But how do we know
which pointer to restore?

 Answer: Use a tag bit which will tell us if we changed
the L or the R link, and change accordingly.

 So stack is, effectively, reduced to one bit per stack
element.

Memory management - 21

Link inversion tree traversal

Algorithm uses two variables
 1) Q - points to the next
untraversed tree node.
Everything that can be
reached from Q looks like
the original binary tree
 2) P - points to the node that
is the parent of the one that
Q points to. P is the top node
on the embedded stack. If
we follow pointers back from
P (using the tag fields) we
get back to the root.

0

1

1

0

0

P

Q

1

Memory management - 22

Tree link inversion

 Algorithm uses four code fragments - descend left
or right, and ascend left or right. These cause the
P-Q pair to move one edge up or down the tree

 1) on descent, the direction indicates which child pointer to follow
 2) on ascent, the direction indicates which field of the node to which
P points contains the address of that node's parents (use the tag).

  A sequence descend left-ascend left (or descend
right-ascend right) leaves the tree as it was
originally.

  Tag bit is 0 during the visit to the node's left
subtree and is 1 during the visit to the nodes right
subtree. Tag tells us which link to ascend through.

Memory management - 23

Link tree traversal

  Code fragments use simultaneous assignment:
1) descend left

 P <- Q
 Q <- Left(Q)
 Left(Q) <- P

2) Descend right
 P <- Q
 Q <- Right(Q)
 Rlink(Q) <- P

P

Q
P

Q

Memory management - 24

Link tree traversal

 3) ascend from left
 Q <- P
 P <- Left(P)
 Left(P) <- Q

4) ascend from right
 Q <- P
 P <- Right(P)
 Right (P) <- Q

P

Q

P

Q

Memory management - 25

Link tree traversal

procedure linkInversionPreOrderTraversal
(pointer Q):!
!// Initially Q points to the root of the tree}!
!P <- Nil!

 // Descend as far as possible to the left !
! while Q <> Nil do!
! visit(Q) // For preorder traversal ! !
! tag(Q) <- 0 !
! descend_to_left()!
! !!

!
! !

Memory management - 26

// Ascend as far as possible from the right
(maybe not at all)!
! while P <> nil and Tag(P) = 1 do!
! ascend_from_right()!
!if P = Nil then return !

 else!
! ascend_from_left()!

 Tag(Q) <- 1!
 descend_to_right()!

Memory management - 27

Storage requirements

 Suppose we have a perfectly balanced
binary tree containing 2n nodes

– Classic tree traversal algorithm will require a stack of
depth n, with each stack element being n bits long to
represent the address of a node in the tree - n2 bits in all

– The in-place traversal requires 1 bit per node as a tag
field, or 2n bits of auxiliary space! Not good.

 The in-place algorithm doesn't’t really use a
tag field, but a tag bit stack, which can
never be bigger than n elements, each of
which requires 1 bit.

– So, auxiliary storage is decreased from n2 to n.

Memory management - 28

Robson traversal

 No tag bits, no auxiliary stack! (but only for trees)
 Use the empty link fields of leaf nodes to create

the traversal stack
–  since there are plenty of these empty fields, we’ll have enough

space even for the worst structured trees
–  Left links will be used to chain together the leaf nodes that form

the stack
– Right link fields will point to the interior tree nodes that compose

the stack.
–  These will be interior nodes that

  have nonempty left subtrees that have been traversed
  have nonempty right subtrees that are in the process of being

traversed

Memory management - 29

Link-Inversion
Schorr-Deutsch-Waite Marking

  Store the stack as a pointer chain in the
structure to be marked - algorithm will use
roof[logk]•h bits for its "stack", where h is
the length of the longest pointer chain from
the root to any cell. !

  Generalization of binary tree traversal with
link inversion. Differences:!

!1) Instead of a tag bit to remember whether we
descended through left or right pointer, need a field
large enough to store the index (0..k-1) of the link field
traversed. Can be either kept as a field in the cells (bad
idea!) or as an auxiliary stack.!
!2) Ascend and descend code now indexed by pointer!

