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Memory Management 

  Memory management - allocation of memory 
chunks to programs and processes!

!1) Operating system requires 50Mb to store a program 
to be executed!
!2) Program requests block of memory for an instance of 
a structure!

!
  Heap - portion of memory to be managed  -

M[0..N-1].!
–  blocks are allocated from the heap!
–  when a block has been allocated it is reserved or in use!
–  blocks can later be freed or deallocated!
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Factors determining choice of memory 
management scheme 

  Blocks of fixed size versus blocks of various 
sizes.!

–  Some languages (LISP) usually request blocks of fixed 
size to build lists!

–  Operating systems request blocks of various sizes to 
store programs and their data!

–  C++ programs require blocks of different sizes for 
different structures!

  Linked blocks versus unlinked blocks. !
–  If A and B are blocks of allocated memory, and A 

contains a pointer to B, then B cannot be moved 
without updating references to B from within A.!

  Might need to move B to create a block of a large 
size!

–  Leads to dangling pointers!
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Memory management factors 

  Small blocks versus large blocks.!
–  Small blocks can be !

  moved easily!
  initialized efficiently since time spent is proportional to size 

of the block!
  Time versus memory. !

–  Trade-offs between utilization of heap and complexity of 
managing heap.!

  Explicit versus implicit release.  !
–  Operating system can explicitly release blocks of programs no 

longer running!
–  Many programs return storage implicitly through “garbage 

collection.” !
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Memory management factors 

  Scheduled versus non-scheduled release.!
–  Is information available about the relative order of 

allocation and deallocation requests?!
–  Example:  Management of run time stack - blocks are 

released in a last-in-first-out fashion.!
  Initialized versus un-initialized blocks. !

–  Initialize large structures to value specified by language 
semantics or programmer specification!

–  Blank out memory so a program cannot read the results 
of a previous occupant of memory!
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Reference count method – 
propagating effects of block de-
allocation 

  Reference count - count of the number of 
pointers that point to a block!

–  when a new copy of the address of a blockis created, we 
increment the cell's reference count!

–  when a copy is destroyed (say by a pointer assignment) 
we decrement the reference count!

–  when the reference count goes to 0, we de-allocate!
–  when block, X,  is deactivated, the reference count of 

any block pointed at by X is decremented.!
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Disadvantages of reference counts 

  Requires storage in each active block for the 
reference count!

  Unless the maximum number of references is known 
beforehand, can overflow reference count field!

  Doesn't work for circular lists!
–  If X and Y point to one another, then even if there are 

no outside references to either, their reference counts 
will never go to 0.!
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Mark and sweep garbage collection 
  Wait for the free list to become empty, and 

then scavange memory for unused blocks.!
  Associate a mark field (one bit) with each 

block.  Initially all mark fields are off.!
  A marking process will set the mark fields on 

for all blocks that can be reached by some 
chain of pointers beginning outside of T!

  Memory is then scanned, and all blocks with 
their mark fields off are collected into the 
free list.  At the same time, the mark fields 
of used blocks are turned off to prepare for 
the next round of garbage collection.!

   Big question:  How do we do the marking?!



Memory management - 8 

Marking 

•   Marking algorithms are like tree traversals except 
 1) blocks can have many pointers and not just 2 - 
although we will assume they all have the same 
number 
 2) blocks may be linked into graphs.  But if a 
block can be reached by more than one path, it is 
marked the first time it is encountered so that it is 
not explored when encountered along other 
paths. 

•  Let C0, C1, ...Ck-1 be the k pointers stored in any 
block  

•  Atom(P) is true if P points outside the heap (probably 
back to a named program variable). 
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Recursive, depth-first marking 

  Preorder versions of recursive traversals!
–  preorder is important so we mark a block before marking 

its children - this prevent re-entering circular structures!
FullyRecursiveMark(pointer P);!
if not Atom(P) and not marked(P) then!
!Mark(P)!
!for j from 0 to k-1 do!
!   FullyRecursiveMark(Cj(P))!
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Recursive, depth-first marking 

  Preorder versions of recursive traversals!
–  preorder is important so we mark a block before marking 

its children - this prevent re-entering circular structures!
FullyRecursiveMark(pointer P);!
if not Atom(P) and not marked(P) then!
!Mark(P)!
!for j from 0 to k-1 do!
!   FullyRecursiveMark(Cj(P))!

