LIST STRUCTURES

Hanan Samet

Computer Science Department and Center for Automation Research and Institute for Advanced Computer Studies University of Maryland College Park, Maryland 20742 e-mail: hjs@umiacs.umd.edu

These notes may not be reproduced by any means (mechanical or electronic or any other) without the express written permission of Hanan Samet

WHAT IS A DATA STRUCTURE?

- Usually (FORTRAN programmers) use arrays
- A different column for each different class of information
-Ex: airline reservation system for each passenger on a specific flight:

1. name
2. address
3. phone \#
4. seat \#
5. destination (on a multi-stop flight)

- Notes:

1. not all fields contain numeric information
2. fields need not correspond to whole computer words

- sex is binary
- several fields can be packed into one word
- some fields can occupy more than one word

DIFFERENT REPRESENTATIONS FOR NUMBERS DEPENDING ON THEIR USE:

- Type

1. $B C D$

- social security number
- telephone number 123-45-6789
- can print character by character by shifting rather than modulo division

2. ASCII
3. Fieldata

- Manner of using the data may dictate the representation

1. sometimes a dual representation - deck of cards
2. string and numeric

- Ex: airline reservation system
- Los Angeles \rightarrow Dallas \rightarrow Baltimore
- task: find all passengers with the same destination
- field: SAMEDEST (LINK or pointer information)

FIRSTDALLAS

- alternatively, scan through the passenger list each time the query is posed

CHARACTER DATA

2.

3.

4.

- 1 permits sharing arbitrary segments of strings (start, middle, end)
- 2 only permits sharing endings

2 may occupy one less word than 1

- 3 only permits sharing when one string is a substring of another, or one string extends into the next string
- 4 only permits sharing a terminating substring
- 1 is superior to 2 because data and links are separate
- 3 is superior to 4

PASSENGER DATA STRUCTURE

JIM JONES
40 ELM ST. ANYTOWN, ANYSTATE 01234
(123) 456-7890

45
DALLAS
NO SMOKING

Passenger $=$ RECORD
Name: ${ }^{\wedge}$ CharString;
Addr: ^CharString;
Phone: Integer;
Seat: Integer;
Destino: ^CharString;
Fumar: Boolean;
MVuelo: ^Passenger;
MDestino: ^Passenger;
END;

PROBLEM: Add a passenger to flight 455 who gets off at Dallas.

First 455 \equiv pointer to the first passenger on flight 455 FirstDallas \equiv pointer to the first passenger to Dallas NewPass \equiv pointer to the new passenger.

PASCAL

1. MVuelo(NewPass) \leftarrow First 455
2. First $455 \leftarrow$ NewPass;
3. MDestino (NewPass) \leftarrow FirstDallas;
4. FirstDallas \leftarrow NewPass;

NewPass $\uparrow . M V$ Ilo \leftarrow First 455;
First $455 \leftarrow$ NewPass;
NewPass $\uparrow . M D e s t i n o \leftarrow$
FirstDallas;
FirstDallas \leftarrow NewPass;

PROBLEM: How many passengers get off at Dallas?

1. $\mathrm{n} \leftarrow 0$;
2. $\mathrm{x} \leftarrow$ FirstDallas;
3. if $\mathrm{x}=\Omega$ then HALT;
4. $\mathrm{n} \leftarrow \mathrm{n}+1$;
5. $\mathrm{x} \leftarrow$ MDestino(x) ;
6. goto 3;

PASCAL:
$\mathrm{n} \leftarrow 0$;
$\mathrm{x} \leftarrow$ FirstDallas;
while $x \neq \Omega$ do
begin
$\mathrm{n} \leftarrow \mathrm{n}+1$;
$\mathrm{x} \leftarrow \mathrm{x} \uparrow$. MDestino;
end;

Field names: MVuelo, MDestino
Variable names: n, x, First455, FirstDallas, NewPass Integer variable: n Link variables: x, First455, FirstDallas, NewPass contain addresses!

