LIST STRUCTURES

Hanan Samet

Computer Science Department and Center for Automation Research and Institute for Advanced Computer Studies University of Maryland College Park, Maryland 20742 e-mail: hjs@umiacs.umd.edu

Copyright © 1997 Hanan Samet

These notes may not be reproduced by any means (mechanical or electronic or any other) without the express written permission of Hanan Samet

WHAT IS A DATA STRUCTURE?

- Usually (FORTRAN programmers) use arrays
- A different column for each different class of information
- Ex: airline reservation system for each passenger on a specific flight:
 - 1. name
 - 2. address
 - 3. phone #
 - 4. seat #
 - 5. destination (on a multi-stop flight)
- Notes:
 - 1. not all fields contain numeric information
 - 2. fields need not correspond to whole computer words
 - sex is binary
 - several fields can be packed into one word
 - some fields can occupy more than one word

DIFFERENT REPRESENTATIONS FOR NUMBERS DEPENDING ON THEIR USE:

- Type
 - **1**. вср
 - social security number
 - telephone number

```
123-45-6789
(123) 456-7890
```

- can print character by character by shifting rather than modulo division
- 2. ASCII
- 3. Fieldata
- Manner of using the data may dictate the representation
 - 1. sometimes a dual representation deck of cards
 - 2. string and numeric
- Ex: airline reservation system
 - Los Angeles \rightarrow Dallas \rightarrow Baltimore
 - task: find all passengers with the same destination
 - field: SAMEDEST (LINK or pointer information)

 alternatively, scan through the passenger list each time the query is posed

654321 IS3 (bvgzrb

- 1 permits sharing arbitrary segments of strings (start, middle, end)
- 2 only permits sharing endings
 2 may occupy one less word than 1
- 3 only permits sharing when one string is a substring of another, or one string extends into the next string
- 4 only permits sharing a terminating substring
- 1 is superior to 2 because data and links are separate
- 3 is superior to 4

PASSENGER DATA STRUCTURE

JIM JONES 40 ELM ST. ANYTOWN, ANYSTATE 01234 (123) 456-7890 45 DALLAS NO SMOKING

PROBLEM: Add a passenger to flight 455 who gets off at Dallas.

 \equiv pointer to the first passenger on flight 455 First455 FirstDallas = pointer to the first passenger to Dallas \equiv pointer to the new passenger. NewPass

PASCAL

- 2. First455←NewPass;
- 3. MDestino(NewPass) ← FirstDallas;

1. MVuelo(NewPass)←First455 NewPass↑.MVuelo←First455; First455←NewPass; NewPass↑.MDestino← FirstDallas; 4. FirstDallas←NewPass; FirstDallas←NewPass;

ls5

21

PROBLEM: How many passengers get off at Dallas?

```
1. n←0;
```

- 2. x←FirstDallas;
- 3. if x= Ω then HALT;
- 4. n←n+1;
- 5. $x \leftarrow MDestino(x);$
- 6. goto 3;

PASCAL:

```
n←0;
x←FirstDallas;
while x≠Ω do
begin
n←n+1;
x←x↑.MDestino;
end;
```

Field names:	MVuelo, MDestino
Variable names:	n, x, First455, FirstDallas, NewPass
Integer variable:	n
Link variables:	x, First455, FirstDallas, NewPass
	contain addresses!

DATA STRUCTURE SELECTION

- 1. Will the information be used?
 - playing cards is the card face up or face down?
- 2. How accessible should the information be?
 - Ex: game of Hearts
 - a. how many hearts in the hand
 - b. explicit \Rightarrow must constantly update
 - c. implicit \Rightarrow must look at all cards
- the choice of representation is dominated by the class of operations to be performed on the data

LINEAR LIST

- Set of nodes x[1], x[2], ... x[n] $(n\geq 1)$
- Principal property is that x[k] is followed by x[k+1]
- Possible Operations:
 - 1. gain access to the kth node
 - 2. insert before the kth node
 - 3. delete the kth node
 - 4. combine 2 or more lists
 - 5. split a list into 2 or more lists
 - 6. make a copy of a list
 - 7. determine the number of nodes in a list
 - 8. sort the elements of the list
 - 9. search the list for a node with a particular value
- For operations 1, 2, and 3 k=1 or k=n are interesting
 - 1. stack: insert and delete at the same end
 - 2. queue: insert at one end delete at the other end
 - 3. deque: insert and delete at both ends