   Problem - stack memory needed can be as 
large as number of links traversed before 
encountering an atom.  But when garbage 
collection is called, memory is gone!!
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Traversing binary trees 

 Lindstrom scanning - scan the tree  so that 
every node is visited, although not 
necessarily in any special order. 

 Importance of traversal algorithms: 
 1) garbage collection based on ideas in 
traversal 
 2) traversal central to many other problems - 
copying, testing for equality of structures, 
printing 
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Link Inversion Traversals 

 Replace downward pointers with upward pointers 
during descent of the tree. 

 Restore pointers to their original values during 
ascent. 

 Each node has a TAG field that indicates which 
link field has been reset to point towards its 
parent.  TAG = 1 if the right link has been reset, 
and is 0 otherwise. 

 Algorithm can be applied to binary trees with 
shared subtrees (subtrees pointed to by more than 
one ancestral node in the whole tree). 
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Link inversion for simple lists 

 Consider a dictionary stored in a singly linked list.  
Given a word, w, suppose we want to find the last 
word in the list, L that lexicographically precedes it 
and ends in the same last letter. 

–   L = (cannery, cat, chickadee, coelacanth, collie, corn, cup)  
–   w = crabapple 
–   answer = collie 

 Can solve this trivially by traversing the list, 
remembering the last word we saw that ends in "e" 
and halting when we find the entry following 
"crabapple" 

 But we can also solve it if we could walk backwards in 
the list once “cup” was encountered 
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Link inversion 

   Could also solve the problem with a 
stack of pointers 
– as we traverse the list push the pointers onto the 

stack 
– when we want to back up, start popping the 

pointers until we reach the record of interest 

 But we can avoid the stack by turning 
around the pointers in the list itself in a 
way that lets us restore the list at the end 
of the algorithm 
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Link inversion 

 Algorithm  uses two pointers 
 1) Q - points to the first unvisited cell in 
the remainder of the list. Following link 
fields from Q will take us in the forward 
direction to the tail of L from some point 
on:xi, xi+1, ..., xn. 
 2) P - points to the cell containing xi-1.  
This cell's link field has been changed to 
point to xi-2 and so on. Following links from 
P gets us back to the front of the list. 
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Link inversion 

P       Q 

P       Q 



Memory management - 17 

Link inversion 

 Following operations can be used to move around 
the list using link inversion: 

1) Start a traversal 
 P<- nil 
 Q <- L  (first node on list) 

2) Move forward 
 P <- Q 
 Q <- link(Q) 
 link(Q) <- P 

NOTE:  On the left hand side are the new values - 
all values on the right are old values. 
simultaneous assignment.   
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Link inversion 

 3) Move backwards  in the list;  Simultaneous assignment: 
 P <- link(P) 
 link(P) <- Q 
 Q <- P 

P       Q 

P       Q 
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Link inversion 

 Note: 
 1) restoring the list to its original form involves 
completely backing out of the list 
 2) no other use of the list can be accomplished 
while this traversal is going on - can't be used if 
several processes require concurrent access to 
the same data structure 

• We'll now generalize this to (almost) stackless 
traversal of trees 
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Tree traversal with link inversion 

   Algorithm will descend through the tree by following 
L and R links 

 The pointer followed will be changed to point to its 
parent, so the stack used by the recursive algorithm 
is (mostly) stored in the tree itself 

 When we ascend the tree, we will restore the pointers 
back to their original values.  But how do we know 
which pointer to restore? 

 Answer:  Use a tag bit which will tell us if we changed 
the L or the R link, and change accordingly. 

 So stack is, effectively, reduced to one bit per stack 
element. 
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Link inversion tree traversal 

Algorithm uses two variables 
 1) Q - points to the next 
untraversed tree node.  
Everything that can be 
reached from Q looks like 
the original binary tree 
 2) P - points to the node that 
is the parent of the one that 
Q points to. P is the top node 
on the embedded stack. If 
we follow pointers back from 
P (using the tag fields) we 
get back to the root. 

