
lp181
b

INTRODUCTION

• The primary data structure is a list, e.g.,
 (A B C D E)
 (A)
 ()    empty list or NIL = a special name

• Can represent any entities
 x + y
  first item is operator, remaining items are operands
  can have an arbitrary number of arguments
 xy + x + 3

• We can refer to elements of a list by using brackets:
 for  L = (PLUS (TIMES x y) x 3)  we have
  L[1] =
  L[2] =
  L[2,2] =
  L[4] =
 ( ∃ x)( ∀ y) P(x) ⊃  P(y)

• An undirected graph

• Questions:
 1. How would we represent it?
 2. What do we want to know?
 3. What node is connected to what node?

• Solution: list of lists where first element of each
   list is connected to rest

A B

C

D

E F

Copyright © 2003 by Hanan Samet



lp181
b

INTRODUCTION

• The primary data structure is a list, e.g.,
 (A B C D E)
 (A)
 ()    empty list or NIL = a special name

• Can represent any entities
 x + y
  first item is operator, remaining items are operands
  can have an arbitrary number of arguments
 xy + x + 3

• We can refer to elements of a list by using brackets:
 for  L = (PLUS (TIMES x y) x 3)  we have
  L[1] =
  L[2] =
  L[2,2] =
  L[4] =
 ( ∃ x)( ∀ y) P(x) ⊃  P(y)

• An undirected graph

• Questions:
 1. How would we represent it?
 2. What do we want to know?
 3. What node is connected to what node?

• Solution: list of lists where first element of each
   list is connected to rest

A B

C

D

E F

Copyright © 2003 by Hanan Samet

lp12
r

(PLUS x y)

Copyright © 2003 by Hanan Samet



lp181
b

INTRODUCTION

• The primary data structure is a list, e.g.,
 (A B C D E)
 (A)
 ()    empty list or NIL = a special name

• Can represent any entities
 x + y
  first item is operator, remaining items are operands
  can have an arbitrary number of arguments
 xy + x + 3

• We can refer to elements of a list by using brackets:
 for  L = (PLUS (TIMES x y) x 3)  we have
  L[1] =
  L[2] =
  L[2,2] =
  L[4] =
 ( ∃ x)( ∀ y) P(x) ⊃  P(y)

• An undirected graph

• Questions:
 1. How would we represent it?
 2. What do we want to know?
 3. What node is connected to what node?

• Solution: list of lists where first element of each
   list is connected to rest

A B

C

D

E F

Copyright © 2003 by Hanan Samet

lp12
r

(PLUS x y)

Copyright © 2003 by Hanan Samet

lp13
z

(PLUS (TIMES x y) x 3)

Copyright © 2003 by Hanan Samet



lp181
b

INTRODUCTION

• The primary data structure is a list, e.g.,
 (A B C D E)
 (A)
 ()    empty list or NIL = a special name

• Can represent any entities
 x + y
  first item is operator, remaining items are operands
  can have an arbitrary number of arguments
 xy + x + 3

• We can refer to elements of a list by using brackets:
 for  L = (PLUS (TIMES x y) x 3)  we have
  L[1] =
  L[2] =
  L[2,2] =
  L[4] =
 ( ∃ x)( ∀ y) P(x) ⊃  P(y)

• An undirected graph

• Questions:
 1. How would we represent it?
 2. What do we want to know?
 3. What node is connected to what node?

• Solution: list of lists where first element of each
   list is connected to rest

A B

C

D

E F

Copyright © 2003 by Hanan Samet

lp12
r

(PLUS x y)

Copyright © 2003 by Hanan Samet

lp13
z

(PLUS (TIMES x y) x 3)

Copyright © 2003 by Hanan Samet

lp14
g

PLUS

Copyright © 2003 by Hanan Samet



lp181
b

INTRODUCTION

• The primary data structure is a list, e.g.,
 (A B C D E)
 (A)
 ()    empty list or NIL = a special name

• Can represent any entities
 x + y
  first item is operator, remaining items are operands
  can have an arbitrary number of arguments
 xy + x + 3

• We can refer to elements of a list by using brackets:
 for  L = (PLUS (TIMES x y) x 3)  we have
  L[1] =
  L[2] =
  L[2,2] =
  L[4] =
 ( ∃ x)( ∀ y) P(x) ⊃  P(y)

• An undirected graph

• Questions:
 1. How would we represent it?
 2. What do we want to know?
 3. What node is connected to what node?

• Solution: list of lists where first element of each
   list is connected to rest

A B

C

D

E F

Copyright © 2003 by Hanan Samet

lp12
r

(PLUS x y)

Copyright © 2003 by Hanan Samet

lp13
z

(PLUS (TIMES x y) x 3)

Copyright © 2003 by Hanan Samet

lp14
g

PLUS

Copyright © 2003 by Hanan Samet

lp15
v

(TIMES x y)

Copyright © 2003 by Hanan Samet



lp181
b

INTRODUCTION

• The primary data structure is a list, e.g.,
 (A B C D E)
 (A)
 ()    empty list or NIL = a special name

• Can represent any entities
 x + y
  first item is operator, remaining items are operands
  can have an arbitrary number of arguments
 xy + x + 3

• We can refer to elements of a list by using brackets:
 for  L = (PLUS (TIMES x y) x 3)  we have
  L[1] =
  L[2] =
  L[2,2] =
  L[4] =
 ( ∃ x)( ∀ y) P(x) ⊃  P(y)

• An undirected graph

• Questions:
 1. How would we represent it?
 2. What do we want to know?
 3. What node is connected to what node?

• Solution: list of lists where first element of each
   list is connected to rest

A B

C

D

E F

Copyright © 2003 by Hanan Samet

lp12
r

(PLUS x y)

Copyright © 2003 by Hanan Samet

lp13
z

(PLUS (TIMES x y) x 3)

Copyright © 2003 by Hanan Samet

lp14
g

PLUS

Copyright © 2003 by Hanan Samet

lp15
v

(TIMES x y)

Copyright © 2003 by Hanan Samet

lp16
r

x

Copyright © 2003 by Hanan Samet



lp181
b

INTRODUCTION

• The primary data structure is a list, e.g.,
 (A B C D E)
 (A)
 ()    empty list or NIL = a special name

• Can represent any entities
 x + y
  first item is operator, remaining items are operands
  can have an arbitrary number of arguments
 xy + x + 3

• We can refer to elements of a list by using brackets:
 for  L = (PLUS (TIMES x y) x 3)  we have
  L[1] =
  L[2] =
  L[2,2] =
  L[4] =
 ( ∃ x)( ∀ y) P(x) ⊃  P(y)

• An undirected graph

• Questions:
 1. How would we represent it?
 2. What do we want to know?
 3. What node is connected to what node?

• Solution: list of lists where first element of each
   list is connected to rest

A B

C

D

E F

Copyright © 2003 by Hanan Samet

lp12
r

(PLUS x y)

Copyright © 2003 by Hanan Samet

lp13
z

(PLUS (TIMES x y) x 3)

Copyright © 2003 by Hanan Samet

lp14
g

PLUS

Copyright © 2003 by Hanan Samet

lp15
v

(TIMES x y)

Copyright © 2003 by Hanan Samet

lp16
r

x

Copyright © 2003 by Hanan Samet

lp17
z

3

Copyright © 2003 by Hanan Samet



lp181
b

INTRODUCTION

• The primary data structure is a list, e.g.,
 (A B C D E)
 (A)
 ()    empty list or NIL = a special name

• Can represent any entities
 x + y
  first item is operator, remaining items are operands
  can have an arbitrary number of arguments
 xy + x + 3

• We can refer to elements of a list by using brackets:
 for  L = (PLUS (TIMES x y) x 3)  we have
  L[1] =
  L[2] =
  L[2,2] =
  L[4] =
 ( ∃ x)( ∀ y) P(x) ⊃  P(y)

• An undirected graph

• Questions:
 1. How would we represent it?
 2. What do we want to know?
 3. What node is connected to what node?

• Solution: list of lists where first element of each
   list is connected to rest

A B

C

D

E F

Copyright © 2003 by Hanan Samet

lp12
r

(PLUS x y)

Copyright © 2003 by Hanan Samet

lp13
z

(PLUS (TIMES x y) x 3)

Copyright © 2003 by Hanan Samet

lp14
g

PLUS

Copyright © 2003 by Hanan Samet

lp15
v

(TIMES x y)

Copyright © 2003 by Hanan Samet

lp16
r

x

Copyright © 2003 by Hanan Samet

lp17
z

3

Copyright © 2003 by Hanan Samet

lp18
g

(EXIST x (ALL y (IMPLIES (P x)(P y))))

Copyright © 2003 by Hanan Samet



lp181
b

INTRODUCTION

• The primary data structure is a list, e.g.,
 (A B C D E)
 (A)
 ()    empty list or NIL = a special name

• Can represent any entities
 x + y
  first item is operator, remaining items are operands
  can have an arbitrary number of arguments
 xy + x + 3

• We can refer to elements of a list by using brackets:
 for  L = (PLUS (TIMES x y) x 3)  we have
  L[1] =
  L[2] =
  L[2,2] =
  L[4] =
 ( ∃ x)( ∀ y) P(x) ⊃  P(y)

• An undirected graph

• Questions:
 1. How would we represent it?
 2. What do we want to know?
 3. What node is connected to what node?

• Solution: list of lists where first element of each
   list is connected to rest

A B

C

D

E F

Copyright © 2003 by Hanan Samet

lp12
r

(PLUS x y)

Copyright © 2003 by Hanan Samet

lp13
z

(PLUS (TIMES x y) x 3)

Copyright © 2003 by Hanan Samet

lp14
g

PLUS

Copyright © 2003 by Hanan Samet

lp15
v

(TIMES x y)

Copyright © 2003 by Hanan Samet

lp16
r

x

Copyright © 2003 by Hanan Samet

lp17
z

3

Copyright © 2003 by Hanan Samet

lp18
g

(EXIST x (ALL y (IMPLIES (P x)(P y))))

Copyright © 2003 by Hanan Samet

lp19
v

((A B)(B A C D)(C B D E)
      (D B C E)(E C D F)(F E))

Copyright © 2003 by Hanan Samet



lp281
b

REPRESENTATION OF A LIST

• Components of lists can be atoms
 1. any sequence of characters not including
  spaces or parentheses
 2. examples: x y 345 A37 A-B-C
   376-80-5763 80.8  …

• How would we represent a list?

• In earlier work we used:

    where Ω = NIL or

 (A B C)  would be:

• What about   xy+x+3    or   (PLUS (TIMES x y) x 3)    ?

• Solution:  INFO points to another list!

Ω…

INFOINFO

LINK last element

Copyright © 2003 by Hanan Samet



lp281
b

REPRESENTATION OF A LIST

• Components of lists can be atoms
 1. any sequence of characters not including
  spaces or parentheses
 2. examples: x y 345 A37 A-B-C
   376-80-5763 80.8  …

• How would we represent a list?

• In earlier work we used:

    where Ω = NIL or

 (A B C)  would be:

• What about   xy+x+3    or   (PLUS (TIMES x y) x 3)    ?

• Solution:  INFO points to another list!

Ω…

INFOINFO

LINK last element

Copyright © 2003 by Hanan Samet

lp22
r

Ω

A B C

Copyright © 2003 by Hanan Samet



lp281
b

REPRESENTATION OF A LIST

• Components of lists can be atoms
 1. any sequence of characters not including
  spaces or parentheses
 2. examples: x y 345 A37 A-B-C
   376-80-5763 80.8  …

• How would we represent a list?

• In earlier work we used:

    where Ω = NIL or

 (A B C)  would be:

• What about   xy+x+3    or   (PLUS (TIMES x y) x 3)    ?

• Solution:  INFO points to another list!