- Useful for processing goals and subgoals
- Subroutines and parameter transmittal
- Some computers have stack-like instructions

Ex: Translate arithmetic expression from infix to postfix

Infix:	operand	operator	operand	A+B
Prefix:	operator	operand	operand	+AB
Postfix:	operand	operand	operator	AB+

Postfix \equiv 'Polish notation'

$A+B*C \Rightarrow A$	BC*+		
Futur	Stack		
Enter A	С		
Enter B	В	B*C	
Enter c	A	A	A+B*C
*			
+			

\bigcirc	
	QUEUE:

Input restricted deque Output restricted deque

Question: how would you construct a stack from a deque?

1

SEQUENTIAL ALLOCATION

· Easiest way to store a list in a computer is sequentially

LOC(x[j+1]) = LOC(x[j])+C

node size = c

 $LOC(x[j]) = L_0 + C \cdot j$ where $L_0 = LOC(x[0])$

- STACK:
 - 1. sequential block of storage
 - 2. variable $T \equiv \text{stack pointer}$ indicates the top of the stack
 - 3. $T=0 \implies$ stack is empty
- To enter a new value **y** on the stack:

```
T \leftarrow T+1; \\ x[T] \leftarrow Y;
```

 To remove an entry from the stack we reverse entry sequence:

```
Y←x[T];
T←T-1;
```


• Two pointers:

R to rear
 F to front
 R = F = 0 when the queue is empty

• Insertion at the rear of the queue:

```
if R=M then R\leftarrow1
else R\leftarrowR+1;
x[R]\leftarrowY;
```

· Removal of an entry from the front of the queue:

if F=M then F←1 else F←F+1; Y←x[F];

if F=R then $F \leftarrow R \leftarrow 0;$

- Note that the sequence of operations for removal is not the reverse of the sequence for insertion (i.e., we don't remove front and update pointer)
- Problem: suppose R is always > F?
- Solution: make the queue implicitly circular x[1] x[2] ... x[M] x[1]
 R = F = M when the queue is empty (initially)
- Question: Why not a problem in a bank line?
- Answer: Because the people move from position to position in the line

OVERFLOW

- Suppose we run out of memory?
- Assume only M locations are available
 - 1. Stack insertion

```
T \leftarrow T+1;
if T>M then OVERFLOW;
x[T] \leftarrow Y;
```

2. Stack deletion:

if T=0 then UNDERFLOW; Y←x[T]; T←T-1;

3. Queue insertion:

```
if R=M then R\leftarrow1;
else R\leftarrowR+1;
if R=F then OVERFLOW
else x[R]\leftarrowY;
```


4. Queue deletion:

```
if R=F then UNDERFLOW
else
  begin
    if F=M then F←1
    else F←F+1;
    Y←x[F];
  end;
```

- We start with F = R = M
- UNDERFLOW is not a real problem

MULTIPLE STACKS

Two stacks can grow towards each other

 $stack1 \rightarrow \leftarrow stack2$

 More than 2 stacks requires variable locations for base of stack

```
BASE[i] \equiv starting address of stack i
```

```
TOP[i] \equiv top of stack i
```

Insertion into stack i:

```
TOP[i]←TOP[i]+1;
if TOP[i]>BASE[i+1] then OVERFLOW;
else CONTENTS(TOP[i])← Y
```

Deletion from stack i:

```
if TOP[i]=BASE[i] then UNDERFLOW;
Y←CONTENTS(TOP[i]);
TOP[i]←TOP[i]-1;
```

When stack i overflows:

 find smallest k → i<k≤n and TOP[k]<BASE[k+1] for TOP[k] ≥ m > BASE[i+1] CONTENTS(m+1) ← CONTENTS(m) for i < j ≤ k BASE[j]←BASE[j]+1; TOP[j]←TOP[j]+1;
 find largest k → 1≤k<i and TOP[k]<BASE[k+1] for BASE[k+1] < m < TOP[i] CONTENTS(m-1)←CONTENTS(m) for k < j ≤ i

```
BASE[j] \leftarrow BASE[j] - 1; TOP[j] \leftarrow TOP[j] - 1;
```

```
3. if TOP[k] = BASE[k+1] \forall k \neq i then REAL OVERFLOW
```