0 

1 

1 

0 

0 

P 

Q 

1 
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Tree link inversion 

 Algorithm uses four code fragments - descend left  
or right,  and ascend left or right. These cause the 
P-Q pair to move one edge up or down the tree 

 1) on descent, the direction indicates which child pointer to follow 
 2) on ascent, the direction indicates which field of the node to which 
P points contains the address of that node's parents (use the tag). 

   A sequence descend left-ascend left (or descend 
right-ascend right) leaves the tree as it was 
originally. 

   Tag bit is 0 during the visit to the node's left 
subtree and is 1 during the visit to the nodes right 
subtree.  Tag tells us which link to ascend through. 
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Link tree traversal 

  Code fragments use simultaneous assignment: 
1) descend left 

 P <- Q 
 Q <- Left(Q) 
 Left(Q) <- P 

2) Descend right 
 P <- Q 
 Q <- Right(Q) 
 Rlink(Q) <- P 

P 

Q 
P 

Q 
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Link tree traversal 

 3) ascend from left 
 Q <- P 
 P <- Left(P) 
 Left(P) <- Q 

4) ascend from right 
 Q <- P 
 P <- Right(P) 
 Right (P) <- Q 

P 

Q 

P 

Q 
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Link tree traversal 
 

procedure linkInversionPreOrderTraversal 
(pointer Q):!
!// Initially Q points to the root of the tree}!
!P <- Nil!

     // Descend as far as possible to the left !
!   while Q <> Nil do!
!      visit(Q) // For preorder traversal !      !
!      tag(Q) <- 0 !
!      descend_to_left()!
! !!

!
!  !
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// Ascend as far as possible from the right 
(maybe not at all)!
!   while P <> nil and Tag(P) = 1 do!
!       ascend_from_right()!
!if P = Nil then return !

      else!
!   ascend_from_left()!

         Tag(Q) <- 1!
         descend_to_right()!
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Storage requirements 

 Suppose we have a perfectly balanced 
binary tree containing 2n nodes 

– Classic tree traversal algorithm will require a stack of 
depth n, with each stack element being n bits long to 
represent the address of a node in the tree - n2 bits in all 

– The in-place traversal requires 1 bit per node as a tag 
field, or 2n  bits of auxiliary space!  Not good. 

 The in-place algorithm doesn't’t really use a 
tag field, but a tag bit stack, which can 
never be bigger than n elements, each of 
which requires 1 bit. 

– So, auxiliary storage is decreased from n2 to n. 
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Robson traversal 

 No tag bits, no auxiliary stack! (but only for trees) 
 Use the empty link fields of leaf nodes to create 

the traversal stack   
–  since there are plenty of these empty fields, we’ll have enough 

space even for the worst structured trees 
–  Left links will be used to chain together the leaf nodes that form 

the stack 
– Right link fields will point to the interior tree nodes that compose 

the stack.  
–  These will be interior nodes that 

  have nonempty left subtrees that have been traversed 
  have nonempty right subtrees that are in the process of being 

traversed 
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Link-Inversion 
Schorr-Deutsch-Waite Marking 

  Store the stack as a pointer chain in the 
structure to be marked - algorithm will use 
roof[logk]•h bits for its "stack", where h is 
the length of the longest pointer chain from 
the root to any cell. !

  Generalization of binary tree traversal with 
link inversion.  Differences:!

!1) Instead of a tag bit to remember whether we 
descended through left or right pointer, need a field 
large enough to store the index (0..k-1) of the link field 
traversed.  Can be either kept as a field in the cells (bad 
idea!) or as an auxiliary stack.!
!2) Ascend and descend code now indexed by pointer!
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Ascend and descend code 

• descend via Cj 
(simultaneous 
assignment) 
 P <-- Q 
 Q <-- Cj(Q) 
 Cj(Q) <-- P 

• ascend via Cj (sim. 
assignment) 
 Q <-- P 
 P <-- Cj(P) 
 Cj(P) <-- Q 

procedure 
LinkinversionMark( pointer Q):!