Ω…

INFOINFO

LINK last element

Copyright © 2003 by Hanan Samet

lp22
r

Ω

A B C

Copyright © 2003 by Hanan Samet

lp23
z

x

3PLUS

TIMES

x

y
Copyright © 2003 by Hanan Samet



lp3

OBSERVATIONS ABOUT LISTS

• There is really no need for INFO field

• There are two link fields, say LLINK and RLINK

• INFO is now an atom, which is a link to a property list
 1. value of the atom
 2. print name

• Notation
 1. use lower-case letters at the end of the alphabet
  (e.g., x, y, z) to describe variables and
  upper-case letters at the start of the alphabet
  (e.g., A, B, C, D) to denote data
 2. atom represented by address of its property list
 3. list referred to by address of its first element

• Note a curious asymmetry:
 1. LLINK can refer to atom or list, but
 2. RLINK can only refer to a list or the empty list
  (equivalent to the atom NIL)

Copyright © 2003 by Hanan Samet



lp481
b

S-EXPRESSIONS

• An atom or a pair of s-expressions separated by . and
 surrounded by parentheses

 <sexpr>  ⇒   <atom> | ( <sexpr> . <sexpr> )

• Examples:
 A

 (A.B)

 (A.(B.A))

 (3 . 3.4)  note convention about decimal point and dot:
       .      is not a decimal point.  Space around
  dot may be omitted if no confusion results:
 (PLUS.(x.(y.NIL)))

• Represented in computer memory by:

 (A.B) →  (A.(B.A)) →

 (PLUS.(x.(y.NIL))) →

• This should be familiar

sexpr sexpr

AB

A

Copyright © 2003 by Hanan Samet



lp481
b

S-EXPRESSIONS

• An atom or a pair of s-expressions separated by . and
 surrounded by parentheses

 <sexpr>  ⇒   <atom> | ( <sexpr> . <sexpr> )

• Examples:
 A

 (A.B)

 (A.(B.A))

 (3 . 3.4)  note convention about decimal point and dot:
       .      is not a decimal point.  Space around
  dot may be omitted if no confusion results:
 (PLUS.(x.(y.NIL)))

• Represented in computer memory by:

 (A.B) →  (A.(B.A)) →

 (PLUS.(x.(y.NIL))) →

• This should be familiar

sexpr sexpr

AB

A

Copyright © 2003 by Hanan Samet

lp42
r

A B

Copyright © 2003 by Hanan Samet



lp481
b

S-EXPRESSIONS

• An atom or a pair of s-expressions separated by . and
 surrounded by parentheses

 <sexpr>  ⇒   <atom> | ( <sexpr> . <sexpr> )

• Examples:
 A

 (A.B)

 (A.(B.A))

 (3 . 3.4)  note convention about decimal point and dot:
       .      is not a decimal point.  Space around
  dot may be omitted if no confusion results:
 (PLUS.(x.(y.NIL)))

• Represented in computer memory by:

 (A.B) →  (A.(B.A)) →

 (PLUS.(x.(y.NIL))) →

• This should be familiar

sexpr sexpr

AB

A

Copyright © 2003 by Hanan Samet

lp42
r

A B

Copyright © 2003 by Hanan Samet

lp43
z

PLUS x y

Copyright © 2003 by Hanan Samet



lp481
b

S-EXPRESSIONS

• An atom or a pair of s-expressions separated by . and
 surrounded by parentheses

 <sexpr>  ⇒   <atom> | ( <sexpr> . <sexpr> )

• Examples:
 A

 (A.B)

 (A.(B.A))

 (3 . 3.4)  note convention about decimal point and dot:
       .      is not a decimal point.  Space around
  dot may be omitted if no confusion results:
 (PLUS.(x.(y.NIL)))

• Represented in computer memory by:

 (A.B) →  (A.(B.A)) →

 (PLUS.(x.(y.NIL))) →

• This should be familiar

sexpr sexpr

AB

A

Copyright © 2003 by Hanan Samet

lp42
r

A B

Copyright © 2003 by Hanan Samet

lp43
z

PLUS x y

Copyright © 2003 by Hanan Samet

lp44
g

(PLUS x y)

Copyright © 2003 by Hanan Samet



lp5

THE LISP PROGRAMMING LANGUAGE

• Easy to learn – just a few primitive operations
 1. CAR (Contents of Address Register)
  • first element of list
  • sometimes called head
  • sometimes written as a x
  • refers to left part of an s-expression
 2. CDR (Contents of Decrement Register)
  • remainder of list after removing first element
  • sometimes called tail
  • sometimes written as d x
  • refers to right part of an s-expression
  • pushes left paren one element to right
    CDR of (A (B C)  → (B C)
  • CDR (and CAR) technically undefined for atoms
  • sometimes CDR of atom is its property list
 3. QUOTE prevents the usual evaluation of arguments
  Notationally the following are equivalent:
  • (CDR(QUOTE(A B C)))
  • (CDR '(A B C))
  • CDR('(A B C))
  • CDR['(A B C)]
  • CDR[(QUOTE (A B C))]
  • use [ ] when args quoted or in definition of
   recursive function, use ( ) otherwise
 4. CONS (CONStruct)
  • creates an s-expression from two s-expressions
  • alternatively, adds atom or list to head of another list
   Ex: CONS['A,'(B C D)] ≡ (A B C D) ≡
    CONS['A,'(B.(C.(D.NIL)))] ≡
    (A.(B.(C.(D.NIL))))

Copyright © 2003 by Hanan Samet



lp681
b

LISP EXAMPLES

(A.B)   (C.D) CONS['(A.B),'(C.D)] =

CAR['((A.B).(C.D))] =

CAR[CAR '((A.B).(C.D))] =

CAAR['((A.B).(C.D))] =

• note use of CAAR for CAR( CAR(x) )
• also CADR(x) = CAR( CDR(x) )
• CDR is performed first followed by CAR

• can construct any combination needed

CONS['(A.B),'A] = ((A.B).A)

CONS['A,'(B C D)] = (A B C D)

Important: CAR[CONS['A,'B]] = 

   CDR[CONS['A,'B]] = 

   CONS[CAR['(A.B)],CDR['(A.B)]] = 

A B C D

A

BA

A B C D

Copyright © 2003 by Hanan Samet



lp681
b

LISP EXAMPLES

(A.B)   (C.D) CONS['(A.B),'(C.D)] =

CAR['((A.B).(C.D))] =

CAR[CAR '((A.B).(C.D))] =

CAAR['((A.B).(C.D))] =

• note use of CAAR for CAR( CAR(x) )
• also CADR(x) = CAR( CDR(x) )
• CDR is performed first followed by CAR

• can construct any combination needed

CONS['(A.B),'A] = ((A.B).A)

CONS['A,'(B C D)] = (A B C D)

Important: CAR[CONS['A,'B]] = 

   CDR[CONS['A,'B]] = 

   CONS[CAR['(A.B)],CDR['(A.B)]] = 

A B C D

A

BA

A B C D

Copyright © 2003 by Hanan Samet

lp62
r

A CB D

Copyright © 2003 by Hanan Samet



lp681
b

LISP EXAMPLES

(A.B)   (C.D) CONS['(A.B),'(C.D)] =

CAR['((A.B).(C.D))] =

CAR[CAR '((A.B).(C.D))] =

CAAR['((A.B).(C.D))] =

• note use of CAAR for CAR( CAR(x) )
• also CADR(x) = CAR( CDR(x) )
• CDR is performed first followed by CAR

• can construct any combination needed

CONS['(A.B),'A] = ((A.B).A)

CONS['A,'(B C D)] = (A B C D)

Important: CAR[CONS['A,'B]] = 

   CDR[CONS['A,'B]] = 

   CONS[CAR['(A.B)],CDR['(A.B)]] = 

A B C D

A

BA

A B C D

Copyright © 2003 by Hanan Samet

lp62
r

A CB D

Copyright © 2003 by Hanan Samet

lp63
z

(A.B)

Copyright © 2003 by Hanan Samet



lp681
b

LISP EXAMPLES

(A.B)   (C.D) CONS['(A.B),'(C.D)] =

CAR['((A.B).(C.D))] =

CAR[CAR '((A.B).(C.D))] =

CAAR['((A.B).(C.D))] =

• note use of CAAR for CAR( CAR(x) )
• also CADR(x) = CAR( CDR(x) )
• CDR is performed first followed by CAR

• can construct any combination needed

CONS['(A.B),'A] = ((A.B).A)

CONS['A,'(B C D)] = (A B C D)

Important: CAR[CONS['A,'B]] = 

   CDR[CONS['A,'B]] = 

   CONS[CAR['(A.B)],CDR['(A.B)]] = 

A B C D

A

BA

A B C D

Copyright © 2003 by Hanan Samet

lp62
r

A CB D

Copyright © 2003 by Hanan Samet

lp63
z

(A.B)

Copyright © 2003 by Hanan Samet

lp64
g

A

Copyright © 2003 by Hanan Samet



lp681
b

LISP EXAMPLES

(A.B)   (C.D) CONS['(A.B),'(C.D)] =

CAR['((A.B).(C.D))] =

CAR[CAR '((A.B).(C.D))] =

CAAR['((A.B).(C.D))] =

• note use of CAAR for CAR( CAR(x) )
• also CADR(x) = CAR( CDR(x) )
• CDR is performed first followed by CAR

• can construct any combination needed

CONS['(A.B),'A] = ((A.B).A)

CONS['A,'(B C D)] = (A B C D)

Important: CAR[CONS['A,'B]] = 

   CDR[CONS['A,'B]] = 

   CONS[CAR['(A.B)],CDR['(A.B)]] = 

A B C D

A

BA

A B C D

Copyright © 2003 by Hanan Samet

lp62
r

A CB D

Copyright © 2003 by Hanan Samet

lp63
z

(A.B)

Copyright © 2003 by Hanan Samet

lp64
g

A

Copyright © 2003 by Hanan Samet

lp65
v

A

Copyright © 2003 by Hanan Samet



lp681
b

LISP EXAMPLES

(A.B)   (C.D) CONS['(A.B),'(C.D)] =

CAR['((A.B).(C.D))] =

CAR[CAR '((A.B).(C.D))] =

CAAR['((A.B).(C.D))] =

• note use of CAAR for CAR( CAR(x) )
• also CADR(x) = CAR( CDR(x) )
• CDR is performed first followed by CAR

• can construct any combination needed

CONS['(A.B),'A] = ((A.B).A)

CONS['A,'(B C D)] = (A B C D)

Important: CAR[CONS['A,'B]] = 

   CDR[CONS['A,'B]] = 

   CONS[CAR['(A.B)],CDR['(A.B)]] = 

A B C D

A

BA

A B C D

Copyright © 2003 by Hanan Samet

lp62
r

A CB D

Copyright © 2003 by Hanan Samet

lp63
z

(A.B)

Copyright © 2003 by Hanan Samet

lp64
g

A

Copyright © 2003 by Hanan Samet

lp65
v

A

Copyright © 2003 by Hanan Samet

lp66
r

Copyright © 2003 by Hanan Samet



lp681
b

LISP EXAMPLES

(A.B)   (C.D) CONS['(A.B),'(C.D)] =

CAR['((A.B).(C.D))] =

CAR[CAR '((A.B).(C.D))] =

CAAR['((A.B).(C.D))] =

• note use of CAAR for CAR( CAR(x) )
• also CADR(x) = CAR( CDR(x) )
• CDR is performed first followed by CAR

• can construct any combination needed

CONS['(A.B),'A] = ((A.B).A)

CONS['A,'(B C D)] = (A B C D)

Important: CAR[CONS['A,'B]] = 

   CDR[CONS['A,'B]] = 

   CONS[CAR['(A.B)],CDR['(A.B)]] = 

A B C D

A

BA

A B C D

Copyright © 2003 by Hanan Samet

lp62
r

A CB D

Copyright © 2003 by Hanan Samet

lp63
z

(A.B)

Copyright © 2003 by Hanan Samet

lp64
g

A

Copyright © 2003 by Hanan Samet

lp65
v

A

Copyright © 2003 by Hanan Samet

lp66
r

Copyright © 2003 by Hanan Samet

lp67
z

A

Copyright © 2003 by Hanan Samet



lp681
b

LISP EXAMPLES

(A.B)   (C.D) CONS['(A.B),'(C.D)] =

CAR['((A.B).(C.D))] =

CAR[CAR '((A.B).(C.D))] =

CAAR['((A.B).(C.D))] =

• note use of CAAR for CAR( CAR(x) )
• also CADR(x) = CAR( CDR(x) )
• CDR is performed first followed by CAR

• can construct any combination needed

CONS['(A.B),'A] = ((A.B).A)

CONS['A,'(B C D)] = (A B C D)

Important: CAR[CONS['A,'B]] = 

   CDR[CONS['A,'B]] = 

   CONS[CAR['(A.B)],CDR['(A.B)]] = 

A B C D

A

BA

A B C D

Copyright © 2003 by Hanan Samet

lp62
r

A CB D

Copyright © 2003 by Hanan Samet

lp63
z

(A.B)

Copyright © 2003 by Hanan Samet

lp64
g

A

Copyright © 2003 by Hanan Samet

lp65
v

A

Copyright © 2003 by Hanan Samet

lp66
r

Copyright © 2003 by Hanan Samet

lp67
z

A

Copyright © 2003 by Hanan Samet

lp68
g

B

Copyright © 2003 by Hanan Samet



lp681
b

LISP EXAMPLES

(A.B)   (C.D) CONS['(A.B),'(C.D)] =

CAR['((A.B).(C.D))] =

CAR[CAR '((A.B).(C.D))] =

CAAR['((A.B).(C.D))] =

• note use of CAAR for CAR( CAR(x) )
• also CADR(x) = CAR( CDR(x) )
• CDR is performed first followed by CAR

• can construct any combination needed

CONS['(A.B),'A] = ((A.B).A)

CONS['A,'(B C D)] = (A B C D)

Important: CAR[CONS['A,'B]] = 

   CDR[CONS['A,'B]] = 

   CONS[CAR['(A.B)],CDR['(A.B)]] = 

A B C D

A

BA

A B C D

Copyright © 2003 by Hanan Samet

lp62
r

A CB D

Copyright © 2003 by Hanan Samet

lp63
z

(A.B)

Copyright © 2003 by Hanan Samet

lp64
g

A

Copyright © 2003 by Hanan Samet

lp65
v

A

Copyright © 2003 by Hanan Samet

lp66
r

Copyright © 2003 by Hanan Samet

lp67
z

A

Copyright © 2003 by Hanan Samet

lp68
g

B

Copyright © 2003 by Hanan Samet

lp69
v

(A.B)

Copyright © 2003 by Hanan Samet



lp781
b

SHARING OF LISTS

• Lists may be shared:

 is the same as  ((A.B).(C.((A.B).(D.NIL))))

 which can also be represented as:

• Difference is that given  z←(CONS 'A 'B)   then:

 x←

 i.e.,

 y←

A B

C D

x

A B

C D

A B

y

Copyright © 2003 by Hanan Samet



lp781
b

SHARING OF LISTS

• Lists may be shared:

 is the same as  ((A.B).(C.((A.B).(D.NIL))))

 which can also be represented as:

• Difference is that given  z←(CONS 'A 'B)   then:

 x←

 i.e.,

 y←

A B

C D

x

A B

C D

A B

y

Copyright © 2003 by Hanan Samet

lp72
r

(CONS z (CONS 'C (CONS z (CONS 'D NIL))))

Copyright © 2003 by Hanan Samet



lp781
b

SHARING OF LISTS

• Lists may be shared:

 is the same as  ((A.B).(C.((A.B).(D.NIL))))

 which can also be represented as:

• Difference is that given  z←(CONS 'A 'B)   then:

 x←

 i.e.,

 y←

A B

C D

x

A B

C D

A B

y

Copyright © 2003 by Hanan Samet

lp72
r

(CONS z (CONS 'C (CONS z (CONS 'D NIL))))

Copyright © 2003 by Hanan Samet

lp73
z

(CONS (CONS 'A 'B)(CONS 'C (CONS (CONS 'A 'B)(CONS 'D NIL))))

Copyright © 2003 by Hanan Samet



lp881
b

STRUCTURAL EQUIVALENCE

• Can we test to see if any sharing exists?
 (for example, if first and third elements of x identical?)
 1. the EQ predicate performs this test
  EQ[CAR(x),CADDR(x)]= atom denoting value True
  EQ[CAR(y),CADDR(y)]= just like False
 2. atoms are uniquely represented
  EQ[CADR(x),CADR(y)]= while
  EQ[CAR(x),CAR(y)]= and
  EQ[CAAR(x),CAAR(y)]= =EQ[CDAR(x),CDAR(y)]

• s-expressions x and y are structurally equivalent
 1. can we write function EQUAL to test for this?
 2. smallest indivisible unit is the atom

  base case:

 3. need way to find out if something is an atom
  • use the ATOM function
 4. thus EQUAL[x,y]  =

  • this should be familiar from our discussion of
   similarity and equivalence of binary trees

Copyright © 2003 by Hanan Samet



lp881
b

STRUCTURAL EQUIVALENCE

• Can we test to see if any sharing exists?
 (for example, if first and third elements of x identical?)
 1. the EQ predicate performs this test
  EQ[CAR(x),CADDR(x)]= atom denoting value True
  EQ[CAR(y),CADDR(y)]= just like False
 2. atoms are uniquely represented
  EQ[CADR(x),CADR(y)]= while
  EQ[CAR(x),CAR(y)]= and
  EQ[CAAR(x),CAAR(y)]= =EQ[CDAR(x),CDAR(y)]

• s-expressions x and y are structurally equivalent
 1. can we write function EQUAL to test for this?
 2. smallest indivisible unit is the atom

  base case:

 3. need way to find out if something is an atom
  • use the ATOM function
 4. thus EQUAL[x,y]  =

  • this should be familiar from our discussion of
   similarity and equivalence of binary trees

Copyright © 2003 by Hanan Samet

lp82
r

T

Copyright © 2003 by Hanan Samet



lp881
b

STRUCTURAL EQUIVALENCE

• Can we test to see if any sharing exists?
 (for example, if first and third elements of x identical?)
 1. the EQ predicate performs this test
  EQ[CAR(x),CADDR(x)]= atom denoting value True
  EQ[CAR(y),CADDR(y)]= just like False
 2. atoms are uniquely represented
  EQ[CADR(x),CADR(y)]= while
  EQ[CAR(x),CAR(y)]= and
  EQ[CAAR(x),CAAR(y)]= =EQ[CDAR(x),CDAR(y)]

• s-expressions x and y are structurally equivalent
 1. can we write function EQUAL to test for this?
 2. smallest indivisible unit is the atom

  base case:

 3. need way to find out if something is an atom
  • use the ATOM function
 4. thus EQUAL[x,y]  =

  • this should be familiar from our discussion of
   similarity and equivalence of binary trees

Copyright © 2003 by Hanan Samet

lp82
r

T

Copyright © 2003 by Hanan Samet

lp83
z

NIL

Copyright © 2003 by Hanan Samet



lp881
b

STRUCTURAL EQUIVALENCE

• Can we test to see if any sharing exists?
 (for example, if first and third elements of x identical?)
 1. the EQ predicate performs this test
  EQ[CAR(x),CADDR(x)]= atom denoting value True
  EQ[CAR(y),CADDR(y)]= just like False
 2. atoms are uniquely represented
  EQ[CADR(x),CADR(y)]= while
  EQ[CAR(x),CAR(y)]= and
  EQ[CAAR(x),CAAR(y)]= =EQ[CDAR(x),CDAR(y)]

• s-expressions x and y are structurally equivalent
 1. can we write function EQUAL to test for this?
 2. smallest indivisible unit is the atom

  base case:

 3. need way to find out if something is an atom
  • use the ATOM function
 4. thus EQUAL[x,y]  =

  • this should be familiar from our discussion of
   similarity and equivalence of binary trees

Copyright © 2003 by Hanan Samet

lp82
r

T

Copyright © 2003 by Hanan Samet

lp83
z

NIL

Copyright © 2003 by Hanan Samet

lp84
g

T

Copyright © 2003 by Hanan Samet



lp881
b

STRUCTURAL EQUIVALENCE

• Can we test to see if any sharing exists?
 (for example, if first and third elements of x identical?)
 1. the EQ predicate performs this test
  EQ[CAR(x),CADDR(x)]= atom denoting value True
  EQ[CAR(y),CADDR(y)]= just like False
 2. atoms are uniquely represented
  EQ[CADR(x),CADR(y)]= while
  EQ[CAR(x),CAR(y)]= and
  EQ[CAAR(x),CAAR(y)]= =EQ[CDAR(x),CDAR(y)]

• s-expressions x and y are structurally equivalent
 1. can we write function EQUAL to test for this?
 2. smallest indivisible unit is the atom

  base case:

 3. need way to find out if something is an atom
  • use the ATOM function
 4. thus EQUAL[x,y]  =

  • this should be familiar from our discussion of
   similarity and equivalence of binary trees

Copyright © 2003 by Hanan Samet

lp82
r

T

Copyright © 2003 by Hanan Samet

lp83
z

NIL

Copyright © 2003 by Hanan Samet

lp84
g

T

Copyright © 2003 by Hanan Samet

lp85
v

NIL

Copyright © 2003 by Hanan Samet



lp881
b

STRUCTURAL EQUIVALENCE

• Can we test to see if any sharing exists?
 (for example, if first and third elements of x identical?)
 1. the EQ predicate performs this test
  EQ[CAR(x),CADDR(x)]= atom denoting value True
  EQ[CAR(y),CADDR(y)]= just like False
 2. atoms are uniquely represented
  EQ[CADR(x),CADR(y)]= while
  EQ[CAR(x),CAR(y)]= and
  EQ[CAAR(x),CAAR(y)]= =EQ[CDAR(x),CDAR(y)]

• s-expressions x and y are structurally equivalent
 1. can we write function EQUAL to test for this?
 2. smallest indivisible unit is the atom

  base case:

 3. need way to find out if something is an atom
  • use the ATOM function
 4. thus EQUAL[x,y]  =

  • this should be familiar from our discussion of
   similarity and equivalence of binary trees

Copyright © 2003 by Hanan Samet

lp82
r

T

Copyright © 2003 by Hanan Samet

lp83
z

NIL

Copyright © 2003 by Hanan Samet

lp84
g

T

Copyright © 2003 by Hanan Samet

lp85
v

NIL

Copyright © 2003 by Hanan Samet

lp86
r

T

Copyright © 2003 by Hanan Samet



lp881
b

STRUCTURAL EQUIVALENCE

• Can we test to see if any sharing exists?
 (for example, if first and third elements of x identical?)
 1. the EQ predicate performs this test
  EQ[CAR(x),CADDR(x)]= atom denoting value True
  EQ[CAR(y),CADDR(y)]= just like False
 2. atoms are uniquely represented
  EQ[CADR(x),CADR(y)]= while
  EQ[CAR(x),CAR(y)]= and
  EQ[CAAR(x),CAAR(y)]= =EQ[CDAR(x),CDAR(y)]

• s-expressions x and y are structurally equivalent
 1. can we write function EQUAL to test for this?
 2. smallest indivisible unit is the atom

  base case:

 3. need way to find out if something is an atom
  • use the ATOM function
 4. thus EQUAL[x,y]  =

  • this should be familiar from our discussion of
   similarity and equivalence of binary trees

Copyright © 2003 by Hanan Samet

lp82
r

T

Copyright © 2003 by Hanan Samet

lp83
z

NIL

Copyright © 2003 by Hanan Samet

lp84
g

T

Copyright © 2003 by Hanan Samet

lp85
v

NIL

Copyright © 2003 by Hanan Samet

lp86
r

T

Copyright © 2003 by Hanan Samet

lp87
z

atom(x)  ⇒  atom(y)
 otherwise NIL

• if either x  or y  are atoms, then EQ(x,y)
 otherwise EQUAL first parts and EQUAL second parts

Copyright © 2003 by Hanan Samet



lp881
b

STRUCTURAL EQUIVALENCE

• Can we test to see if any sharing exists?
 (for example, if first and third elements of x identical?)
 1. the EQ predicate performs this test
  EQ[CAR(x),CADDR(x)]= atom denoting value True
  EQ[CAR(y),CADDR(y)]= just like False
 2. atoms are uniquely represented
  EQ[CADR(x),CADR(y)]= while
  EQ[CAR(x),CAR(y)]= and
  EQ[CAAR(x),CAAR(y)]= =EQ[CDAR(x),CDAR(y)]

• s-expressions x and y are structurally equivalent
 1. can we write function EQUAL to test for this?
 2. smallest indivisible unit is the atom

  base case:

 3. need way to find out if something is an atom
  • use the ATOM function
 4. thus EQUAL[x,y]  =

  • this should be familiar from our discussion of
   similarity and equivalence of binary trees

Copyright © 2003 by Hanan Samet

lp82
r

T

Copyright © 2003 by Hanan Samet

lp83
z

NIL

Copyright © 2003 by Hanan Samet

lp84
g

T

Copyright © 2003 by Hanan Samet

lp85
v

NIL

Copyright © 2003 by Hanan Samet

lp86
r

T

Copyright © 2003 by Hanan Samet

lp87
z

atom(x)  ⇒  atom(y)
 otherwise NIL

• if either x  or y  are atoms, then EQ(x,y)
 otherwise EQUAL first parts and EQUAL second parts

Copyright © 2003 by Hanan Samet

lp88
g

if ATOM(x) or ATOM(y) then eq(x,y)
else EQUAL[CAR(x),CAR(y)] and
     EQUAL[CDR(x),CDR(y)]

Copyright © 2003 by Hanan Samet



lp881
b

STRUCTURAL EQUIVALENCE

• Can we test to see if any sharing exists?
 (for example, if first and third elements of x identical?)
 1. the EQ predicate performs this test
  EQ[CAR(x),CADDR(x)]= atom denoting value True
  EQ[CAR(y),CADDR(y)]= just like False
 2. atoms are uniquely represented
  EQ[CADR(x),CADR(y)]= while
  EQ[CAR(x),CAR(y)]= and
  EQ[CAAR(x),CAAR(y)]= =EQ[CDAR(x),CDAR(y)]

• s-expressions x and y are structurally equivalent
 1. can we write function EQUAL to test for this?
 2. smallest indivisible unit is the atom

  base case:

 3. need way to find out if something is an atom
  • use the ATOM function
 4. thus EQUAL[x,y]  =

  • this should be familiar from our discussion of
   similarity and equivalence of binary trees

Copyright © 2003 by Hanan Samet

lp82
r

T

Copyright © 2003 by Hanan Samet

lp83
z

NIL

Copyright © 2003 by Hanan Samet

lp84
g

T

Copyright © 2003 by Hanan Samet

lp85
v

NIL

Copyright © 2003 by Hanan Samet

lp86
r

T

Copyright © 2003 by Hanan Samet

lp87
z

atom(x)  ⇒  atom(y)
 otherwise NIL

• if either x  or y  are atoms, then EQ(x,y)
 otherwise EQUAL first parts and EQUAL second parts

Copyright © 2003 by Hanan Samet

lp88
g

if ATOM(x) or ATOM(y) then eq(x,y)
else EQUAL[CAR(x),CAR(y)] and
     EQUAL[CDR(x),CDR(y)]

Copyright © 2003 by Hanan Samet

lp89
v

Copyright © 2003 by Hanan Samet



lp9

COMBINATIONS OF LISP PRIMITIVES

• Three primitive functions: CAR CDR CONS

• Two primitive predicates: ATOM EQ

• Predicate is just function returning either NIL or non-NIL

• All other functions are combinations of these five primitives

• Example:
 EQUAL(x,y)

 NULL(x) which is EQ(x,NIL) also written as n x

• Other abbreviations:
 a x  for CAR(x)

 a d x  for CAR(CDR(x))

 x.y  for CONS(x,y)

• The LIST function
 1. takes arbitrary number of arguments and returns
  a list containing these arguments
 2. Ex: LIST(x,y,z) is (x y z)

 3. corresponds to composition of CONS operations
  LIST(x) is CONS(x,NIL)
  LIST(x,y) is CONS(x,CONS(y,NIL))

 4. also written as <x,y,z>

Copyright © 2003 by Hanan Samet



lp1081
b

REPRESENTING TREES

• Linear:

• More tree-like representation:
 note all information appears
 at terminal nodes only

• More balanced:
 only two ops to get to
 any particular node

• In unbalanced representation:
 CAR(L1) =
 CADR(L1) =
 CADDR(L1) =
 CADDDR(L1) =

 average of –––––– = 2.5 operations

• In balanced representation:
 CAAR(L2) =
 CDAR(L2) =
 CADR(L2) =
 CDDR(L2) =
 average of 2 operations