LINKED ALLOCATION

- Next node need not be physically adjacent
- Use an extra field to indicate address of next node

• Each node has two fields

Info	Link
------	------

• Need a pointer to FIRST element

 $\boldsymbol{\Omega}$ denotes the end of the list

COMPARISON OF LINKED(L) VS SEQUENTIAL(S)

- 1. L requires extra space for links
 - but if a node has many fields, then overhead is small
 - can share storage with L
 - repacking is inefficient with S when memory is densely packed
- 2. Easy to insert and delete with L
 - no need to move data as with S
- 3. S is superior for random access into a list (i.e., Kth element)
 - S: add an offset (K) to base address
 - L: traverse K links
- 4. L facilitates joining and breaking lists
- 5. L allows more complex data structures
- 6. S is superior for marching sequentially through a list
 - S makes use of indexing
 - L makes use of indirect addressing (\Rightarrow memory access)
- 7. S takes advantage of locality

321 ls17

STORAGE MANAGEMENT

- Linked list of available storage
- AVAIL points to the first element
- Use LINK field

```
x∉AVAIL is short hand notation for allocating a new node as follows:
```

```
if AVAIL=\Omega then OVERFLOW
else
begin
x\leftarrowAVAIL;
AVAIL\leftarrowLINK(AVAIL);
LINK(x)\leftarrow \Omega;
end;
```


AVAIL = x is short hand notation for returning a node as follows:

```
LINK(x)←AVAIL;
AVAIL←x;
```


COMBINING SEQUENTIAL AND LINKED STORAGE

Allocation of a node of linked storage (x):

```
if AVAIL=Ω then
    if PoolMax>SeqMin then OVERFLOW
    else
        begin
        PoolMax←PoolMax+1;
        x←PoolMax;
        end;
else x⇐AVAIL;
```

- No need to initially link up AVAIL
- A similar scheme is used in DBMS-10 for storing records on disk pages

LINKED STACKS

Insert y into a linked stack:

T = top of stack pointer

```
p \leftarrow AVAIL;
INFO(p) \leftarrow Y;
LINK(p) \leftarrow T;
T\leftarrow p;
```


Delete y from a linked stack:

if $T=\Omega$ then UNDERFLOW; $p \leftarrow T$; $T \leftarrow LINK(p)$; $Y \leftarrow INFO(p)$; $AVAIL \leftarrow p$;

LINKED QUEUES

 $F=\Omega$ signifies an empty queue

Insert y at the rear of a queue:

```
P⇐AVAIL;
INFO(P)←Y;
LINK(P)←\Omega;
if F=\Omega then F←P;
else LINK(R)←P;
R←P;
```

Delete y from the front of a queue:

```
if F=\Omega then UNDERFLOW;

P \leftarrow F;

F \leftarrow LINK(P);

Y \leftarrow INFO(P);

AVAIL \leftarrow P;
```


• Given: relations as to what precedes what (a<b)

2 1

ls21(

- Desired: a partial ordering
- · Formal definition of a partial ordering
 - 1. If X<Y and Y<Z then X<Z (transitivity)
 - 2. If X<Y then Y⊀X (asymmetry)
 - 3. X≮X (irreflexivity)

2 implies the absence of loops

- Applications:
 - 1. job scheduling PERT networks, CPM
 - 2. system tapes
 - 3. subroutine order so no routine is invoked before it is declared
 - But see PASCAL FORWARD declarations

ALGORITHM

- Performs topological sort
- Proves by construction the existence of the ordering
- Recursive algorithm
 - 1. find an item, *i*, not preceded by any other item
 - 2. remove *i* and perform the sort on the remaining items
- Brute force solution takes $O(n \cdot m)$ time for *n* items and *m* successor-predecessor relation pairs by executing the following for each of the *n* items
 - 1. make a pass over successor-predecessor list *S* and find items that do not appear as a successor (*m* operations)
 - 2. remove all relations from *S* where an item found in 1 appears as a predecessor (*m* operations)
- Data Structure for better solution:
 - t[K] corresponds to item K with 2 fields:
 - PRED_COUNT[t[K]] = # of direct predecessors of K