Memory management - 30

Ascend and descend code

• descend via Cj
(simultaneous
assignment)
 P <-- Q
 Q <-- Cj(Q)
 Cj(Q) <-- P

• ascend via Cj (sim.
assignment)
 Q <-- P
 P <-- Cj(P)
 Cj(P) <-- Q

procedure
LinkinversionMark(pointer Q):!

{Mark all cells reachable from Q}!
P <-- Nil;!
S <-- MakeEmptyStack()!
repeat forever!
!if Q <> Nil and not Atom(Q) and
not Marked(Q) then!
! Mark(Q)!
! Push(0,S)!
! descend via C0!

else if P = Nil then return!
else!
!j <-- Pop(S)!
!ascend via Cj!
!j <-- j+1!
!If j < k then!
! Push(j,S)!
! descend via Cj!

!
!

Memory management - 31

Other garbage collection
algorithms

  Link inversion algorithms that take constant
space, independent of the length of the
longest path from the root to any cell.!

–  still use a mark bit in each cell!
–  require much more computation that stack-based link

inversion!
  Copying algorithms - break memory into two

parts, and allocate storage from one. When
that segment of memory is fully utilized,
copy and compact non-garbage cells from
one area to the other.!

–  algorithms do not touch garbage!
–  but must have a lot of memory!

Memory management - 32

Cautions on garbage
collection

  System performance usually degrades quickly
once garbage collection is required!

–  not much available storage is really available, so system
spends a lot of time marking or copying to reclaim only a
small amount of storage!

–  almost immediately have to garbage collect again, as more
memory is consumed!

  Incremental garbage collection!
–  spend a fixed amount of time collecting garbage!
–  therefore, collect only a little garbage at a time.!

Memory management - 33

Managing the Heap -
Records of a single size

  Suppose all requests are for blocks of size k!
  Partition heap once into floor[n/k] blocks of

size k. Let T[0..m-1] be those blocks, where
m = floor[n/k]!

  At any time, some blocks in T are free and
some are in use. !

  Storage management!
–  Maintain a free list of blocks in T - arrange free blocks in

a singly linked list!
–  List is accessed as a stack - allocation is a POP and de-

allocation is a PUSH. So, allocation takes O(1) time.!
–  How can we determine when to deallocate implicitly?!

Free

Memory management - 34

Records of various sizes

  If blocks can be of different sizes, then we
need a more complex memory management
mechanism.!

  Method 1:Allocate in address order from a
single block of large memory.!

–  when heap is exhausted, some blocks may have been
de-allocated!

–  compress them to get one big block, and continue!

Memory management - 35

Records of various sizes

  Method 2: Keep a single list of blocks of all
sizes.!

–  If a request for a block of size k is encountered, find a
block of size h > k, allocate k words and return a block
of size h-k to free storage. The set of blocks is called
the storage pool.!

  Two main problems:!
!1) the leftovers (h-k) might be too small for anything!
!2) when a block is deallocated, it may need to be
merged with an adjacent free block!

Memory management - 36

Records of various sizes

  Method 3: Keep several pools of free blocks,
according to size.!

–  allocate by choosing a block from the correct pool!
–  need a subdivision strategy that allows easy

construction of large(st) blocks as memory is de-
allocated.!

–  "Buddy system"!

Memory management - 37

Method 1: Compression

  Major problems:!
!1) time it takes to move blocks within memory!
!2) adjustment of pointers to blocks that have moved.!

  Algorithm assumptions:!
!1) The heap M[0..N-1] is partitioned into blocks, some
of which are free and others in use.!
!2) Marked(P) is true if P points to a block that is in use,
and false otherwise!
!3) First is the address of M[0] and Last is address for
M[N-1].!
!4) Each block has a size field; the block after the one
beginning at address P begins at address P + Size(P)!

Memory management - 38

Compression

  Assumptions!
!5) Pointer fields of a block in use are known in advance
(for updating references)!
!6) Each block in use contains a pointer field
forwardingaddress that is reserved for use by the
compaction algorithm. The value of this field will be
computed before any blocks are moved.!

  Algorithm will use the following abbreviation:!
for each block P, in address order, do for!
P <-- First!
while P <> Last do!
!******!
!P <-- P + size(P)!