• Advantage of L1: if searching for a particular element and
 list is not a fixed size, then we know when to stop

L

A B C D

DCBA

L2

1+2+3+4
4

L1

A

B

C

D

Copyright © 2003 by Hanan Samet



lp1081
b

REPRESENTING TREES

• Linear:

• More tree-like representation:
 note all information appears
 at terminal nodes only

• More balanced:
 only two ops to get to
 any particular node

• In unbalanced representation:
 CAR(L1) =
 CADR(L1) =
 CADDR(L1) =
 CADDDR(L1) =

 average of –––––– = 2.5 operations

• In balanced representation:
 CAAR(L2) =
 CDAR(L2) =
 CADR(L2) =
 CDDR(L2) =
 average of 2 operations

• Advantage of L1: if searching for a particular element and
 list is not a fixed size, then we know when to stop

L

A B C D

DCBA

L2

1+2+3+4
4

L1

A

B

C

D

Copyright © 2003 by Hanan Samet

lp102
r

A

Copyright © 2003 by Hanan Samet



lp1081
b

REPRESENTING TREES

• Linear:

• More tree-like representation:
 note all information appears
 at terminal nodes only

• More balanced:
 only two ops to get to
 any particular node

• In unbalanced representation:
 CAR(L1) =
 CADR(L1) =
 CADDR(L1) =
 CADDDR(L1) =

 average of –––––– = 2.5 operations

• In balanced representation:
 CAAR(L2) =
 CDAR(L2) =
 CADR(L2) =
 CDDR(L2) =
 average of 2 operations

• Advantage of L1: if searching for a particular element and
 list is not a fixed size, then we know when to stop

L

A B C D

DCBA

L2

1+2+3+4
4

L1

A

B

C

D

Copyright © 2003 by Hanan Samet

lp102
r

A

Copyright © 2003 by Hanan Samet

lp103
z

B

Copyright © 2003 by Hanan Samet



lp1081
b

REPRESENTING TREES

• Linear:

• More tree-like representation:
 note all information appears
 at terminal nodes only

• More balanced:
 only two ops to get to
 any particular node

• In unbalanced representation:
 CAR(L1) =
 CADR(L1) =
 CADDR(L1) =
 CADDDR(L1) =

 average of –––––– = 2.5 operations

• In balanced representation:
 CAAR(L2) =
 CDAR(L2) =
 CADR(L2) =
 CDDR(L2) =
 average of 2 operations

• Advantage of L1: if searching for a particular element and
 list is not a fixed size, then we know when to stop

L

A B C D

DCBA

L2

1+2+3+4
4

L1

A

B

C

D

Copyright © 2003 by Hanan Samet

lp102
r

A

Copyright © 2003 by Hanan Samet

lp103
z

B

Copyright © 2003 by Hanan Samet

lp104
g

C

Copyright © 2003 by Hanan Samet



lp1081
b

REPRESENTING TREES

• Linear:

• More tree-like representation:
 note all information appears
 at terminal nodes only

• More balanced:
 only two ops to get to
 any particular node

• In unbalanced representation:
 CAR(L1) =
 CADR(L1) =
 CADDR(L1) =
 CADDDR(L1) =

 average of –––––– = 2.5 operations

• In balanced representation:
 CAAR(L2) =
 CDAR(L2) =
 CADR(L2) =
 CDDR(L2) =
 average of 2 operations

• Advantage of L1: if searching for a particular element and
 list is not a fixed size, then we know when to stop

L

A B C D

DCBA

L2

1+2+3+4
4

L1

A

B

C

D

Copyright © 2003 by Hanan Samet

lp102
r

A

Copyright © 2003 by Hanan Samet

lp103
z

B

Copyright © 2003 by Hanan Samet

lp104
g

C

Copyright © 2003 by Hanan Samet

lp105
v

D

Copyright © 2003 by Hanan Samet



lp1081
b

REPRESENTING TREES

• Linear:

• More tree-like representation:
 note all information appears
 at terminal nodes only

• More balanced:
 only two ops to get to
 any particular node

• In unbalanced representation:
 CAR(L1) =
 CADR(L1) =
 CADDR(L1) =
 CADDDR(L1) =

 average of –––––– = 2.5 operations

• In balanced representation:
 CAAR(L2) =
 CDAR(L2) =
 CADR(L2) =
 CDDR(L2) =
 average of 2 operations

• Advantage of L1: if searching for a particular element and
 list is not a fixed size, then we know when to stop

L

A B C D

DCBA

L2

1+2+3+4
4

L1

A

B

C

D

Copyright © 2003 by Hanan Samet

lp102
r

A

Copyright © 2003 by Hanan Samet

lp103
z

B

Copyright © 2003 by Hanan Samet

lp104
g

C

Copyright © 2003 by Hanan Samet

lp105
v

D

Copyright © 2003 by Hanan Samet

lp106
r

A

Copyright © 2003 by Hanan Samet



lp1081
b

REPRESENTING TREES

• Linear:

• More tree-like representation:
 note all information appears
 at terminal nodes only

• More balanced:
 only two ops to get to
 any particular node

• In unbalanced representation:
 CAR(L1) =
 CADR(L1) =
 CADDR(L1) =
 CADDDR(L1) =

 average of –––––– = 2.5 operations

• In balanced representation:
 CAAR(L2) =
 CDAR(L2) =
 CADR(L2) =
 CDDR(L2) =
 average of 2 operations

• Advantage of L1: if searching for a particular element and
 list is not a fixed size, then we know when to stop

L

A B C D

DCBA

L2

1+2+3+4
4

L1

A

B

C

D

Copyright © 2003 by Hanan Samet

lp102
r

A

Copyright © 2003 by Hanan Samet

lp103
z

B

Copyright © 2003 by Hanan Samet

lp104
g

C

Copyright © 2003 by Hanan Samet

lp105
v

D

Copyright © 2003 by Hanan Samet

lp106
r

A

Copyright © 2003 by Hanan Samet

lp107
z

B

Copyright © 2003 by Hanan Samet



lp1081
b

REPRESENTING TREES

• Linear:

• More tree-like representation:
 note all information appears
 at terminal nodes only

• More balanced:
 only two ops to get to
 any particular node

• In unbalanced representation:
 CAR(L1) =
 CADR(L1) =
 CADDR(L1) =
 CADDDR(L1) =

 average of –––––– = 2.5 operations

• In balanced representation:
 CAAR(L2) =
 CDAR(L2) =
 CADR(L2) =
 CDDR(L2) =
 average of 2 operations

• Advantage of L1: if searching for a particular element and
 list is not a fixed size, then we know when to stop

L

A B C D

DCBA

L2

1+2+3+4
4

L1

A

B

C

D

Copyright © 2003 by Hanan Samet

lp102
r

A

Copyright © 2003 by Hanan Samet

lp103
z

B

Copyright © 2003 by Hanan Samet

lp104
g

C

Copyright © 2003 by Hanan Samet

lp105
v

D

Copyright © 2003 by Hanan Samet

lp106
r

A

Copyright © 2003 by Hanan Samet

lp107
z

B

Copyright © 2003 by Hanan Samet

lp108
g

C

Copyright © 2003 by Hanan Samet



lp1081
b

REPRESENTING TREES

• Linear:

• More tree-like representation:
 note all information appears
 at terminal nodes only

• More balanced:
 only two ops to get to
 any particular node

• In unbalanced representation:
 CAR(L1) =
 CADR(L1) =
 CADDR(L1) =
 CADDDR(L1) =

 average of –––––– = 2.5 operations

• In balanced representation:
 CAAR(L2) =
 CDAR(L2) =
 CADR(L2) =
 CDDR(L2) =
 average of 2 operations

• Advantage of L1: if searching for a particular element and
 list is not a fixed size, then we know when to stop

L

A B C D

DCBA

L2

1+2+3+4
4

L1

A

B

C

D

Copyright © 2003 by Hanan Samet

lp102
r

A

Copyright © 2003 by Hanan Samet

lp103
z

B

Copyright © 2003 by Hanan Samet

lp104
g

C

Copyright © 2003 by Hanan Samet

lp105
v

D

Copyright © 2003 by Hanan Samet

lp106
r

A

Copyright © 2003 by Hanan Samet

lp107
z

B

Copyright © 2003 by Hanan Samet

lp108
g

C

Copyright © 2003 by Hanan Samet

lp109
v

D

Copyright © 2003 by Hanan Samet



lp1181
b

MEMBERSHIP IN LIST

• How would we search for x in list L1?

 1. base case:

  how do we know when we are done?

 2. induction:

 3. member[x,l] =

• How to write function in LISP?

• Need to assign a function body to the function name
 (DEF fname (LAMBDA (arg1 arg2…argn) fbody))

• For example:

 member[x,l] =

Copyright © 2003 by Hanan Samet



lp1181
b

MEMBERSHIP IN LIST

• How would we search for x in list L1?

 1. base case:

  how do we know when we are done?

 2. induction:

 3. member[x,l] =

• How to write function in LISP?

• Need to assign a function body to the function name
 (DEF fname (LAMBDA (arg1 arg2…argn) fbody))

• For example:

 member[x,l] =

Copyright © 2003 by Hanan Samet

lp112
r

check for null list: if nl then nil

Copyright © 2003 by Hanan Samet



lp1181
b

MEMBERSHIP IN LIST

• How would we search for x in list L1?

 1. base case:

  how do we know when we are done?

 2. induction:

 3. member[x,l] =

• How to write function in LISP?

• Need to assign a function body to the function name
 (DEF fname (LAMBDA (arg1 arg2…argn) fbody))

• For example:

 member[x,l] =

Copyright © 2003 by Hanan Samet

lp112
r

check for null list: if nl then nil

Copyright © 2003 by Hanan Samet

lp113
z

check first element: if al eq x then T

Copyright © 2003 by Hanan Samet



lp1181
b

MEMBERSHIP IN LIST

• How would we search for x in list L1?

 1. base case:

  how do we know when we are done?

 2. induction:

 3. member[x,l] =

• How to write function in LISP?

• Need to assign a function body to the function name
 (DEF fname (LAMBDA (arg1 arg2…argn) fbody))

• For example:

 member[x,l] =

Copyright © 2003 by Hanan Samet

lp112
r

check for null list: if nl then nil

Copyright © 2003 by Hanan Samet

lp113
z

check first element: if al eq x then T

Copyright © 2003 by Hanan Samet

lp114
g

check rest of list:   dl

• member[x, dl]

Copyright © 2003 by Hanan Samet



lp1181
b

MEMBERSHIP IN LIST

• How would we search for x in list L1?

 1. base case:

  how do we know when we are done?

 2. induction:

 3. member[x,l] =

• How to write function in LISP?

• Need to assign a function body to the function name
 (DEF fname (LAMBDA (arg1 arg2…argn) fbody))

• For example:

 member[x,l] =

Copyright © 2003 by Hanan Samet

lp112
r

check for null list: if nl then nil

Copyright © 2003 by Hanan Samet

lp113
z

check first element: if al eq x then T

Copyright © 2003 by Hanan Samet

lp114
g

check rest of list:   dl

• member[x, dl]

Copyright © 2003 by Hanan Samet

lp115
v

if nl then nil
else if al eq x then T
else member[x, dl]

Copyright © 2003 by Hanan Samet



lp1181
b

MEMBERSHIP IN LIST

• How would we search for x in list L1?

 1. base case:

  how do we know when we are done?

 2. induction:

 3. member[x,l] =

• How to write function in LISP?

• Need to assign a function body to the function name
 (DEF fname (LAMBDA (arg1 arg2…argn) fbody))

• For example:

 member[x,l] =

Copyright © 2003 by Hanan Samet

lp112
r

check for null list: if nl then nil

Copyright © 2003 by Hanan Samet

lp113
z

check first element: if al eq x then T

Copyright © 2003 by Hanan Samet

lp114
g

check rest of list:   dl

• member[x, dl]

Copyright © 2003 by Hanan Samet

lp115
v

if nl then nil
else if al eq x then T
else member[x, dl]

Copyright © 2003 by Hanan Samet

lp116
r

(DEF MEMBER (LAMBDA X L)
            (COND ((NULL L) NIL)
                   ((EQ X (CAR L)) T)
                   (T (MEMBER X (CDR L))))))

Copyright © 2003 by Hanan Samet



lp1281
b

MEMBERSHIP IN S-EXPRESSION

• How would we search for x in s-expression s?

• Analogous to searching terminal nodes of a tree

 membersexpr[x,s]=

• Base case is a node corresponding to atom

• Otherwise, check left subtree followed by right subtree

• Observations on the LISP s-expression tree:
 1. tree is being traversed in preorder
 2. information is only stored in terminal nodes
 3. each non-leaf node contains two pointers,
  CAR and CDR, to left and right subtrees, respectively

• Can we search for occurence of an entire s-expression?

• What is the terminating case (or cases)?

 members[x,s]=

• Note use of EQUAL to check equality of s-expressions
 because we want to test for equivalent substructures
 i.e., same terminal atomic nodes

Copyright © 2003 by Hanan Samet



lp1281
b

MEMBERSHIP IN S-EXPRESSION

• How would we search for x in s-expression s?

• Analogous to searching terminal nodes of a tree

 membersexpr[x,s]=

• Base case is a node corresponding to atom

• Otherwise, check left subtree followed by right subtree

• Observations on the LISP s-expression tree:
 1. tree is being traversed in preorder
 2. information is only stored in terminal nodes
 3. each non-leaf node contains two pointers,
  CAR and CDR, to left and right subtrees, respectively

• Can we search for occurence of an entire s-expression?