{Mark all cells reachable from Q}!
P <-- Nil;!
S <-- MakeEmptyStack()!
repeat forever!
!if Q <> Nil and not Atom(Q)  and 
not Marked(Q) then!
!   Mark(Q)!
!   Push(0,S)!
!   descend via C0!

else if P = Nil then return!
else!
!j <-- Pop(S)!
!ascend via Cj!
!j <-- j+1!
!If j < k then!
!   Push(j,S)!
!   descend via Cj!

!
!
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Other garbage collection 
algorithms 

   Link inversion algorithms that take constant 
space, independent of the length of the 
longest path from the root to any cell.!

–  still use a mark bit in each cell!
–  require much more computation that stack-based link 

inversion!
  Copying algorithms - break memory into two 

parts, and allocate storage from one.  When 
that segment of memory is fully utilized, 
copy and compact non-garbage cells from 
one area to the other.!

–  algorithms do not touch garbage!
–  but must have a lot of memory!
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Cautions on garbage 
collection 

   System performance usually degrades quickly 
once garbage collection is required!

–  not much available storage is really available, so system 
spends a lot of time marking or copying to reclaim only a 
small amount of storage!

–  almost immediately have to garbage collect again, as more 
memory is consumed!

  Incremental garbage collection!
–  spend a fixed amount of time collecting garbage!
–  therefore, collect only a little garbage at a time.!
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Managing the Heap - 
Records of a single size 

  Suppose all requests are for blocks of size k!
  Partition heap once into floor[n/k] blocks of 

size k. Let T[0..m-1] be those blocks, where 
m = floor[n/k]!

  At any time, some blocks in T are free and 
some are  in use. !

  Storage management!
–  Maintain a free list of blocks in T - arrange free blocks in 

a singly linked list!
–  List is accessed as a stack - allocation is a POP and de-

allocation is a PUSH.  So, allocation takes O(1) time.!
–  How can we determine when to deallocate implicitly?!

Free 
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Records of various sizes 

  If blocks can be of different sizes, then we 
need a more complex memory management 
mechanism.!

  Method 1:Allocate in address order from a 
single block of large memory.!

–  when heap is exhausted, some blocks may have been 
de-allocated!

–  compress them to get one big block, and continue!
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Records of various sizes 

  Method 2:  Keep a single list of blocks of all 
sizes.!

–  If a request for a block of size k is encountered, find a 
block of size h > k, allocate k words and return a block 
of size h-k to free storage.  The set of blocks is called 
the storage pool.!

   Two main problems:!
!1) the leftovers (h-k) might be too small for anything!
!2) when a block is deallocated, it may need to be 
merged with an adjacent free block!
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Records of various sizes 

  Method 3: Keep several pools of free blocks, 
according to size.!

–  allocate by choosing a block from the correct pool!
–  need a subdivision strategy that allows easy 

construction of large(st) blocks as memory is de-
allocated.!

–  "Buddy system"!
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Method  1: Compression 

  Major problems:!
!1) time it takes to move blocks within memory!
!2) adjustment of pointers to blocks that have moved.!

  Algorithm assumptions:!
!1) The heap M[0..N-1] is partitioned into blocks, some 
of which are free and others in use.!
!2) Marked(P) is true if P points to a block that is in use, 
and false otherwise!
!3) First is the address of M[0] and Last is address for 
M[N-1].!
!4) Each block has a size field; the block after the one 
beginning at address P begins at address P + Size(P)!
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Compression 

  Assumptions!
!5) Pointer fields of a block in use are known in advance 
(for updating references)!
!6) Each block in use contains a pointer field 
forwardingaddress that is reserved for use by the 
compaction algorithm.  The value of this field will be 
computed before any blocks are moved.!

  Algorithm will use the following abbreviation:!
for each block P, in address order, do  for!
P <-- First!
while P <> Last do!
!******!
!P <-- P + size(P)!
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Compaction algorithm 

procedure Compact;!
{Compact blocks into low memory 

addresses, adjusting pointers; marking of 
blocks in use has already been done}!
!{Compute forwarding addresses}!
!Dest <-- First!
!for each block, P, in a-order, do!
!   if Marked(P) then!
!    ForwardingAddress(P) <-- Dest!
!    Dest <-- Dest + Size(P)!
!{Adjust internal links}!
!for each block, P, in a-order, do!
!   if Marked(P)then!
!    for each pointer field Link do!
!     Link(P) <-- !