DATA STRUCTURE SELECTION

1. Will the information be used?

- playing cards - is the card face up or face down?

2. How accessible should the information be?

- Ex: game of Hearts
a. how many hearts in the hand
b. explicit \Rightarrow must constantly update
c. implicit \Rightarrow must look at all cards
- the choice of representation is dominated by the class of operations to be performed on the data

LINEAR LIST

- Set of nodes $x[1], x[2], \ldots x[n] \quad(n \geq 1)$
- Principal property is that $\mathrm{x}[\mathrm{k}]$ is followed by $\mathrm{x}[\mathrm{k}+1]$
- Possible Operations:

1. gain access to the $k^{\text {th }}$ node
2. insert before the $k^{\text {th }}$ node
3. delete the $k^{\text {th }}$ node
4. combine 2 or more lists
5. split a list into 2 or more lists
6. make a copy of a list
7. determine the number of nodes in a list
8. sort the elements of the list
9. search the list for a node with a particular value

- For operations 1,2 , and $3 \mathrm{k}=1$ or $\mathrm{k}=\mathrm{n}$ are interesting

1. stack: insert and delete at the same end
2. queue: insert at one end delete at the other end
3. deque: insert and delete at both ends

STACKS

- Useful for processing goals and subgoals
- Subroutines and parameter transmittal
- Some computers have stack-like instructions

Ex: Translate arithmetic expression from infix to postfix
Infix: operand operator operand $A+B$
Prefix: operator operand operand $+A B$
Postfix: operand operand operator AB+

Postfix \equiv 'Polish notation'

$$
A+B * C \Rightarrow A B C *+
$$

Stack

Enter A	c		
Enter B	B	B*C	
Enter c	A	A	A+B*C
\star			
+			

QUEUE:

DEQUE:

Input restricted deque
Output restricted deque
Question: how would you construct a stack from a deque?

SEQUENTIAL ALLOCATION

- Easiest way to store a list in a computer is sequentially

$$
\begin{aligned}
& \operatorname{LOC}(x[j+1])=\operatorname{LOC}(x[j])+C \\
& \quad \text { node size }=C \\
& \operatorname{LOC}(x[j])=L_{0}+C \cdot j \quad \text { where } L_{0}=\operatorname{LOC}(x[0])
\end{aligned}
$$

- STACK:

1. sequential block of storage
2. variable T (三stack pointer) indicates the top of the stack
3. $\mathrm{T}=0 \Rightarrow$ stack is empty

- To enter a new value y on the stack:

$$
\begin{aligned}
& \mathrm{T} \leftarrow \mathrm{~T}+1 ; \\
& \mathrm{x}[\mathrm{~T}] \leftarrow \mathrm{Y} ;
\end{aligned}
$$

- To remove an entry from the stack we reverse entry sequence:

$$
\begin{aligned}
& \mathrm{Y} \leftarrow \mathrm{x}[\mathrm{~T}] ; \\
& \mathrm{T} \leftarrow \mathrm{~T}-1 ;
\end{aligned}
$$

QUEUE

- Two pointers:

1. R to rear
2. F to front
3. $R=F=0 \quad$ when the queue is empty

- Insertion at the rear of the queue:

```
if R=M then }R\leftarrow
else }R\leftarrowR+1
    x[R]}\leftarrowY
```

- Removal of an entry from the front of the queue:

```
if F=M then F\leftarrow1
else F\leftarrowF+1;
    Y\leftarrowx[F];
```

if $\mathrm{F}=\mathrm{R}$ then $\mathrm{F} \leftarrow \mathrm{R} \leftarrow 0$;

- Note that the sequence of operations for removal is not the reverse of the sequence for insertion (i.e., we don't remove front and update pointer)
- Problem: suppose R is always $>_{\mathrm{F}}$?
- Solution: make the queue implicitly circular $x[1] x[2] \ldots x[M] x[1]$
$R=F=M$ when the queue is empty (initially)
- Question: Why not a problem in a bank line?
- Answer: Because the people move from position to position in the line