• What is the terminating case (or cases)?

 members[x,s]=

• Note use of EQUAL to check equality of s-expressions
 because we want to test for equivalent substructures
 i.e., same terminal atomic nodes

Copyright © 2003 by Hanan Samet

lp122
r

if  ats then x eq s
else membersexpr[x, as] or membersexpr[x, ds]

Copyright © 2003 by Hanan Samet



lp1281
b

MEMBERSHIP IN S-EXPRESSION

• How would we search for x in s-expression s?

• Analogous to searching terminal nodes of a tree

 membersexpr[x,s]=

• Base case is a node corresponding to atom

• Otherwise, check left subtree followed by right subtree

• Observations on the LISP s-expression tree:
 1. tree is being traversed in preorder
 2. information is only stored in terminal nodes
 3. each non-leaf node contains two pointers,
  CAR and CDR, to left and right subtrees, respectively

• Can we search for occurence of an entire s-expression?

• What is the terminating case (or cases)?

 members[x,s]=

• Note use of EQUAL to check equality of s-expressions
 because we want to test for equivalent substructures
 i.e., same terminal atomic nodes

Copyright © 2003 by Hanan Samet

lp122
r

if  ats then x eq s
else membersexpr[x, as] or membersexpr[x, ds]

Copyright © 2003 by Hanan Samet

lp123
z

atom s ⇒  x eq s

if  ats then x eq s

Copyright © 2003 by Hanan Samet



lp1281
b

MEMBERSHIP IN S-EXPRESSION

• How would we search for x in s-expression s?

• Analogous to searching terminal nodes of a tree

 membersexpr[x,s]=

• Base case is a node corresponding to atom

• Otherwise, check left subtree followed by right subtree

• Observations on the LISP s-expression tree:
 1. tree is being traversed in preorder
 2. information is only stored in terminal nodes
 3. each non-leaf node contains two pointers,
  CAR and CDR, to left and right subtrees, respectively

• Can we search for occurence of an entire s-expression?

• What is the terminating case (or cases)?

 members[x,s]=

• Note use of EQUAL to check equality of s-expressions
 because we want to test for equivalent substructures
 i.e., same terminal atomic nodes

Copyright © 2003 by Hanan Samet

lp122
r

if  ats then x eq s
else membersexpr[x, as] or membersexpr[x, ds]

Copyright © 2003 by Hanan Samet

lp123
z

atom s ⇒  x eq s

if  ats then x eq s

Copyright © 2003 by Hanan Samet

lp124
g

else x equal s or
     members[x, al] or members[x, dl]

not atom s ⇒ x equal s or
 members[x, al] or members[x, dl]

Copyright © 2003 by Hanan Samet



lp1381
b

ALTERNATIVE LIST REPRESENTATIONS

• Suppose we organize list by CDR instead of by CAR?
 1. What is lisp representation of this list:

 2. Work backwards:
  CDR(L3)=

  CDAR(L3)=

  CDAAR(L3)=

  CDAAAR(L3)=

• Circular structures
 1. a list could point back to component of itself
  CAR(L4)=

  CADR(L4)=

  CADDR(L4)=

  CDDDR(L4)=

  CADDDR(L4)=

 2. thus the s-expression is not tree-like
 3. we will in general not be dealing with such structures

A

B

C

D

L3

L4

A

B

C

Copyright © 2003 by Hanan Samet



lp1381
b

ALTERNATIVE LIST REPRESENTATIONS

• Suppose we organize list by CDR instead of by CAR?
 1. What is lisp representation of this list:

 2. Work backwards:
  CDR(L3)=

  CDAR(L3)=

  CDAAR(L3)=

  CDAAAR(L3)=

• Circular structures
 1. a list could point back to component of itself
  CAR(L4)=

  CADR(L4)=

  CADDR(L4)=

  CDDDR(L4)=

  CADDDR(L4)=

 2. thus the s-expression is not tree-like
 3. we will in general not be dealing with such structures

A

B

C

D

L3

L4

A

B

C

Copyright © 2003 by Hanan Samet

lp132
r

A

Copyright © 2003 by Hanan Samet



lp1381
b

ALTERNATIVE LIST REPRESENTATIONS

• Suppose we organize list by CDR instead of by CAR?
 1. What is lisp representation of this list:

 2. Work backwards:
  CDR(L3)=

  CDAR(L3)=

  CDAAR(L3)=

  CDAAAR(L3)=

• Circular structures
 1. a list could point back to component of itself
  CAR(L4)=

  CADR(L4)=

  CADDR(L4)=

  CDDDR(L4)=

  CADDDR(L4)=

 2. thus the s-expression is not tree-like
 3. we will in general not be dealing with such structures

A

B

C

D

L3

L4

A

B

C

Copyright © 2003 by Hanan Samet

lp132
r

A

Copyright © 2003 by Hanan Samet

lp133
z

B

Copyright © 2003 by Hanan Samet



lp1381
b

ALTERNATIVE LIST REPRESENTATIONS

• Suppose we organize list by CDR instead of by CAR?
 1. What is lisp representation of this list:

 2. Work backwards:
  CDR(L3)=

  CDAR(L3)=

  CDAAR(L3)=

  CDAAAR(L3)=

• Circular structures
 1. a list could point back to component of itself
  CAR(L4)=

  CADR(L4)=

  CADDR(L4)=

  CDDDR(L4)=

  CADDDR(L4)=

 2. thus the s-expression is not tree-like
 3. we will in general not be dealing with such structures

A

B

C

D

L3

L4

A

B

C

Copyright © 2003 by Hanan Samet

lp132
r

A

Copyright © 2003 by Hanan Samet

lp133
z

B

Copyright © 2003 by Hanan Samet

lp134
g

C

Copyright © 2003 by Hanan Samet



lp1381
b

ALTERNATIVE LIST REPRESENTATIONS

• Suppose we organize list by CDR instead of by CAR?
 1. What is lisp representation of this list:

 2. Work backwards:
  CDR(L3)=

  CDAR(L3)=

  CDAAR(L3)=

  CDAAAR(L3)=

• Circular structures
 1. a list could point back to component of itself
  CAR(L4)=

  CADR(L4)=

  CADDR(L4)=

  CDDDR(L4)=

  CADDDR(L4)=

 2. thus the s-expression is not tree-like
 3. we will in general not be dealing with such structures

A

B

C

D

L3

L4

A

B

C

Copyright © 2003 by Hanan Samet

lp132
r

A

Copyright © 2003 by Hanan Samet

lp133
z

B

Copyright © 2003 by Hanan Samet

lp134
g

C

Copyright © 2003 by Hanan Samet

lp135
v

D

Copyright © 2003 by Hanan Samet



lp1381
b

ALTERNATIVE LIST REPRESENTATIONS

• Suppose we organize list by CDR instead of by CAR?
 1. What is lisp representation of this list:

 2. Work backwards:
  CDR(L3)=

  CDAR(L3)=

  CDAAR(L3)=

  CDAAAR(L3)=

• Circular structures
 1. a list could point back to component of itself
  CAR(L4)=

  CADR(L4)=

  CADDR(L4)=

  CDDDR(L4)=

  CADDDR(L4)=

 2. thus the s-expression is not tree-like
 3. we will in general not be dealing with such structures

A

B

C

D

L3

L4

A

B

C

Copyright © 2003 by Hanan Samet

lp132
r

A

Copyright © 2003 by Hanan Samet

lp133
z

B

Copyright © 2003 by Hanan Samet

lp134
g

C

Copyright © 2003 by Hanan Samet

lp135
v

D

Copyright © 2003 by Hanan Samet

lp136
r

A

Copyright © 2003 by Hanan Samet



lp1381
b

ALTERNATIVE LIST REPRESENTATIONS

• Suppose we organize list by CDR instead of by CAR?
 1. What is lisp representation of this list:

 2. Work backwards:
  CDR(L3)=

  CDAR(L3)=

  CDAAR(L3)=

  CDAAAR(L3)=

• Circular structures
 1. a list could point back to component of itself
  CAR(L4)=

  CADR(L4)=

  CADDR(L4)=

  CDDDR(L4)=

  CADDDR(L4)=

 2. thus the s-expression is not tree-like
 3. we will in general not be dealing with such structures

A

B

C

D

L3

L4

A

B

C

Copyright © 2003 by Hanan Samet

lp132
r

A

Copyright © 2003 by Hanan Samet

lp133
z

B

Copyright © 2003 by Hanan Samet

lp134
g

C

Copyright © 2003 by Hanan Samet

lp135
v

D

Copyright © 2003 by Hanan Samet

lp136
r

A

Copyright © 2003 by Hanan Samet

lp137
z

B

Copyright © 2003 by Hanan Samet



lp1381
b

ALTERNATIVE LIST REPRESENTATIONS

• Suppose we organize list by CDR instead of by CAR?
 1. What is lisp representation of this list:

 2. Work backwards:
  CDR(L3)=

  CDAR(L3)=

  CDAAR(L3)=

  CDAAAR(L3)=

• Circular structures
 1. a list could point back to component of itself
  CAR(L4)=

  CADR(L4)=

  CADDR(L4)=

  CDDDR(L4)=

  CADDDR(L4)=

 2. thus the s-expression is not tree-like
 3. we will in general not be dealing with such structures

A

B

C

D

L3

L4

A

B

C

Copyright © 2003 by Hanan Samet

lp132
r

A

Copyright © 2003 by Hanan Samet

lp133
z

B

Copyright © 2003 by Hanan Samet

lp134
g

C

Copyright © 2003 by Hanan Samet

lp135
v

D

Copyright © 2003 by Hanan Samet

lp136
r

A

Copyright © 2003 by Hanan Samet

lp137
z

B

Copyright © 2003 by Hanan Samet

lp138
g

C

Copyright © 2003 by Hanan Samet



lp1381
b

ALTERNATIVE LIST REPRESENTATIONS

• Suppose we organize list by CDR instead of by CAR?
 1. What is lisp representation of this list:

 2. Work backwards:
  CDR(L3)=

  CDAR(L3)=

  CDAAR(L3)=

  CDAAAR(L3)=

• Circular structures
 1. a list could point back to component of itself
  CAR(L4)=

  CADR(L4)=

  CADDR(L4)=

  CDDDR(L4)=

  CADDDR(L4)=

 2. thus the s-expression is not tree-like
 3. we will in general not be dealing with such structures

A

B

C

D

L3

L4

A

B

C

Copyright © 2003 by Hanan Samet

lp132
r

A

Copyright © 2003 by Hanan Samet

lp133
z

B

Copyright © 2003 by Hanan Samet

lp134
g

C

Copyright © 2003 by Hanan Samet

lp135
v

D

Copyright © 2003 by Hanan Samet

lp136
r

A

Copyright © 2003 by Hanan Samet

lp137
z

B

Copyright © 2003 by Hanan Samet

lp138
g

C

Copyright © 2003 by Hanan Samet

lp139
v

L4

Copyright © 2003 by Hanan Samet



lp1381
b

ALTERNATIVE LIST REPRESENTATIONS

• Suppose we organize list by CDR instead of by CAR?
 1. What is lisp representation of this list:

 2. Work backwards:
  CDR(L3)=

  CDAR(L3)=

  CDAAR(L3)=

  CDAAAR(L3)=

• Circular structures
 1. a list could point back to component of itself
  CAR(L4)=

  CADR(L4)=

  CADDR(L4)=

  CDDDR(L4)=

  CADDDR(L4)=

 2. thus the s-expression is not tree-like
 3. we will in general not be dealing with such structures

A

B

C

D

L3

L4

A

B

C

Copyright © 2003 by Hanan Samet

lp132
r

A

Copyright © 2003 by Hanan Samet

lp133
z

B

Copyright © 2003 by Hanan Samet

lp134
g

C

Copyright © 2003 by Hanan Samet

lp135
v

D

Copyright © 2003 by Hanan Samet

lp136
r

A

Copyright © 2003 by Hanan Samet

lp137
z

B

Copyright © 2003 by Hanan Samet

lp138
g

C

Copyright © 2003 by Hanan Samet

lp139
v

L4

Copyright © 2003 by Hanan Samet

lp1310

A

r

Copyright © 2003 by Hanan Samet



lp14

EXTENDED LIST NOTATION

• Next to last element has its CDR point to last element

• Sometimes used when desperate to save space
• Complicates many recursive algorithms by requiring
 a special check for the last element
• Empty list difficult to represent in a consistent manner
 with lists we have: NULL(x)
 with extended lists: ATOM(CDR(x))
• Note that NIL is the empty list so adding element to it
 is just like adding element to a normal list

A B C

L5

CA B

L6

Copyright © 2003 by Hanan Samet



lp1581
b

CONDITIONAL EXPRESSIONS

• Statements of the form:
 if P then a else b  (P is known as a predicate )
• In LISP such a test is equivalent to writing:
 if not(NULL(P)) then a else b

• Note we are not testing for true, just not false (i.e., not NIL)
• More generally:
 (COND (P1 e11)
   (P2 e21)
   (P3 e31 e32 e33)
   (P4 e4)
   (T e5))
 1. basically find first non-NIL Pi and evaluate ei1, ei2,…ein
 2. return the value of the last of the ei’s – i.e., ein 
 3. T denotes the final else
 4. any of the Pi or eij could themselves be COND forms
• When writing conditional expression in LISP we have:
 (COND(P a)  if P then a
      (T b))  else b