            ForwardingAddress(Link(P))!
!!

{move the cells} 
for each block, P, in a-order, do 

 if Marked(P) then 
    Copy Size(P) bytes beginning at 
P to ForwardingAddress(P) 

•Observations: 
 1) algorithm is linear in size of 
memory compacted 
 2) but, practically, it takes three 
scans over the memory to 
complete(four counting the initial 
marking) 
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Method 2: Blocks of various sizes 

  If blocks are of different sizes, and some 
blocks are very large, compaction is not a 
good solution because it might get called 
too often.!

  Assume explicit deallocation!
  Strategy for selecting blocks, subdividing 

them and recombining them determined by:!
–  Memory utilization - do not fail to satisfy a request if the 

aggregate amount of memory in use is only a small 
percentage of the heap size!

–  Memory overhead - the memory manager data 
structures should be small compared to the heap!

–  Time efficiency - allocation and deallocation should be 
fast!
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It's not a pefect woρld 

  Not all sequences of requests for memory 
will be satisfied by any memory management 
algorithm, even if it is possible to satisfy 
them by some variation on the algorithm.!

  Example:  Heap of size 100!
–  B1 <-- allocate (20)!
–  B2 <-- Allocate (40)!
–  Free(B1)!
–  B3 <-- Allocate (50)!

   If we had allocated B2 from the end, then we 
could have satisfied the last request!

–  But, generally, deciding if a (known) sequence of 
requests is satisfiable is NP-complete!

80 

40 

20 40 
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Fragmentation 

  Two blocks of size s1 and s2 are never more 
useful than one larger block of size s1 + s2.!

  Allocation strategy should try to minimize 
the number of free blocks, and maximize 
their sizes!

  External fragmentation  - splitting of free 
storage into a relatively large number of 
relatively small free blocks.  !

–  ! External fragmentation can be combatted by not 
subdividing a free block if the leftover space is too 
small to be useful - just allocate the larger block!

–  smaller block would clutter free list.!
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Fragmentation 

  Internal fragmentation - distribution of 
significant amount of free storage in 
allocated blocks!

–  always some "wasted" space because blocks require 
fields for use by memory manager - size, pointers to 
other blocks, etc.!
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Summary 

  Maintain a pool of free blocks!
   Develop an allocation strategy for assigning 

a block to a request!
–  retain unused portion of block for use by other requests!
–  must decide on a data structure for the pool of free 

blocks.  Can be organized either by size or by location or 
by both.!

  Develop a freeing strategy for returning a 
freed block to the pool, and coalescing it 
with other free blocks to form largest 
possible free blocks!
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Allocation strategies 

   Two basic strategies:!
!1) best fit allocates a request for a block of size n by 
finding the smallest block larger than n.!
!2) first fit allocates using the first block found of size at 
least n.!

  Best fit!
–  implement pool of free blocks as a linked list ordered by 

increasing size!
–  first block on this list whose size is � n is the best fit!
–  on average, half the list is scanned to find the best fit.!
–  must scan list again to put leftover block back into free 

list.!
–  if list is maintained in address order, then entire list 

would have to be scanned to find the best fit, but 
reinsertion of leftover fragment is avoided.!
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Allocation strategies 

  Use a linked list representation of the pool of 
free blocks!

  Problem - blocks near the beginning of the 
list get subdivided more often then blocks 
near the end!

  Solution:  The roving pointer - begin search 
for a block at the point where the previous 
search ended.!

–  Small blocks will not accumulate at any one area of the 
list.!

–  A block that has just been subdivided, or was too small 
to fulfill the previous request, will not be considered 
again until after all blocks have been examined.  This 
gives it time to coalesce with freed blocks!
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Data structures for freeing 

  What fields of information would we need to 
implement block deallocation and coalescing 
efficiently?!

!1) Mark field = 0 for a free block and 1 for a block in use!
!2) Size field!
!3) Next and Prev fields to maintain a doubly linked list of 
free blocks.!