OVERFLOW

- Suppose we run out of memory?
- Assume only M locations are available

1. Stack insertion
```
T\leftarrowT+1;
if T>M then OVERFLOW;
x[T]}\leftarrowY
```

2. Stack deletion:
```
if T=0 then UNDERFLOW;
Y\leftarrowx[T];
T\leftarrowT-1;
```

3. Queue insertion:

$$
\begin{aligned}
& \text { if } R=M \text { then } R \leftarrow 1 ; \\
& \text { else } R \leftarrow R+1 ; \\
& \text { if } R=F \text { then OVERFLOW } \\
& \text { else } x[R] \leftarrow Y ;
\end{aligned}
$$

4. Queue deletion:

```
if R=F then UNDERFLOW
else
    begin
        if }\textrm{F}=\textrm{M}\mathrm{ then }\textrm{F}\leftarrow
        else F\leftarrowF+1;
        Y\leftarrowX[F];
    end;
```

Insert A Insert B Insert c \Rightarrow OVERFLOW!

- We start with $F=R=M$
- UNDERFLOW is not a real problem

MULTIPLE STACKS

- Two stacks can grow towards each other
stack1 $\rightarrow \leftarrow$ stack2
- More than 2 stacks requires variable locations for base of stack
BASE [i] \equiv starting address of stack i
TOP [i] \equiv top of stack i
Insertion into stack i:

```
TOP[i]}\leftarrowTOP[i]+1
if TOP[i]>BASE[i+1] then OVERFLOW;
else CONTENTS(TOP[i])\leftarrow Y
```

Deletion from stack i:
if TOP[i]=BASE[i] then UNDERFLOW;
Y↔CONTENTS (TOP[i]);
TOP [i] $\leftarrow T O P[i]-1$;

When stack i overflows:

1. find smallest $k \ni i<k \leq n$ and $\operatorname{TOP}[k]<\operatorname{BASE}[k+1]$
for $\operatorname{TOP}[k] \geq m>B A S E[i+1]$
CONTENTS $(\mathrm{m}+1) \leftarrow \operatorname{CONTENTS}(\mathrm{m})$
for $i<j \leq k$
$\operatorname{BASE}[j] \leftarrow \operatorname{BASE}[j]+1 ; \operatorname{TOP}[j] \leftarrow \operatorname{TOP}[j]+1 ;$
2. find largest $k \ni 1 \leq k<i$ and $\operatorname{TOP}[k]<\operatorname{BASE}[k+1]$
for BASE $[k+1]<m<\operatorname{TOP}[i]$
$\operatorname{CONTENTS}(m-1) \leftarrow \operatorname{CONTENTS}(m)$
for $k<j \leq i$
$\operatorname{BASE}[j] \leftarrow \operatorname{BASE}[j]-1 ; \quad \operatorname{TOP}[j] \leftarrow \operatorname{TOP}[j]-1 ;$
3. if $\operatorname{TOP}[k]=\operatorname{BASE}[k+1] \forall k \neq i$ then REAL OVERFLOW

LINKED ALLOCATION

- Next node need not be physically adjacent
- Use an extra field to indicate address of next node

Sequential
Item 1
Item 2
Item 3
\vdots
Item n

Linked	
	Item 1
B	B
C	Item 2
C	
	Item 3
	D
	\vdots
Item n	Ω

- Each node has two fields

Info	Link

- Need a pointer to FIRST element

Ω denotes the end of the list

COMPARISON OF LINKED(L) VS SEQUENTIAL(S)

1. L requires extra space for links

- but if a node has many fields, then overhead is small
- can share storage with L
- repacking is inefficient with S when memory is densely packed