 (COND(P a)  if P then a
      (Q b c) else if Q then b also c
      …   else …
      (S d)  else if S then d
      (T e))  else e

• Ex:

 TRI[x] =

}
}

- ∞ < x<- 1 ⇒  tri(x)=0
-1 ≤ x< 0 ⇒  tri(x)=1+x
 0 ≤ x< 1 ⇒  tri(x)=1-x
 1 ≤ x< ∞ ⇒  tri(x)=0

tri(x)
1

-1 x1

Copyright © 2003 by Hanan Samet



lp1581
b

CONDITIONAL EXPRESSIONS

• Statements of the form:
 if P then a else b  (P is known as a predicate )
• In LISP such a test is equivalent to writing:
 if not(NULL(P)) then a else b

• Note we are not testing for true, just not false (i.e., not NIL)
• More generally:
 (COND (P1 e11)
   (P2 e21)
   (P3 e31 e32 e33)
   (P4 e4)
   (T e5))
 1. basically find first non-NIL Pi and evaluate ei1, ei2,…ein
 2. return the value of the last of the ei’s – i.e., ein 
 3. T denotes the final else
 4. any of the Pi or eij could themselves be COND forms
• When writing conditional expression in LISP we have:
 (COND(P a)  if P then a
      (T b))  else b

 (COND(P a)  if P then a
      (Q b c) else if Q then b also c
      …   else …
      (S d)  else if S then d
      (T e))  else e

• Ex:

 TRI[x] =

}
}

- ∞ < x<- 1 ⇒  tri(x)=0
-1 ≤ x< 0 ⇒  tri(x)=1+x
 0 ≤ x< 1 ⇒  tri(x)=1-x
 1 ≤ x< ∞ ⇒  tri(x)=0

tri(x)
1

-1 x1

Copyright © 2003 by Hanan Samet

lp152
r

if x<-1 then 0
else if x<0 then 1+x
else if x<1 then 1-x
else 0

Copyright © 2003 by Hanan Samet



lp16

SPECIAL FORMS

• Special forms imply special handling by EVAL

• SETQ is special form for binding values to variables
 does not evaluate its first argument

• SET is like SETQ except that all arguments are evaluated
 (SETQ L1 (CAR A)) ≡ (SET (QUOTE L1) (CAR A))

• Generally LISP evaluates in call-by-value fashion
 arguments evaluated left-to-right then function invoked
 e.g., (PLUS (TIMES 2 3) 4)
 1. multiply 2 and 3 to get 6
 2. invoke PLUS on 6 and 4 to yield 10

• COND is special form – args evaluated until TRUE found

 EVAL[l] = if l[1] eq 'COND then EVALCOND(CDR l)
  .
  .
  .

 EVALCOND[l] = if NULL(l) then NIL

   else if EVAL(l[1,1]) then EVLIST(CDR l[1])

   else EVALCOND[CDR l]

 EVLIST[l] = if NULL(CDR(l)) then EVAL(l[1])

  else EVAL(l[1]) also EVLIST[CDR l]

Copyright © 2003 by Hanan Samet



lp1781
b

SHORT-CIRCUITING OF BOOLEAN CONNECTIVES

• LISP does short-circuit evaluation of Boolean expressions
 as soon as predicate’s value is determined, evaluation ends
 Ex: A AND B: B is not evaluated if A is known to be NIL

  A OR B:  B is not evaluated if A is known to be non-NIL

• Can also represent AND and OR in terms of conditionals:
 A1 AND A2 AND A3 … AND An
 if A1 then
  if A2 then
   if A3 then    .    .    .
    if An–1 then An
    else nil
   else nil
  else nil
 else nil

• Better is:

• Similarly for OR:
 A1 OR A2 OR A3 … OR An

Copyright © 2003 by Hanan Samet



lp1781
b

SHORT-CIRCUITING OF BOOLEAN CONNECTIVES

• LISP does short-circuit evaluation of Boolean expressions
 as soon as predicate’s value is determined, evaluation ends
 Ex: A AND B: B is not evaluated if A is known to be NIL

  A OR B:  B is not evaluated if A is known to be non-NIL

• Can also represent AND and OR in terms of conditionals:
 A1 AND A2 AND A3 … AND An
 if A1 then
  if A2 then
   if A3 then    .    .    .
    if An–1 then An
    else nil
   else nil
  else nil
 else nil

• Better is:

• Similarly for OR:
 A1 OR A2 OR A3 … OR An

Copyright © 2003 by Hanan Samet

lp172
r

if not(A1) then nil
else if not(A2) then nil
else …
else if not(An–1) then nil
else An

Copyright © 2003 by Hanan Samet



lp1781
b

SHORT-CIRCUITING OF BOOLEAN CONNECTIVES

• LISP does short-circuit evaluation of Boolean expressions
 as soon as predicate’s value is determined, evaluation ends
 Ex: A AND B: B is not evaluated if A is known to be NIL

  A OR B:  B is not evaluated if A is known to be non-NIL

• Can also represent AND and OR in terms of conditionals:
 A1 AND A2 AND A3 … AND An
 if A1 then
  if A2 then
   if A3 then    .    .    .
    if An–1 then An
    else nil
   else nil
  else nil
 else nil

• Better is:

• Similarly for OR:
 A1 OR A2 OR A3 … OR An

Copyright © 2003 by Hanan Samet

lp172
r

if not(A1) then nil
else if not(A2) then nil
else …
else if not(An–1) then nil
else An

Copyright © 2003 by Hanan Samet

lp173
z

if A1 then T
else if A2 then T
else …
else if An–1 then T
else An

Copyright © 2003 by Hanan Samet



lp18

RECURSION

• We have already seen recursive functions (MEMBER, etc.)

• Until now we have only constructed predicates, i.e.,
 functions that return only TRUE or FALSE (T or NIL)

• General LISP function maps from (s-expr)n to s-expr

• We will now construct functions that return lists or
 general s-expressions

Copyright © 2003 by Hanan Samet



lp1981
b

RECURSION EXAMPLE

• Given a list, return a list consisting of every other element
 in the input list starting with the first element
• Ex:  ALT['(A B C D E)] ⇒
   ALT['(A B)] ⇒
   ALT['(A) ] ⇒
   ALT['()] ⇒

• ALT[x] =

Copyright © 2003 by Hanan Samet



lp1981
b

RECURSION EXAMPLE

• Given a list, return a list consisting of every other element
 in the input list starting with the first element
• Ex:  ALT['(A B C D E)] ⇒
   ALT['(A B)] ⇒
   ALT['(A) ] ⇒
   ALT['()] ⇒

• ALT[x] =

Copyright © 2003 by Hanan Samet

lp192
r

(A C E)

Copyright © 2003 by Hanan Samet



lp1981
b

RECURSION EXAMPLE

• Given a list, return a list consisting of every other element
 in the input list starting with the first element
• Ex:  ALT['(A B C D E)] ⇒
   ALT['(A B)] ⇒
   ALT['(A) ] ⇒
   ALT['()] ⇒

• ALT[x] =

Copyright © 2003 by Hanan Samet

lp192
r

(A C E)

Copyright © 2003 by Hanan Samet

lp193
z

(A)

Copyright © 2003 by Hanan Samet



lp1981
b

RECURSION EXAMPLE

• Given a list, return a list consisting of every other element
 in the input list starting with the first element
• Ex:  ALT['(A B C D E)] ⇒
   ALT['(A B)] ⇒
   ALT['(A) ] ⇒
   ALT['()] ⇒

• ALT[x] =

Copyright © 2003 by Hanan Samet

lp192
r

(A C E)

Copyright © 2003 by Hanan Samet

lp193
z

(A)

Copyright © 2003 by Hanan Samet

lp194
g

(A)

Copyright © 2003 by Hanan Samet



lp1981
b

RECURSION EXAMPLE

• Given a list, return a list consisting of every other element
 in the input list starting with the first element
• Ex:  ALT['(A B C D E)] ⇒
   ALT['(A B)] ⇒
   ALT['(A) ] ⇒
   ALT['()] ⇒

• ALT[x] =

Copyright © 2003 by Hanan Samet

lp192
r

(A C E)

Copyright © 2003 by Hanan Samet

lp193
z

(A)

Copyright © 2003 by Hanan Samet

lp194
g

(A)

Copyright © 2003 by Hanan Samet

lp195
v

()

Copyright © 2003 by Hanan Samet



lp1981
b

RECURSION EXAMPLE

• Given a list, return a list consisting of every other element
 in the input list starting with the first element
• Ex:  ALT['(A B C D E)] ⇒
   ALT['(A B)] ⇒
   ALT['(A) ] ⇒
   ALT['()] ⇒

• ALT[x] =

Copyright © 2003 by Hanan Samet

lp192
r

(A C E)

Copyright © 2003 by Hanan Samet

lp193
z

(A)

Copyright © 2003 by Hanan Samet

lp194
g

(A)

Copyright © 2003 by Hanan Samet

lp195
v

()

Copyright © 2003 by Hanan Samet

lp196
r

if nx or  ndx then x
else ax . alt[  ddx]

Copyright © 2003 by Hanan Samet



lp20

EXAMPLES OF ALT

• To see that this really works:
 ALT['(A B)] = if n'(A B) ∨   nd'(A B) then'(A B)
     else a'(A B) . ALT[  dd'(A B)]

    = if NIL ∨   nd'(A B) then '(A B)
     else a'(A B) . ALT[  dd'(A B)]

    = if NIL then '(A B)
     else a'(A B) . ALT[  dd'(A B)]

    = a'(A B) . ALT[  dd'(A B)]

    = 'A . ALT[NIL]

    = 'A . [ if nNIL ∨   ndNIL then NIL
       else aNIL . ALT[  ddNIL]]

    = 'A . [ if T then NIL
       else aNIL . ALT[  ddNIL]]

    = 'A . [ NIL]

    = '(A)

• A briefer example:
 ALT['(A B C D E)] = 'A.ALT['(C D E)]

      = 'A.['C.ALT['(E)]]

      = 'A.['C.(E)]

      = '(A C E)

• Observations:
 1. rules for evaluating Boolean conditions are important
  since if evaluation of OR continued after finding one NIL

  we would then evaluate dNIL which is undefined
 2. we can build a list result by returning from recursion

Copyright © 2003 by Hanan Samet



lp2181
b

LAST ATOM OF A LIST

• Construct a function to return the last atom of a list
 base case:

 induction case:

 LAST[x] =

• Is there a problem with this definition?
 1. what happens when called on an atom?
  • if CDR of atom is property list we may never terminate
  • if CDR of atom is NIL then we get CAR of atom which
   is also probably not what we want
  • this definition only works if x is a list

 2. what if the list is empty?
  • same problem, as empty is represented by NIL atom
  • could explicitly check for empty list and return NIL

• Exercise: modify LAST to return a value of NIL if the last
 element of the list is an atom

Copyright © 2003 by Hanan Samet



lp2181
b

LAST ATOM OF A LIST

• Construct a function to return the last atom of a list
 base case:

 induction case:

 LAST[x] =

• Is there a problem with this definition?
 1. what happens when called on an atom?
  • if CDR of atom is property list we may never terminate
  • if CDR of atom is NIL then we get CAR of atom which
   is also probably not what we want
  • this definition only works if x is a list

 2. what if the list is empty?
  • same problem, as empty is represented by NIL atom
  • could explicitly check for empty list and return NIL

• Exercise: modify LAST to return a value of NIL if the last
 element of the list is an atom

Copyright © 2003 by Hanan Samet

lp212
r

nothing after current element?
if  ndx then ax

Copyright © 2003 by Hanan Samet



lp2181
b

LAST ATOM OF A LIST

• Construct a function to return the last atom of a list
 base case:

 induction case:

 LAST[x] =

• Is there a problem with this definition?
 1. what happens when called on an atom?
  • if CDR of atom is property list we may never terminate
  • if CDR of atom is NIL then we get CAR of atom which
   is also probably not what we want
  • this definition only works if x is a list

 2. what if the list is empty?
  • same problem, as empty is represented by NIL atom
  • could explicitly check for empty list and return NIL

• Exercise: modify LAST to return a value of NIL if the last
 element of the list is an atom

Copyright © 2003 by Hanan Samet

lp212
r

nothing after current element?
if  ndx then ax

Copyright © 2003 by Hanan Samet

lp213
z

get last of rest of list

Copyright © 2003 by Hanan Samet



lp2181
b

LAST ATOM OF A LIST

• Construct a function to return the last atom of a list
 base case:

 induction case:

 LAST[x] =

• Is there a problem with this definition?
 1. what happens when called on an atom?
  • if CDR of atom is property list we may never terminate
  • if CDR of atom is NIL then we get CAR of atom which
   is also probably not what we want
  • this definition only works if x is a list

 2. what if the list is empty?
  • same problem, as empty is represented by NIL atom
  • could explicitly check for empty list and return NIL

• Exercise: modify LAST to return a value of NIL if the last
 element of the list is an atom

Copyright © 2003 by Hanan Samet

lp212
r

nothing after current element?
if  ndx then ax

Copyright © 2003 by Hanan Samet

lp213
z

get last of rest of list

Copyright © 2003 by Hanan Samet

lp214
g

if  ndx then ax
else last[ dx]

Copyright © 2003 by Hanan Samet



lp2281
b

SUBSTITUTE FUNCTION

• Substitute s-expression x  for all occurrences
 of atom y in the s-expression z
 for example: SUBST['(A.B),'Y,'((Y.A).Y)]
  yields: (((A.B).A).(A.B))