• SUCCESSORS[t[K]] = pointer to a linked list containing the direct successors of item κ

- Maintain a queue of all items having 0 predecessors
- Each time item **k** is output:
 - 1. remove t[K] from the queue
 - 2. decrement PRED_COUNT field of all successors of K
 - 3. add to the queue any node whose **PRED_COUNT** field has gone to 0
- O(m+n) time and space

OBSERVATIONS

- Can use a stack instead of a queue
- The queue can be kept in the PRED_COUNT field of t[K] since once this field has gone to zero it will not be referenced again i.e., it can no longer be decremented
- Sequential allocation for t[K] whose size is fixed
- · Linked allocation for the successor relations
- Queue is linked by index (à la FORTRAN)
- Successor list is linked by address

CIRCULAR LISTS

- · Last node points back to first node
- · No need to think of any node as a 'last' or 'first' node

1. Insert y at the left:

```
P⇐AVAIL; INFO(P)←Y;
if PTR=Ω then PTR←LINK(P)←P
else
begin
LINK(P)←LINK(PTR); LINK(PTR)←P;
end;
```

- 2. Insert y at the right: Insert y at the left; PTR←P;
- 3. Set y to the left node and delete:

```
if PTR=\Omega then UNDERFLOW;
P\leftarrowLINK(PTR); Y\leftarrowINFO(P);
LINK(PTR)\leftarrowLINK(P); AVAIL\leftarrowP;
if PTR=P then PTR\leftarrow \Omega;
/* Check for a list of one element */
/* before deleting */
```

1 and 3 imply stack 2 and 3 imply queue 1, 2, and 3 imply output restricted deque

 \bigcirc

ERASING A CIRCULAR LIST

Note: PTR is meaningless after erasing a list

Inserting Circular List L2 at the Right of Circular List L1:

Assume PTR1 points to L1 and PTR2 points to L2.

```
if PTR2 \neq \Omega then
begin
if PTR1 \neq \Omega then LINK(PTR1) \leftrightarrow LINK(PTR2);
PTR1 \leftarrow PTR2;
PTR2 \leftarrow \Omega;
end
```

- A circular list can also be split into two lists
- Analogous to concatenation and deconcatenation of strings.

DOUBLY-LINKED LISTS

RLINK(LLINK(Y)) = LLINK(RLINK(Y)) = Y

- Disadvantage: More space for links
- Advantage: Given X, it can be deleted <u>without having</u> <u>to locate its predecessor</u> as is necessary with singly-linked lists

Easy to insert a node to the left or right of another node:

Insert to the right of Z:

 $P \leftarrow AVAIL;$ LLINK(P) $\leftarrow Z;$ RLINK(P) $\leftarrow RLINK(Z);$ LLINK(RLINK(Z)) $\leftarrow P;$ RLINK(Z) $\leftarrow P;$

Insert to the left of X:

Interchange LEFT and RIGHT in 'Insertion to the right'.

• 4 links are changed (only 2 changed with singly-linked list)

TWO LINKS FOR THE PRICE OF ONE

Exclusive Or:

А	В	А⊕в	$A \oplus A = 0$			
0	0	0	$A \oplus 0 = A$	A⊕1	=	A
0	1	1	$A \oplus B = B \oplus A$			
1	0	1	$(A \oplus B) \oplus C = A \oplus (B \oplus C)$			
1	1	1 1 0	$A \oplus A \oplus B = B$			
		l				

Let $LINK(X_{i}) = LOC(X_{i+1}) \oplus LOC(X_{i-1})$

Knowing 2 successive locations (L_i, L_{i+1}) allows going left and right.