2. Easy to insert and delete with L

- no need to move data as with S

3. S is superior for random access into a list
(i.e., Kth element)

- S: add an offset (K) to base address
- L: traverse K links

4. L facilitates joining and breaking lists
5. L allows more complex data structures
6. S is superior for marching sequentially through a list

- S makes use of indexing
- L makes use of indirect addressing (\Rightarrow memory access)

7. S takes advantage of locality

STORAGE MANAGEMENT

- Linked list of available storage
- avail points to the first element
- Use link field
$x \in$ AVAIL is short hand notation for allocating a new node as follows:
if AVAIL= Ω then OVERFLOW
else
begin
$\mathrm{x} \leftarrow A V A I L ;$
AVAIL↔LINK (AVAIL) ;
$\operatorname{LINK}(x) \leftarrow \Omega ;$
end;

AVAIL $\Leftarrow \mathrm{x}$ is short hand notation for returning a node as follows:

LINK $(x) \leftarrow A V A I L ;$
AVAIL $\leftarrow x$;

COMBINING SEQUENTIAL AND LINKED STORAGE

Poolmax \equiv top of linked storage

Allocation of a node of linked storage (x):

```
if AVAIL=\Omega then
    if PoolMax>SeqMin then OVERFLOW
    else
        begin
            PoolMax\leftarrowPoolMax+1;
            x\LeftarrowPoolMax;
            end;
else x\LeftarrowAVAIL;
```

- No need to initially link up avail
- A similar scheme is used in DBMS-10 for storing records on disk pages

LINKED STACKS

Insert Y into a linked stack:
$\mathrm{T}=$ top of stack pointer
$\mathrm{p} \Leftarrow A V A I L ;$
$\operatorname{INFO}(\mathrm{p}) \leftarrow \mathrm{Y}$;
$\operatorname{LINK}(\mathrm{p}) \leftarrow \mathrm{T}$;
$T \leftarrow \mathrm{p}$;

Delete y from a linked stack:
if $\mathrm{T}=\Omega$ then UNDERFLOW;
$\mathrm{p} \leftarrow \mathrm{T}$;
$\mathrm{T} \leftarrow \mathrm{LINK}(\mathrm{p}) ;$
$\mathrm{Y} \leftarrow I N F O(\mathrm{p}) ;$
AVAIL \Leftarrow;

LINKED QUEUES

$F=\Omega$ signifies an empty queue

Insert y at the rear of a queue:

```
P\LeftarrowAVAIL;
INFO(P)\leftarrowY;
LINK (P)}\leftarrow\Omega
if F=\Omega then F\leftarrowP;
else LINK(R)\leftarrowP;
R\leftarrowP;
```

Delete y from the front of a queue:
if $\mathrm{F}=\Omega$ then UNDERFLOW;
$\mathrm{P} \leftarrow \mathrm{F}$;
$\mathrm{F} \leftarrow \mathrm{LINK}(\mathrm{P}) ;$
$\mathrm{Y} \leftarrow \operatorname{INFO}(\mathrm{P}) ;$
AVAIL \Leftarrow;

TOPOLOGICAL SORT

- Given: relations as to what precedes what (a<b)
- Desired: a partial ordering
- Formal definition of a partial ordering

1. If $X<Y$ and $Y<Z$ then $X<Z$ (transitivity)
2. If $X<Y$ then $Y \nless X$ (asymmetry)
3. $X \nless X$ (irreflexivity)

2 implies the absence of loops

- Applications:

1. job scheduling - PERT networks, CPM
2. system tapes
3. subroutine order so no routine is invoked before
it is declared

- But see PASCAL FORWARD declarations

ALGORITHM

- Performs topological sort
- Proves by construction the existence of the ordering
- Recursive algorithm

1. find an item, i, not preceded by any other item
2. remove i and perform the sort on the remaining items

- Brute force solution takes $O(n \cdot m)$ time for n items and m successor-predecessor relation pairs by executing the following for each of the n items