• One approach is to check each item in z for equality
 with the atom y and if so replace by s-expression x

 base case:

 inductive case:

 SUBST[x,y,z] =

Copyright © 2003 by Hanan Samet



lp2281
b

SUBSTITUTE FUNCTION

• Substitute s-expression x  for all occurrences
 of atom y in the s-expression z
 for example: SUBST['(A.B),'Y,'((Y.A).Y)]
  yields: (((A.B).A).(A.B))

• One approach is to check each item in z for equality
 with the atom y and if so replace by s-expression x

 base case:

 inductive case:

 SUBST[x,y,z] =

Copyright © 2003 by Hanan Samet

lp222
r

if  atz then
 if z eq y then x
 else z

Copyright © 2003 by Hanan Samet



lp2281
b

SUBSTITUTE FUNCTION

• Substitute s-expression x  for all occurrences
 of atom y in the s-expression z
 for example: SUBST['(A.B),'Y,'((Y.A).Y)]
  yields: (((A.B).A).(A.B))

• One approach is to check each item in z for equality
 with the atom y and if so replace by s-expression x

 base case:

 inductive case:

 SUBST[x,y,z] =

Copyright © 2003 by Hanan Samet

lp222
r

if  atz then
 if z eq y then x
 else z

Copyright © 2003 by Hanan Samet

lp223
z

subst[x,y, az], subst[x,y, dz]

However, we want the s-expression as our result
• CONS the results of subst on the head and tail of z

Copyright © 2003 by Hanan Samet



lp2281
b

SUBSTITUTE FUNCTION

• Substitute s-expression x  for all occurrences
 of atom y in the s-expression z
 for example: SUBST['(A.B),'Y,'((Y.A).Y)]
  yields: (((A.B).A).(A.B))

• One approach is to check each item in z for equality
 with the atom y and if so replace by s-expression x

 base case:

 inductive case:

 SUBST[x,y,z] =

Copyright © 2003 by Hanan Samet

lp222
r

if  atz then
 if z eq y then x
 else z

Copyright © 2003 by Hanan Samet

lp223
z

subst[x,y, az], subst[x,y, dz]

However, we want the s-expression as our result
• CONS the results of subst on the head and tail of z

Copyright © 2003 by Hanan Samet

lp224
g

if  atz then
 if z eq y then x
 else z
else subst[x,y, az].subst[x,y, dz]

Copyright © 2003 by Hanan Samet



lp2381
b

APPEND FUNCTION

• Takes two lists as arguments and concatenates them

• Could march down first list to last element then
 change link to point to second list

• Since argument lists may be shared with other data
 structures we instead make a copy of the first list

• Form a list consisting of all elements of x until reach
 end of x at which time attach y

 base case:

 induction:

 APPEND[x,y] =

x

y

…

…

Copyright © 2003 by Hanan Samet



lp2381
b

APPEND FUNCTION

• Takes two lists as arguments and concatenates them

• Could march down first list to last element then
 change link to point to second list

• Since argument lists may be shared with other data
 structures we instead make a copy of the first list

• Form a list consisting of all elements of x until reach
 end of x at which time attach y

 base case:

 induction:

 APPEND[x,y] =

x

y

…

…

Copyright © 2003 by Hanan Samet

lp232
r

if nx then y

Copyright © 2003 by Hanan Samet



lp2381
b

APPEND FUNCTION

• Takes two lists as arguments and concatenates them

• Could march down first list to last element then
 change link to point to second list

• Since argument lists may be shared with other data
 structures we instead make a copy of the first list

• Form a list consisting of all elements of x until reach
 end of x at which time attach y

 base case:

 induction:

 APPEND[x,y] =

x

y

…

…

Copyright © 2003 by Hanan Samet

lp232
r

if nx then y

Copyright © 2003 by Hanan Samet

lp233
z

[ ax].append[ dx,y]

Copyright © 2003 by Hanan Samet



lp2381
b

APPEND FUNCTION

• Takes two lists as arguments and concatenates them

• Could march down first list to last element then
 change link to point to second list

• Since argument lists may be shared with other data
 structures we instead make a copy of the first list

• Form a list consisting of all elements of x until reach
 end of x at which time attach y

 base case:

 induction:

 APPEND[x,y] =

x

y

…

…

Copyright © 2003 by Hanan Samet

lp232
r

if nx then y

Copyright © 2003 by Hanan Samet

lp233
z

[ ax].append[ dx,y]

Copyright © 2003 by Hanan Samet

lp234
g

if nx then y
else [ ax].APPEND[ dx,y]

Copyright © 2003 by Hanan Samet



lp2481
b

REVERSE FUNCTION

• Use auxiliary function to simplify task
 REVERSE[x]=

 REVERSE1[x,y]=

• Variable y serves as place-holder to contain result
• Also possible to define using only one function and APPEND

 REVERSE[x]=

• Using an auxiliary function is more efficient than using APPEND

 1. no need to postpone operations until return from recursion
 2. avoids repeated calls to APPEND to make new lists

Copyright © 2003 by Hanan Samet



lp2481
b

REVERSE FUNCTION

• Use auxiliary function to simplify task
 REVERSE[x]=

 REVERSE1[x,y]=

• Variable y serves as place-holder to contain result
• Also possible to define using only one function and APPEND

 REVERSE[x]=

• Using an auxiliary function is more efficient than using APPEND

 1. no need to postpone operations until return from recursion
 2. avoids repeated calls to APPEND to make new lists

Copyright © 2003 by Hanan Samet

lp242
r

REVERSE1[x,nil]

Copyright © 2003 by Hanan Samet



lp2481
b

REVERSE FUNCTION

• Use auxiliary function to simplify task
 REVERSE[x]=

 REVERSE1[x,y]=

• Variable y serves as place-holder to contain result
• Also possible to define using only one function and APPEND

 REVERSE[x]=

• Using an auxiliary function is more efficient than using APPEND

 1. no need to postpone operations until return from recursion
 2. avoids repeated calls to APPEND to make new lists

Copyright © 2003 by Hanan Samet

lp242
r

REVERSE1[x,nil]

Copyright © 2003 by Hanan Samet

lp243
z

if nx then y
else REVERSE1[ dx,< ax>.y]

Copyright © 2003 by Hanan Samet



lp2481
b

REVERSE FUNCTION

• Use auxiliary function to simplify task
 REVERSE[x]=

 REVERSE1[x,y]=

• Variable y serves as place-holder to contain result
• Also possible to define using only one function and APPEND

 REVERSE[x]=

• Using an auxiliary function is more efficient than using APPEND

 1. no need to postpone operations until return from recursion
 2. avoids repeated calls to APPEND to make new lists

Copyright © 2003 by Hanan Samet

lp242
r

REVERSE1[x,nil]

Copyright © 2003 by Hanan Samet

lp243
z

if nx then y
else REVERSE1[ dx,< ax>.y]

Copyright © 2003 by Hanan Samet

lp244
g

if nx then nil
else REVERSE[ dx]*< ax>

Copyright © 2003 by Hanan Samet



lp2581
b

FLATTEN FUNCTION

• Make flat list of all atoms in a given s-expression

• Use auxiliary function FLAT[x,y] where y accumulates
 the atoms

• Result list will contain atoms encountered from left to right

• Whenever an atom is encountered we add it to y

 base case:

 induction:

 FLATTEN[x]=

 FLAT[x,y]=

• This technique is useful for applying an arbitrary function
 to both the head and tail of a given s-expression

• Could also be constructed without using auxiliary function:
 FLATTEN[x]=

Copyright © 2003 by Hanan Samet



lp2581
b

FLATTEN FUNCTION

• Make flat list of all atoms in a given s-expression

• Use auxiliary function FLAT[x,y] where y accumulates
 the atoms

• Result list will contain atoms encountered from left to right

• Whenever an atom is encountered we add it to y

 base case:

 induction:

 FLATTEN[x]=

 FLAT[x,y]=

• This technique is useful for applying an arbitrary function
 to both the head and tail of a given s-expression

• Could also be constructed without using auxiliary function:
 FLATTEN[x]=

Copyright © 2003 by Hanan Samet

lp252
r

if  atx then x.y

Copyright © 2003 by Hanan Samet



lp2581
b

FLATTEN FUNCTION

• Make flat list of all atoms in a given s-expression

• Use auxiliary function FLAT[x,y] where y accumulates
 the atoms

• Result list will contain atoms encountered from left to right

• Whenever an atom is encountered we add it to y

 base case:

 induction:

 FLATTEN[x]=

 FLAT[x,y]=

• This technique is useful for applying an arbitrary function
 to both the head and tail of a given s-expression

• Could also be constructed without using auxiliary function:
 FLATTEN[x]=

Copyright © 2003 by Hanan Samet

lp252
r

if  atx then x.y

Copyright © 2003 by Hanan Samet

lp253
z

first flatten tail then head (to preserve order)
flat[ ax,flat[ dx,y]]

Copyright © 2003 by Hanan Samet



lp2581
b

FLATTEN FUNCTION

• Make flat list of all atoms in a given s-expression

• Use auxiliary function FLAT[x,y] where y accumulates
 the atoms

• Result list will contain atoms encountered from left to right

• Whenever an atom is encountered we add it to y

 base case:

 induction:

 FLATTEN[x]=

 FLAT[x,y]=

• This technique is useful for applying an arbitrary function
 to both the head and tail of a given s-expression

• Could also be constructed without using auxiliary function:
 FLATTEN[x]=

Copyright © 2003 by Hanan Samet

lp252
r

if  atx then x.y

Copyright © 2003 by Hanan Samet

lp253
z

first flatten tail then head (to preserve order)
flat[ ax,flat[ dx,y]]

Copyright © 2003 by Hanan Samet

lp254
g

if  atx then x.y
else FLAT[ ax,FLAT[ dx,y]]

FLAT[x,nil]

Copyright © 2003 by Hanan Samet



lp2581
b

FLATTEN FUNCTION

• Make flat list of all atoms in a given s-expression

• Use auxiliary function FLAT[x,y] where y accumulates
 the atoms

• Result list will contain atoms encountered from left to right

• Whenever an atom is encountered we add it to y

 base case:

 induction:

 FLATTEN[x]=

 FLAT[x,y]=

• This technique is useful for applying an arbitrary function
 to both the head and tail of a given s-expression

• Could also be constructed without using auxiliary function:
 FLATTEN[x]=

Copyright © 2003 by Hanan Samet

lp252
r

if  atx then x.y

Copyright © 2003 by Hanan Samet

lp253
z

first flatten tail then head (to preserve order)
flat[ ax,flat[ dx,y]]

Copyright © 2003 by Hanan Samet

lp254
g

if  atx then x.y
else FLAT[ ax,FLAT[ dx,y]]

FLAT[x,nil]

Copyright © 2003 by Hanan Samet

lp255
v

if  atx then x
else FLATTEN[ ax]*FLATTEN[ dx]

Copyright © 2003 by Hanan Samet



lp2681
b

TRADEOFF: EXTRA ARG VS EFFICIENCY
• Common when creating LISP functions
 Ex: factorial:
 FACT[x]=

 with the addition of a second argument:
 FACT[x]=

 FACT1[x,y]=

• The general case
 1. note similarity of transformation in REVERSE and FACT

 2. consider these schemas
  f(x) = if p(x) then a  ⇒  h(x,y) = if p(x) then y⊕ a
    else b⊕ f(g(x))  else (h(g(x),y⊕ b)
  f(x) = if p(x) then a  ⇒  h(x,y) = if p(x) then a⊕ y
    else f(g(x))⊕ b  else (h(g(x),b⊕ y)
  with f(x) ≡ h(x,id⊕ ) and id⊕  is identity element of ⊕  op
 3. when are these transformations valid?
  • ⊕  must be

 4. Ex: REVERSE: p is null
      a is NIL

      b is <CAR x>
      g is CDR

      ⊕  is APPEND

  b⊕ y ≡ <CAR x> APPEND y ≡ a x CONS y (since a x is atom)
 5. Ex: FACTORIAL: p is x eq 1
      a is 1
      b is x
      g is x–1
      ⊕  is multiplication

Copyright © 2003 by Hanan Samet



lp2681
b

TRADEOFF: EXTRA ARG VS EFFICIENCY
• Common when creating LISP functions
 Ex: factorial:
 FACT[x]=

 with the addition of a second argument:
 FACT[x]=

 FACT1[x,y]=

• The general case
 1. note similarity of transformation in REVERSE and FACT

 2. consider these schemas
  f(x) = if p(x) then a  ⇒  h(x,y) = if p(x) then y⊕ a
    else b⊕ f(g(x))  else (h(g(x),y⊕ b)
  f(x) = if p(x) then a  ⇒  h(x,y) = if p(x) then a⊕ y
    else f(g(x))⊕ b  else (h(g(x),b⊕ y)
  with f(x) ≡ h(x,id⊕ ) and id⊕  is identity element of ⊕  op
 3. when are these transformations valid?
  • ⊕  must be

 4. Ex: REVERSE: p is null
      a is NIL

      b is <CAR x>
      g is CDR

      ⊕  is APPEND

  b⊕ y ≡ <CAR x> APPEND y ≡ a x CONS y (since a x is atom)
 5. Ex: FACTORIAL: p is x eq 1
      a is 1
      b is x
      g is x–1
      ⊕  is multiplication

Copyright © 2003 by Hanan Samet

lp262
r

if x eq 1 then 1
else x•FACT[x-1]