Memory management - 39

Compaction algorithm

procedure Compact;!
{Compact blocks into low memory

addresses, adjusting pointers; marking of
blocks in use has already been done}!
!{Compute forwarding addresses}!
!Dest <-- First!
!for each block, P, in a-order, do!
! if Marked(P) then!
! ForwardingAddress(P) <-- Dest!
! Dest <-- Dest + Size(P)!
!{Adjust internal links}!
!for each block, P, in a-order, do!
! if Marked(P)then!
! for each pointer field Link do!
! Link(P) <-- !

 ForwardingAddress(Link(P))!
!!

{move the cells}
for each block, P, in a-order, do

 if Marked(P) then
 Copy Size(P) bytes beginning at
P to ForwardingAddress(P)

•Observations:
 1) algorithm is linear in size of
memory compacted
 2) but, practically, it takes three
scans over the memory to
complete(four counting the initial
marking)

Memory management - 40

Method 2: Blocks of various sizes

  If blocks are of different sizes, and some
blocks are very large, compaction is not a
good solution because it might get called
too often.!

  Assume explicit deallocation!
  Strategy for selecting blocks, subdividing

them and recombining them determined by:!
–  Memory utilization - do not fail to satisfy a request if the

aggregate amount of memory in use is only a small
percentage of the heap size!

–  Memory overhead - the memory manager data
structures should be small compared to the heap!

–  Time efficiency - allocation and deallocation should be
fast!

Memory management - 41

It's not a pefect woρld

  Not all sequences of requests for memory
will be satisfied by any memory management
algorithm, even if it is possible to satisfy
them by some variation on the algorithm.!

  Example: Heap of size 100!
–  B1 <-- allocate (20)!
–  B2 <-- Allocate (40)!
–  Free(B1)!
–  B3 <-- Allocate (50)!

  If we had allocated B2 from the end, then we
could have satisfied the last request!

–  But, generally, deciding if a (known) sequence of
requests is satisfiable is NP-complete!

80

40

20 40

Memory management - 42

Fragmentation

  Two blocks of size s1 and s2 are never more
useful than one larger block of size s1 + s2.!

  Allocation strategy should try to minimize
the number of free blocks, and maximize
their sizes!

  External fragmentation - splitting of free
storage into a relatively large number of
relatively small free blocks. !

–  ! External fragmentation can be combatted by not
subdividing a free block if the leftover space is too
small to be useful - just allocate the larger block!

–  smaller block would clutter free list.!

Memory management - 43

Fragmentation

  Internal fragmentation - distribution of
significant amount of free storage in
allocated blocks!

–  always some "wasted" space because blocks require
fields for use by memory manager - size, pointers to
other blocks, etc.!

Memory management - 44

Summary

  Maintain a pool of free blocks!
  Develop an allocation strategy for assigning

a block to a request!
–  retain unused portion of block for use by other requests!
–  must decide on a data structure for the pool of free

blocks. Can be organized either by size or by location or
by both.!

  Develop a freeing strategy for returning a
freed block to the pool, and coalescing it
with other free blocks to form largest
possible free blocks!

Memory management - 45

Allocation strategies

  Two basic strategies:!
!1) best fit allocates a request for a block of size n by
finding the smallest block larger than n.!
!2) first fit allocates using the first block found of size at
least n.!

  Best fit!
–  implement pool of free blocks as a linked list ordered by

increasing size!
–  first block on this list whose size is � n is the best fit!
–  on average, half the list is scanned to find the best fit.!
–  must scan list again to put leftover block back into free

list.!
–  if list is maintained in address order, then entire list

would have to be scanned to find the best fit, but
reinsertion of leftover fragment is avoided.!

Memory management - 46

Allocation strategies

  Use a linked list representation of the pool of
free blocks!

  Problem - blocks near the beginning of the
list get subdivided more often then blocks
near the end!

  Solution: The roving pointer - begin search
for a block at the point where the previous
search ended.!

–  Small blocks will not accumulate at any one area of the
list.!

–  A block that has just been subdivided, or was too small
to fulfill the previous request, will not be considered
again until after all blocks have been examined. This
gives it time to coalesce with freed blocks!