1. make a pass over successor-predecessor list S and find items that do not appear as a successor (m operations)
2. remove all relations from S where an item found in 1 appears as a predecessor (m operations)

- Data Structure for better solution:
t [k] corresponds to item K with 2 fields:
- PRed_count [t[k]] \equiv \# of direct predecessors of k

$$
\text { (i. e., } \mathrm{L}<\mathrm{k} \text {) }
$$

- $\operatorname{successors}[t[\mathrm{~K}]] \equiv$ pointer to a linked list containing the direct successors of item k
Ex: t[7]:

PRED_COUNT

- Maintain a queue of all items having 0 predecessors
- Each time item k is output:

1. remove $t_{[k]}$ from the queue
2. decrement pred_count field of all successors of k
3. add to the queue any node whose pred_count field has gone to 0

- $O(m+n)$ time and space

OBSERVATIONS

- Can use a stack instead of a queue
- The queue can be kept in the pred_count field of $\mathrm{t}[\mathrm{K}]$ since once this field has gone to zero it will not be referenced again - i.e., it can no longer be decremented
- Sequential allocation for $\mathrm{t}[\mathrm{K}]$ whose size is fixed
- Linked allocation for the successor relations
- Queue is linked by index (à la FORTRAN)
- Successor list is linked by address

CIRCULAR LISTS

- Last node points back to first node
- No need to think of any node as a 'last' or 'first' node

1. Insert Y at the left:
```
P\LeftarrowAVAIL; INFO (P)\leftarrowY;
if PTR=\Omega then PTR\leftarrowLINK(P)\leftarrowP
else
    begin
        LINK (P) \leftarrowLINK (PTR); LINK (PTR)\leftarrowP;
    end;
```

2. Insert y at the right: Insert y at the left;
$\mathrm{PTR} \leftarrow \mathrm{P}$;
3. Set y to the left node and delete:
if $\operatorname{PTR}=\boldsymbol{\Omega}$ then UNDERFLOW;
$\mathrm{P} \leftarrow \mathrm{LINK}(\mathrm{PTR}) ; \quad \mathrm{Y} \leftarrow \operatorname{INFO}(\mathrm{P})$;
LINK $(P T R) \leftarrow L I N K(P) ; \quad A V A I L \Leftarrow P ;$
if $\mathrm{PTR}=\mathrm{P}$ then $\mathrm{PTR} \leftarrow \Omega$;
/* Check for a list of one element */
/* before deleting */

1 and 3 imply stack
2 and 3 imply queue
1,2 , and 3 imply output restricted deque

ERASING A CIRCULAR LIST

Note: ${ }^{\text {tr }}$ is meaningless after erasing a list

Inserting Circular List L2 at the Right of Circular List L1:

Assume ${ }_{P T R 1}$ points to L1 and PTR2 points to L2.

```
if PTR2\not=\Omega then
    begin
            if PTR1\not=\Omega then LINK(PTR1)\leftrightarrowLINK(PTR2);
            PTR1\leftarrowPTR2;
            PTR2\leftarrow\Omega;
    end
```

- A circular list can also be split into two lists
- Analogous to concatenation and deconcatenation of strings.

DOUBLY-LINKED LISTS

RINK (LINK (Y)) = LINK (LINK (Y)) = Y

- Disadvantage: More space for links
- Advantage: Given X, it can be deleted without having to locate its predecessor as is necessary with singly-linked lists

Easy to insert a node to the left or right of another node:

Insert to the right of z :

$P \Leftarrow A V A I L ;$
LINK (P) 4 Z; RINK (P$) \leftarrow$ RINK (Z);
LINK (RINK (Z)) $\leftarrow P$; RINK $(Z) \leftarrow P$;

Insert to the left of X :
Interchange LEFT and RIGHT in 'Insertion to the right'.