  Only needed when the block is free - process 
can use the fields when the block is in use!

  Makes subdivision easy - allocate from the 
end and set Size <- Size - n!
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Data structures for freeing 

  Do not depend on assumptions about order 
of blocks in free list to support the Free 
operation!

–  Either size order or address order will entail search of 
the free list, and we want to avoid this search!

  Suppose we free the block B.!
–  To determine if the next higher (in address) block is 

free, we look at Mark(B + Size(B))!
–  Determining if the previous block is free is harder!
–  Replicate the mark field at the end of each block!
–  So, can examine a field at a fixed displacement before 

the beginning of block B to determine if the previous 
block is free!

–  This is called LowMark(B).!
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Data structures for freeing 

   If B's lower 
neighbor is free, 
then its Size field 
is also replicated 
near its end!

–  Call this field 
LowSize(B).!

  These fields are  
stored in the 
block prior to B, 
and not in B itself!

Low 
Mark 

Low 
Size 

Mark 
=1 

Size 

LowM  
= 1 

Low 
Size 

Mark Size 

Block in use 

Low 
Mark 

Low 
Size 

Mark 
=0 

Size 

LowM  
= 0 

Low 
Size 

Mark Size 

Next 
Prev 

Free block 
• This is called the Boundary Tag Method 
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Allocation algorithm 

function BoundaryTagAllocate (integer:n):pointer!
{return address of a free block of size n, or nil if no large enough block 

is available}!
!SaveRover <-- Rover!
!repeat!
! !m <-- Size(Rover)!
! !if m < n then!
! ! !Rover <-- Next(Rover)!
! !else!
! ! !if m-n < delta then  {almost exact match, no 
leftover}!
! ! !  P <-- Rover!
! ! !  DoublyLinked Delete (P)!
! ! !else             {inexact match - divide the block}!
! ! !  P <-- Rover + m - n!
! ! !  Size(Rover) <-- LowSize (P) <-- m-n !
! ! !  Size (P) <-- LowSize (P+n) <--n !
! ! !  LowMark(P) <-- 0    !

m-n 

n 

P 

Rover 

free 

inuse 

10 

45 

60 

35 

35 

15 

15 

m = 50 
n = 15 
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Allocation algorithm 

!Mark (P) <-- 1!
!LowMark (P + Size(P)) <-- 1!
!Rover <-- Next (Rover)!
!Return (P)!
!until Rover = SaveRover!
!return nil!

m 

n 

P 

Rover 

free 

inuse 
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Freeing algoritm 

procedure BoundaryTagFree (pointer P)!
{deallocate the block pointed to by P}!
if LowMark (P) = 0 then {Preceding block is free, merge}!
!Q <-- P!
!P <-- P - LowSize (P)!
!Size (P) <-- Size (P) + Size (Q)!

else   { Preceding block in use; mark this block as free}!
!Mark (P) <-- 0!

Q <-- P + Size (P)   { Q <-- address of subsequent block}!
if Mark(Q) = 0 then  {merge with following block}!
!Size (P) <-- Size (P) + Size (Q)!
!if Rover = Q then Rover <-- P!
!DoublyLinkedDelete (Q)!
!Q <-- P + Size (P)   {P points to block to be !
!placed in free; Q points just after the end of this block}!

Q 

P P 

LowSize(Q) <-- 
Size(P) 

LowMark(Q) <-- 0 
DoublyLinkedInsert(P, 

Free) 
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Method 3: 
Buddy systems 

  Trade external fragmentation for internal 
fragmentation!

–  only blocks of small number of fixed sizes are allocated.  
Additionally, the starting addresses for the blocks are 
constrained.!

–  a request for a block of size m is rounded up to the 
smallest size n that is supported!

  When a block is freed, it may not be merged 
with an adjacent free block!

–  every block has a "buddy block" of the same size!
–  when a block is freed, if its buddy is free, it is merged 

with its buddy to create a larger block!
–  this larger block may be merged with its buddy ... !
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Binary buddies 

   All allocatable blocks have sizes that are 
powers of 2.!