Memory management - 47

Data structures for freeing

  What fields of information would we need to
implement block deallocation and coalescing
efficiently?!

!1) Mark field = 0 for a free block and 1 for a block in use!
!2) Size field!
!3) Next and Prev fields to maintain a doubly linked list of
free blocks.!

  Only needed when the block is free - process
can use the fields when the block is in use!

  Makes subdivision easy - allocate from the
end and set Size <- Size - n!

Memory management - 48

Data structures for freeing

  Do not depend on assumptions about order
of blocks in free list to support the Free
operation!

–  Either size order or address order will entail search of
the free list, and we want to avoid this search!

  Suppose we free the block B.!
–  To determine if the next higher (in address) block is

free, we look at Mark(B + Size(B))!
–  Determining if the previous block is free is harder!
–  Replicate the mark field at the end of each block!
–  So, can examine a field at a fixed displacement before

the beginning of block B to determine if the previous
block is free!

–  This is called LowMark(B).!

Memory management - 49

Data structures for freeing

  If B's lower
neighbor is free,
then its Size field
is also replicated
near its end!

–  Call this field
LowSize(B).!

  These fields are
stored in the
block prior to B,
and not in B itself!

Low
Mark

Low
Size

Mark
=1

Size

LowM
= 1

Low
Size

Mark Size

Block in use

Low
Mark

Low
Size

Mark
=0

Size

LowM
= 0

Low
Size

Mark Size

Next
Prev

Free block
• This is called the Boundary Tag Method

Memory management - 50

Allocation algorithm

function BoundaryTagAllocate (integer:n):pointer!
{return address of a free block of size n, or nil if no large enough block

is available}!
!SaveRover <-- Rover!
!repeat!
! !m <-- Size(Rover)!
! !if m < n then!
! ! !Rover <-- Next(Rover)!
! !else!
! ! !if m-n < delta then {almost exact match, no
leftover}!
! ! ! P <-- Rover!
! ! ! DoublyLinked Delete (P)!
! ! !else {inexact match - divide the block}!
! ! ! P <-- Rover + m - n!
! ! ! Size(Rover) <-- LowSize (P) <-- m-n !
! ! ! Size (P) <-- LowSize (P+n) <--n !
! ! ! LowMark(P) <-- 0 !

m-n

n

P

Rover

free

inuse

10

45

60

35

35

15

15

m = 50
n = 15

Memory management - 51

Allocation algorithm

!Mark (P) <-- 1!
!LowMark (P + Size(P)) <-- 1!
!Rover <-- Next (Rover)!
!Return (P)!
!until Rover = SaveRover!
!return nil!

m

n

P

Rover

free

inuse

Memory management - 52

Freeing algoritm

procedure BoundaryTagFree (pointer P)!
{deallocate the block pointed to by P}!
if LowMark (P) = 0 then {Preceding block is free, merge}!
!Q <-- P!
!P <-- P - LowSize (P)!
!Size (P) <-- Size (P) + Size (Q)!

else { Preceding block in use; mark this block as free}!
!Mark (P) <-- 0!

Q <-- P + Size (P) { Q <-- address of subsequent block}!
if Mark(Q) = 0 then {merge with following block}!
!Size (P) <-- Size (P) + Size (Q)!
!if Rover = Q then Rover <-- P!
!DoublyLinkedDelete (Q)!
!Q <-- P + Size (P) {P points to block to be !
!placed in free; Q points just after the end of this block}!

Q

P P

LowSize(Q) <--
Size(P)

LowMark(Q) <-- 0
DoublyLinkedInsert(P,

Free)

Memory management - 53

Method 3:
Buddy systems

  Trade external fragmentation for internal
fragmentation!

–  only blocks of small number of fixed sizes are allocated.
Additionally, the starting addresses for the blocks are
constrained.!

–  a request for a block of size m is rounded up to the
smallest size n that is supported!

  When a block is freed, it may not be merged
with an adjacent free block!

–  every block has a "buddy block" of the same size!
–  when a block is freed, if its buddy is free, it is merged

with its buddy to create a larger block!
–  this larger block may be merged with its buddy ... !

Memory management - 54

Binary buddies

  All allocatable blocks have sizes that are
powers of 2.!