- 4 links are changed (only 2 changed with singly-linked list)

TWO LINKS FOR THE PRICE OF ONE

Exclusive Or:

A	B	$\mathrm{A} \oplus \mathrm{B}$
0	0	0
0	1	1
1	0	1
1	1	0

$$
\begin{array}{ll}
A \oplus A=0 & \\
A \oplus 0=A & A \oplus 1=\bar{A} \\
A \oplus B=B \oplus A & \\
(A \oplus B) \oplus C=A \oplus(B \oplus C) & \\
A \oplus A \oplus B=B &
\end{array}
$$

Let $\operatorname{LINK}\left(X_{i}\right)=\operatorname{LOC}\left(X_{i+1}\right) \oplus \operatorname{LOC}\left(X_{i-1}\right)$

Knowing 2 successive locations ($\mathrm{L}_{\mathrm{i}}, \mathrm{L}_{\mathrm{i}_{+}}$) allows going left and right.

$\operatorname{RIGHT}\left(\mathrm{L}_{2}\right)=\operatorname{LINK}\left(\mathrm{L}_{2}\right) \oplus \mathrm{L}_{1}=\mathrm{L}_{3} \oplus \mathrm{~L}_{1} \oplus \mathrm{~L}_{1}=\mathrm{L}_{3}$
$\operatorname{LEFT}\left(\mathrm{L}_{1}\right)=\operatorname{LINK}\left(\mathrm{L}_{1}\right) \oplus \mathrm{L}_{2}=\mathrm{L}_{0} \oplus \mathrm{~L}_{2} \oplus \mathrm{~L}_{2}=\mathrm{L}_{0}$
Ex: Exchange the contents of two locations without using temporaries

```
B}\leftarrowA\oplusB\quadA\oplus
A}\leftarrowA\oplusB\quadA\oplus(A\oplusB)=
B\leftarrowA\oplusB B\oplus(A\oplusB)=A
```


ARRAYS

- Generalization of a linear list
- Allocate storage sequentially
- $\operatorname{Loc}(A[m, n]) \equiv A_{0}+A_{1} \cdot m+A_{2} \cdot n$
A_{0}, A_{1}, A_{2} are constants
- Ex: $\mathrm{Q}[0: 3,0: 2,0: 1]$

$\mathrm{Q}[0,0,0]$
$\mathrm{Q}[0,0,1]$
$\mathrm{Q}[0,1,0]$
$\mathrm{Q}[0,1,1]$
$\mathrm{Q}[0,2,0]$
$\mathrm{Q}[0,2,1]$
$\mathrm{Q}[1,0,0]$
\vdots
$\mathrm{Q}[3,2,0]$
$\mathrm{Q}[3,2,1]$

Row-major order ALGOL

$\mathrm{Q}[0,0,0]$
$\mathrm{Q}[1,0,0]$
$\mathrm{Q}[2,0,0]$
$\mathrm{Q}[3,0,0]$
$\mathrm{Q}[0,1,0]$
$\mathrm{Q}[1,1,0]$
$\mathrm{Q}[2,1,0]$
\vdots
$\mathrm{Q}[2,2,1]$
$\mathrm{Q}[3,2,1]$

Column-major order FORTRAN

- Row-major is preferable = lexicographic order of indices
- $\operatorname{LOC}(Q[i, j, k])=\operatorname{LOC}(Q[0,0,0])+6 \cdot i+2 \cdot j+k$

K-DIMENSIONAL ARRAYS

- $A\left[l_{1}: u_{1}, l_{2}: u_{2}, ., . l_{k}: u_{k}\right]$
$\cdot \operatorname{LOC}\left(A\left[i_{1}, i_{2}, ., . i_{k}\right]\right)=\operatorname{LOC}\left(A\left[I_{1}, l_{2}, l_{3}, ., . I_{k}\right]\right)+$