L₀: L₁: L₂: L₃: L₃: RIGHT(L₂) = LINK(L₂) \oplus L₁ = L₃ \oplus L₁ \oplus L₁ = L₃ LEFT(L₁) = LINK(L₁) \oplus L₂ = L₀ \oplus L₂ \oplus L₂ = L₀

Ex: Exchange the contents of two locations without using temporaries

$$B \leftarrow A \oplus B \qquad A \oplus B$$
$$A \leftarrow A \oplus B \qquad A \oplus (A \oplus B) = B$$
$$B \leftarrow A \oplus B \qquad B \oplus (A \oplus B) = A$$

ARRAYS

- Generalization of a linear list
- Allocate storage sequentially
- LOC(A[m,n]) \equiv A₀ + A₁·m + A₂·n A₀, A₁, A₂ are constants
- Ex: Q[0:3,0:2,0:1]

Q[0,0,0]
Q[0,0,1]
Q[0,1,0]
Q[0,1,1]
Q[0,2,0]
Q[0,2,1]
Q[1,0,0]
Q[3,2,0]
Q[3,2,1]

Row-major order
ALGOL

Column-major order FORTRAN

- Row-major is preferable = lexicographic order of indices
- LOC(Q[i,j,k]) = LOC(Q[0,0,0]) + $6 \cdot i + 2 \cdot j + k$

Q[0,0,0]
Q[1,0,0]
Q[2,0,0]
Q[3,0,0]
Q[0,1,0]
Q[1,1,0]
Q[2,1,0]
Q[2,2,1]
Q[3,2,1]

K-DIMENSIONAL ARRAYS

• A[l₁:u₁, l₂:u₂, .,. l_k:u_k]

• LOC(A[i₁, i₂, .,. i_k]) = LOC(A[I₁, I₂, I₃, .,. I_k]) +
(u₂-I₂+1) ... (u_k-I_k+1)·(i₁-I₁) + ...
(u_k-I_k+1)·(i_{k-1}-I_{k-1}) + i_k-I_k
= LOC(A[I₁, I₂, I₃, .,. I_k]) +
$$\sum_{r=1}^{k} A_{r} \cdot (i_{r} - I_{r})$$

= {LOC(A[I₁, I₂, I₃, .,. I_k])- $\sum_{r=1}^{k} A_{r} \cdot I_{r}$ } + $\sum_{r=1}^{k} A_{r} \cdot i_{r}$

$$A_r = \prod_{r < s \le k} (u_s - l_s + 1)$$
$$A_k = 1$$

- Semantics of A_r:
 - 1. let $i_1, i_2, ... i_r$ be constant
 - 2. let $j_{r+1}, j_{r+2}, ..., j_k$ vary through $l_i \leq j_i \leq u_i$
 - 3. consider A[i₁, i₂, .,. i_r, j_{r+1}, j_{r+2}, .,. j_k]
 - when i_r changes by 1 $\ \mbox{LOC}(A[i_1, i_2, \, . , . \, \, i_k])$ changes by A_r

ARRAY DESCRIPTOR

- 'Dope vector'
- Ex: Q[0:3,0:2,0:1]

Q ₀	Address of first element
Real	Type (string, real, complex, ?)
3	# of dimensions
0	l ₁
3	u ₁
6	A ₁
0	l ₂
2	u ₂
2	A ₂
:	
0	l _n
1	u _n
1	A _n

- Why store the bounds?
- Not needed in the access function!

321 ls31 ○

TRIANGULAR MATRIX

• LOC(A[j,k]) = A₀ + F₁(j) + F₂(k)

$$\begin{bmatrix}
A[0,0] \\
A[1,0] & A[1,1] \\
\vdots \\
A[n,0] & A[n,1] & \dots & A[n,n]
\end{bmatrix}$$
LOC(A[j,k]) = LOC(A[0,0]) + $(\sum_{i=0}^{j-1} i+1) + k$
= LOC(A[0,0]) + $\frac{j \cdot (j+1)}{2} + k$

- quadratic access function (not linear)
- Two triangular matrices:

$$\begin{bmatrix} A[0,0] & B[0,0] & B[1,0] & \dots & B[n,0] \\ A[1,0] & A[1,1] & B[1,1] & \dots & B[n,1] \\ \vdots & & & & & \\ A[n,0] & A[n,1] & \dots & A[n,n] & B[n,n] \end{bmatrix} = C$$

$$A[j,k] = C[j,k]$$

$$B[j,k] = C[k,j+1]$$

SPARSE MATRICES

- Circular list is useful for insertion and deletion of elements
- Ex: compute $C = C + A \cdot B$

$$C_{ik} = C_{ik} + \sum_{j} A_{ij} \cdot B_{jk}$$