  Heap size is also a power of 2, say 2m.!
  The allowable block sizes are 2m, 2m-1, ..., 21,

20!
–  this means that there are m+1 Free lists, with list

headers Free[m], Free[m-1],..., Free[0].!
  Each block of size 2k begins at an address

which is a multiple of 2k - begins at p*2k!
–  ends at (p+1)*2k - 1!
–  0 <= p<= 2m-k!

Memory management - 55

Binary buddies

  Who is the buddy of a block of size 2k?!
–  it is the other block contained in the enclosing block of

size 2k+1!
  So, the largest block has no buddy!

•  Blocks of size 4 begin at
addresses 0, 4, 8, 12 - all multiples
of 4

•  There are 4 = 2(4-2) blocks of size 4
in a heap of size 16

•  In a heap of size 32 there would be
2(5-2) = 8

•  The buddies are (0,4) and (8,12)

0 15

Memory management - 56

Binary buddies

  If block N of size 2k begins at
address P, then B's buddy
begins at either!

–  ! P - 2k or P + 2k!
  Easy to tell by looking at k'th

bit of P. If k'th bit is 1, then
buddy is at P-2k. If k'th bit is
0, buddy is at P+2k!

–  So just complement bit k in the
binary representation of B's address!

–  But this is just the exclusive or of
the block's position and its size!!

• Block of size 4 beginning at P=4 =
0100. k'th bit = 1 (start from
right at 0, so buddy is at 0000)

• Block of size 2 starting at P=10 =
1010 has buddy at 1000 = 8.

• Buddy of a block of size 2k at
address P is the block of size 2k
beginning at P 2k +

Memory management - 57

Binary buddies

  Free lists are kept as doubly linked to
facilitate deletions!

  Fields are same as boundary tag method,
except you don't need the extra copy of the
mark and size fields!

mark=0 size

next

prev

mark = 1 size

Memory management - 58

Binary buddies - allocation
function BinaryBuddyAllocate (integer n): pointer!
{Return pointer to a block whose size is the next power of 2 >

n}!
{ Return nil if no sufficiently large block exists}!
!
j <--k <-- roof(log n)!
while j <= m and IsEmptyList (Free[j]) do j <-- j+1!
if j > m then return nil!
P <-- Free[j]!
DoublyLinkedDelete (P)!
while j > k do!
!j <-- j-1!
!Q <-- P + 2j!
!Mark(Q) <-- 0!
!Size(Q) <-- j!
!DoublyLinkedInsert (Q, Free[[j]) {Inserts Q onto an empty
list Free[j]}!

Mark(P) <-- 1
Size(P) <-- k
return P.

Memory management - 59

Example

  Free[4] = 0!
  Free[3] = Free[2] =

Free[1] = Free[0] =
NIL!

  Allocate a block of
size 3!

  Fill with a block of
size 4 !

–  j <-- k<-- 2!
–  j gets bumped up to

4 and the block of
size 16 starting at P
= 0 is used!

• Place the block of size 8 starting at
position 8 (0 + 23) into Free[3]

• Place the block of size 4 starting at
location 4 (0 + 22) into Free[2]

Memory management - 60

Block freeing

  May reverse the splits that occurred during
allocation!

–  for example, if we allocate a block of size k and then
immediately free it, we restore free lists to their original
state.!

  If the freed block's buddy is free, it is
removed from free list and merged to create
a larger block.!

  This is repeated until either the buddy is in
use, or the block becomes the entire heap.!

  Can have at most log(n) frees, so freeing is
O(log n) in the worst case.!

Memory management - 61

Block freeing

procedure BinaryBuddyFree (pointer P):!
{Free the block of size 2k beginning at P}!
k <-- Size(P)!
while k < m and Mark(P EOR 2k) = 0 and!
 Size(P EOR 2k) = k do!
!{P's buddy is free, so merge}!
!Q <-- P EOR 2k!
!DoublyLinked Delete (Q)!
!if Q < P then P <-- Q!
!k <-- k + 1!

Mark(P) <-- 0!
Size (P) <-- k!
DoublyLinkInsert (P, Free[k])!
!!

P