$$
\begin{aligned}
& \left(u_{2}-l_{2}+1\right) \ldots\left(u_{k}-l_{k}+1\right) \cdot\left(i_{1}-l_{1}\right)+\ldots \\
& \left(u_{k}-l_{k}+1\right) \cdot\left(i_{k-1}-l_{k-1}\right)+i_{k}-l_{k}
\end{aligned}
$$

$$
=\operatorname{LOC}\left(A\left[I_{1}, l_{2}, l_{3}, ., . I_{k}\right]\right)+\sum_{r=1}^{k} A_{r} \cdot\left(i_{r}-l_{r}\right)
$$

$$
=\left\{\operatorname{LOC}\left(A\left[l_{1}, l_{2}, l_{3}, ., l_{k}\right]\right)-\sum_{r=1}^{k} A_{r} \cdot I_{r}\right\}+\sum_{r=1}^{k} A_{r} \cdot l^{l}
$$

$$
\begin{aligned}
& A_{r}=\prod_{r<s \leq k}\left(u_{s}-I_{s}+1\right) \\
& A_{k}=1
\end{aligned}
$$

- Semantics of A_{r} :

1. let $i_{1}, i_{2}, .$, . i_{r} be constant
2. let $j_{r+1}, j_{r+2}, \ldots j_{k}$ vary through $\mathrm{l}_{\mathrm{i}} \leq \mathrm{j}_{\mathrm{i}} \leq \mathrm{u}_{\mathrm{i}}$
3. consider $A\left[i_{1}, i_{2}, \ldots i_{r}, j_{r+1}, j_{r+2}, \ldots j_{k}\right]$

- when i_{r} changes by $1 \operatorname{LOC}\left(A\left[i_{1}, i_{2}, \ldots, i_{k}\right]\right)$ changes by A_{r}

ARRAY DESCRIPTOR

- 'Dope vector’
- Ex: Q[0:3,0:2,0:1]

Q_{0}	Address of first element
Real	Type (string, real, complex, ?)
3	\# of dimensions
0	I_{1}
3	u_{1}
6	A_{1}
0	I_{2}
2	u_{2}
2	A_{2}
:	
0	I_{n}
1	u_{n}
1	A_{n}

- Why store the bounds?
- Not needed in the access function!

TRIANGULAR MATRIX

$\cdot \operatorname{LOC}(A[j, k])=A_{0}+F_{1}(j)+F_{2}(k)$

$$
\begin{aligned}
& {\left[\begin{array}{clcc}
A[0,0] & & & \\
A[1,0] & A[1,1] & & \\
\vdots & & & \\
A[n, 0] & A[n, 1] & \ldots & A[n, n]
\end{array}\right] } \\
& \operatorname{LOC}(A[j, k])=\operatorname{LOC}(A[0,0])+\left(\sum_{i=0}^{j-1} i+1\right)+k \\
&=\operatorname{LOC}(A[0,0])+\frac{j \cdot(j+1)}{2}+k
\end{aligned}
$$

- quadratic access function (not linear)
- Two triangular matrices:

$$
\left[\begin{array}{c:c:ccc}
A[0,0] & B[0,0] & B[1,0] & \ldots & B[n, 0] \\
A[1,0] & A[1,1] & B[1,1] & \ldots & B[n, 1] \\
\vdots & & & & \\
A[n, 0] & A[n, 1] & \ldots & A[n, n] & B[n, n]
\end{array}\right]=C
$$

$A[j, k]=C[j, k]$
$B[j, k]=C[k, j+1]$

SPARSE MATRICES

- For each item:

Left Link		Up Link	
Row \#	Col \#	Value	

-For each row:

For each column:

- Ex: $\left(\begin{array}{lll}1 & & 4 \\ 2 & 3 & \\ & & 5\end{array}\right)$

- Circular list is useful for insertion and deletion of elements
- Ex: compute $\mathrm{C}=\mathrm{C}+\mathrm{A} \cdot \mathrm{B}$

$$
C_{i k}=C_{i k}+\sum_{j} A_{i j} \cdot B_{j k}
$$