   Heap size is also a power of 2, say 2m.!
  The allowable block sizes are 2m, 2m-1, ..., 21, 

20!
–  this means that there are m+1 Free lists, with list 

headers Free[m], Free[m-1],..., Free[0].!
  Each block of size 2k begins at an address 

which is a multiple of 2k  -  begins at p*2k!
–  ends at (p+1)*2k - 1!
–  0 <= p<=  2m-k!
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Binary buddies 

  Who is the buddy of a block of size 2k?!
–  it is the other block contained in the enclosing block of 

size 2k+1!
   So, the largest block has no buddy!

•  Blocks of size 4 begin at 
addresses 0, 4, 8, 12 - all multiples 
of 4 

•  There are 4 = 2(4-2) blocks of size 4 
in a heap of size 16 

•  In a heap of size 32 there would be 
2(5-2) = 8 

•  The buddies are (0,4) and (8,12) 

0 15 
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Binary buddies 

  If block N of size 2k begins at 
address P, then B's buddy 
begins at either!

–  ! P - 2k or P + 2k!
   Easy to tell by looking at k'th 

bit of P.  If k'th bit is 1, then 
buddy is at P-2k.  If k'th bit is 
0, buddy is at P+2k!

–   So just complement bit k in the 
binary representation of B's address!

–   But this is just the exclusive or of 
the block's position and its size!!

• Block of size 4 beginning at P=4 = 
0100. k'th bit = 1 (start from 
right at 0, so buddy is at 0000) 

• Block of size 2 starting at P=10 = 
1010 has buddy at 1000 = 8. 

• Buddy of a block of size 2k at 
address P is the block of size 2k 
beginning at P   2k + 
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Binary buddies 

  Free lists are kept as doubly linked to 
facilitate deletions!

  Fields are same as boundary tag method, 
except you don't need the extra copy of the 
mark and size fields!

mark=0 size 

next 

prev 

mark = 1 size 
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Binary buddies - allocation 
function BinaryBuddyAllocate (integer n): pointer!
{Return pointer to a block whose size is the next power of 2 > 

n}!
{ Return nil if no sufficiently large block exists}!
!
j <--k <-- roof(log n)!
while j <= m and IsEmptyList (Free[j]) do j <-- j+1!
if j > m then return nil!
P <-- Free[j]!
DoublyLinkedDelete (P)!
while j > k do!
!j <-- j-1!
!Q <-- P + 2j!
!Mark(Q) <-- 0!
!Size(Q) <-- j!
!DoublyLinkedInsert (Q, Free[[j]) {Inserts Q onto an empty 
list Free[j]}!

Mark(P) <-- 1 
Size(P) <-- k 
return P. 
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Example 

  Free[4] = 0!
  Free[3] = Free[2] = 

Free[1] = Free[0] = 
NIL!

  Allocate a block of 
size 3!

   Fill with a block of 
size 4 !

–  j <-- k<-- 2!
–  j gets bumped up to 

4 and the block of 
size 16 starting at P 
= 0 is used!

• Place the block of size 8 starting at 
position 8 (0 + 23) into Free[3] 

• Place the block of size 4 starting at 
location 4 (0 + 22) into Free[2] 
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Block freeing 

  May reverse the splits that occurred during 
allocation!

–  for example, if we allocate a block of size k and then 
immediately free it, we restore free lists to their original 
state.!

  If the freed block's buddy is free, it is 
removed from free list and merged to create 
a larger block.!

  This is repeated until either the buddy is in 
use, or the block becomes the entire heap.!

  Can have at most log(n) frees, so freeing is 
O(log n) in the worst case.!
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Block freeing 

procedure BinaryBuddyFree (pointer P):!
{Free the block of size 2k beginning at P}!
k <-- Size(P)!
while k < m and Mark(P EOR 2k) = 0 and!
    Size(P EOR 2k) = k do!
!{P's buddy is free, so merge}!
!Q <-- P EOR 2k!
!DoublyLinked Delete (Q)!
!if Q < P then P <-- Q!
!k <-- k + 1!

Mark(P) <-- 0!
Size (P) <-- k!
DoublyLinkInsert (P, Free[k])!
!!

P 