Copyright © 2003 by Hanan Samet



lp2681
b

TRADEOFF: EXTRA ARG VS EFFICIENCY
• Common when creating LISP functions
 Ex: factorial:
 FACT[x]=

 with the addition of a second argument:
 FACT[x]=

 FACT1[x,y]=

• The general case
 1. note similarity of transformation in REVERSE and FACT

 2. consider these schemas
  f(x) = if p(x) then a  ⇒  h(x,y) = if p(x) then y⊕ a
    else b⊕ f(g(x))  else (h(g(x),y⊕ b)
  f(x) = if p(x) then a  ⇒  h(x,y) = if p(x) then a⊕ y
    else f(g(x))⊕ b  else (h(g(x),b⊕ y)
  with f(x) ≡ h(x,id⊕ ) and id⊕  is identity element of ⊕  op
 3. when are these transformations valid?
  • ⊕  must be

 4. Ex: REVERSE: p is null
      a is NIL

      b is <CAR x>
      g is CDR

      ⊕  is APPEND

  b⊕ y ≡ <CAR x> APPEND y ≡ a x CONS y (since a x is atom)
 5. Ex: FACTORIAL: p is x eq 1
      a is 1
      b is x
      g is x–1
      ⊕  is multiplication

Copyright © 2003 by Hanan Samet

lp262
r

if x eq 1 then 1
else x•FACT[x-1]

Copyright © 2003 by Hanan Samet

lp263
z

FACT1[x,1]

if x eq 1 then y
else FACT1[x-1,x•y]

Copyright © 2003 by Hanan Samet



lp2681
b

TRADEOFF: EXTRA ARG VS EFFICIENCY
• Common when creating LISP functions
 Ex: factorial:
 FACT[x]=

 with the addition of a second argument:
 FACT[x]=

 FACT1[x,y]=

• The general case
 1. note similarity of transformation in REVERSE and FACT

 2. consider these schemas
  f(x) = if p(x) then a  ⇒  h(x,y) = if p(x) then y⊕ a
    else b⊕ f(g(x))  else (h(g(x),y⊕ b)
  f(x) = if p(x) then a  ⇒  h(x,y) = if p(x) then a⊕ y
    else f(g(x))⊕ b  else (h(g(x),b⊕ y)
  with f(x) ≡ h(x,id⊕ ) and id⊕  is identity element of ⊕  op
 3. when are these transformations valid?
  • ⊕  must be

 4. Ex: REVERSE: p is null
      a is NIL

      b is <CAR x>
      g is CDR

      ⊕  is APPEND

  b⊕ y ≡ <CAR x> APPEND y ≡ a x CONS y (since a x is atom)
 5. Ex: FACTORIAL: p is x eq 1
      a is 1
      b is x
      g is x–1
      ⊕  is multiplication

Copyright © 2003 by Hanan Samet

lp262
r

if x eq 1 then 1
else x•FACT[x-1]

Copyright © 2003 by Hanan Samet

lp263
z

FACT1[x,1]

if x eq 1 then y
else FACT1[x-1,x•y]

Copyright © 2003 by Hanan Samet

lp264
g

associative

Copyright © 2003 by Hanan Samet



lp27

GREATEST COMMON DENOMINATOR

• highest number that divides both m and n

• recursively:

 GCD(m,n) = if m>n then GCD(n,m)
   else if m=0 then n
   else GCD(n MOD m,m)

 where:

 n MOD m = if n<m then n
   else (n–m) MOD m
 i.e., subtract until number between 0 and MIN(m,n)–1

Copyright © 2003 by Hanan Samet



lp2881
b

ASSOCIATION LISTS

• Common data structure in recursive programming

• Representation of dictionary as a list of s-expressions
 1. first element of each s-expression is a single atom
 2. rest of s-expression is atom’s definition or associated value
 3. Ex: x  is associated to '(PLUS A B)

   y  is associated to 'c
   z  is associated to '(TIMES U V)

  ((x PLUS A B)(y.c)(z TIMES U V))

• Lookup using ASSOC(x,d)
 1. x is the atom to be looked up and d is the dictionary list
 2. if x is in the dictionary then the entire entry is returned
 3. if x is not in the dictionary then NIL is returned

 final case:

 base case:

 induction step:

 ASSOC[x,d]=

• Disadvantage is sequential search through entire list
 (since list is not kept in sorted order)

• We could represent the dictionary as a tree, but then
 lookup would be more complex, and insertion and deletion
 would be significantly more complex

Copyright © 2003 by Hanan Samet



lp2881
b

ASSOCIATION LISTS

• Common data structure in recursive programming

• Representation of dictionary as a list of s-expressions
 1. first element of each s-expression is a single atom
 2. rest of s-expression is atom’s definition or associated value
 3. Ex: x  is associated to '(PLUS A B)

   y  is associated to 'c
   z  is associated to '(TIMES U V)

  ((x PLUS A B)(y.c)(z TIMES U V))

• Lookup using ASSOC(x,d)
 1. x is the atom to be looked up and d is the dictionary list
 2. if x is in the dictionary then the entire entry is returned
 3. if x is not in the dictionary then NIL is returned

 final case:

 base case:

 induction step:

 ASSOC[x,d]=

• Disadvantage is sequential search through entire list
 (since list is not kept in sorted order)

• We could represent the dictionary as a tree, but then
 lookup would be more complex, and insertion and deletion
 would be significantly more complex

Copyright © 2003 by Hanan Samet

lp282
r

if nl then nil

Copyright © 2003 by Hanan Samet



lp2881
b

ASSOCIATION LISTS

• Common data structure in recursive programming

• Representation of dictionary as a list of s-expressions
 1. first element of each s-expression is a single atom
 2. rest of s-expression is atom’s definition or associated value
 3. Ex: x  is associated to '(PLUS A B)

   y  is associated to 'c
   z  is associated to '(TIMES U V)

  ((x PLUS A B)(y.c)(z TIMES U V))

• Lookup using ASSOC(x,d)
 1. x is the atom to be looked up and d is the dictionary list
 2. if x is in the dictionary then the entire entry is returned
 3. if x is not in the dictionary then NIL is returned

 final case:

 base case:

 induction step:

 ASSOC[x,d]=

• Disadvantage is sequential search through entire list
 (since list is not kept in sorted order)

• We could represent the dictionary as a tree, but then
 lookup would be more complex, and insertion and deletion
 would be significantly more complex

Copyright © 2003 by Hanan Samet

lp282
r

if nl then nil

Copyright © 2003 by Hanan Samet

lp283
z

if x eq  aal then al

Copyright © 2003 by Hanan Samet



lp2881
b

ASSOCIATION LISTS

• Common data structure in recursive programming

• Representation of dictionary as a list of s-expressions
 1. first element of each s-expression is a single atom
 2. rest of s-expression is atom’s definition or associated value
 3. Ex: x  is associated to '(PLUS A B)

   y  is associated to 'c
   z  is associated to '(TIMES U V)

  ((x PLUS A B)(y.c)(z TIMES U V))

• Lookup using ASSOC(x,d)
 1. x is the atom to be looked up and d is the dictionary list
 2. if x is in the dictionary then the entire entry is returned
 3. if x is not in the dictionary then NIL is returned

 final case:

 base case:

 induction step:

 ASSOC[x,d]=

• Disadvantage is sequential search through entire list
 (since list is not kept in sorted order)

• We could represent the dictionary as a tree, but then
 lookup would be more complex, and insertion and deletion
 would be significantly more complex

Copyright © 2003 by Hanan Samet

lp282
r

if nl then nil

Copyright © 2003 by Hanan Samet

lp283
z

if x eq  aal then al

Copyright © 2003 by Hanan Samet

lp284
g

ASSOC[x, dl]

Copyright © 2003 by Hanan Samet



lp2881
b

ASSOCIATION LISTS

• Common data structure in recursive programming

• Representation of dictionary as a list of s-expressions
 1. first element of each s-expression is a single atom
 2. rest of s-expression is atom’s definition or associated value
 3. Ex: x  is associated to '(PLUS A B)

   y  is associated to 'c
   z  is associated to '(TIMES U V)

  ((x PLUS A B)(y.c)(z TIMES U V))

• Lookup using ASSOC(x,d)
 1. x is the atom to be looked up and d is the dictionary list
 2. if x is in the dictionary then the entire entry is returned
 3. if x is not in the dictionary then NIL is returned

 final case:

 base case:

 induction step:

 ASSOC[x,d]=

• Disadvantage is sequential search through entire list
 (since list is not kept in sorted order)

• We could represent the dictionary as a tree, but then
 lookup would be more complex, and insertion and deletion
 would be significantly more complex

Copyright © 2003 by Hanan Samet

lp282
r

if nl then nil

Copyright © 2003 by Hanan Samet

lp283
z

if x eq  aal then al

Copyright © 2003 by Hanan Samet

lp284
g

ASSOC[x, dl]

Copyright © 2003 by Hanan Samet

lp285
v

if nl then nil
else if x eq  aal then al
else ASSOC[x, dl]

Copyright © 2003 by Hanan Samet



lp2981
b

INTERNAL LAMBDA

• Avoid computing a function twice

• Compute once and store for future reference

• Ex: ((LAMBDA(x y) (PLUS (TIMES 2 x) y)) 3 4)

 1. like a function without a name
 2. binds 3 to x and 4 to y
 3. computes 2•x + y

• Ex: using ASSOC to substitute a dictionary value
 1. if use of ASSOC(x,l) yields a non-NIL result and we
  want the actual definition of x
 2. recall ASSOC returns NIL or entire entry including
  the atom x that we looked up
 3. λ(pair); if n pair then NIL

    else d pair;   this is a segment
    (ASSOC(x,d))

• Redefine SUBST so CONS only happens if there indeed was
 a substitution

 SUBST2[x,y,z]=

}

Copyright © 2003 by Hanan Samet



lp2981
b

INTERNAL LAMBDA

• Avoid computing a function twice

• Compute once and store for future reference

• Ex: ((LAMBDA(x y) (PLUS (TIMES 2 x) y)) 3 4)

 1. like a function without a name
 2. binds 3 to x and 4 to y
 3. computes 2•x + y

• Ex: using ASSOC to substitute a dictionary value
 1. if use of ASSOC(x,l) yields a non-NIL result and we
  want the actual definition of x
 2. recall ASSOC returns NIL or entire entry including
  the atom x that we looked up
 3. λ(pair); if n pair then NIL

    else d pair;   this is a segment
    (ASSOC(x,d))

• Redefine SUBST so CONS only happens if there indeed was
 a substitution

 SUBST2[x,y,z]=

}

Copyright © 2003 by Hanan Samet

lp292
r

if  atz then
 if z eq y then x
 else z
else LAMBDA (head,tail);
 if head eq az and tail eq dz then z
 else head.tail;
 (SUBST2[x,y, az],SUBST2[x,y, dz])

Copyright © 2003 by Hanan Samet



lp30

EXAMPLE OF THE USE OF INTERNAL LAMBDA

sexpr procedure substz(x,y,z);   // Subst x for y in z
begin                            // Copy made only if a
   if atom(z) then               // subst instance found
      if eq(y,z) then return(x)
      else return(z)
   else
    begin
      head ← substz(x,y,car(z));
      tail ← substz(x,y,cdr(z));
      if equal(head,car(z)) and
         equal(tail,cdr(z)) then return(z)
      else return(cons(head,tail));
    end;
end;

(CSETQ SUBSTZ (LAMBDA (X Y Z)
   (COND [(ATOM Z)
          (COND ((EQ Y Z) X)
                (T Z))]
         [T (< LAMBDA(HEAD TAIL)
               (COND [(AND (EQUAL HEAD (CAR Z))
                           (EQUAL TAIL (CDR Z))) Z]
                     [T (CONS HEAD TAIL)])>
             (SUBSTZ X Y (CAR Z))
             (SUBSTZ X Y (CDR Z)))])))

Copyright © 2003 by Hanan Samet



lp31

PROPERTY LISTS
• Wisconsin LISP represents an atom:

• Value cell contains value bound to the atom
 i.e. (SETQ A (QUOTE (JOHN MARY)))
 means that the value of A is (JOHN MARY)

• Print name is atom’s name as a sequence of characters

• Property list
 1. data structure storing two levels of information on atom
 2. like association list with addition of flag atoms
 3. Ex:

  is represented as:

Value Cell Print Name Property List

Single

Captain California 8 Maryland Marines

Rank Home Years College Branch

Value Cell Mary Jones

“Mary Jones” Rank
Home

Captain
California

Single
Years
College
Branch

      8
Maryland
Marines

Copyright © 2003 by Hanan Samet



lp32

PROPERTY LIST FUNCTIONS

• Programmer need not (and should not) be aware of
 exact representation of the property list

• Functions to access property list

 1. (PUT x y z)  put property y  on atom x ’s property list
   with property value z , e.g.,
   (PUT (QUOTE AL)(QUOTE HAIR)(QUOTE RED))

 2. (GET x y)  fetch property value associated with
   property y  on atom x ’s property list, e.g.,
   (GET (QUOTE CHARLES)(QUOTE ADDRESS))

   • just like ASSOC

 3. (REMPROP x y)  removes property y  and its associated
   property value from atom x ’s list, e.g.,
   (REMPROP (QUOTE ANGOLA)(QUOTE COLONY))

 4. (FLAG x y)  places flag y  on atom x ’s prop list, e.g.,
   (FLAG (QUOTE MARY)(QUOTE MARRIED))

 5. (IFFLAG x y)  returns TRUE if atom x  has flag y , e.g., 
   (IFFLAG (QUOTE JOE)(QUOTE CITIZEN))

 6. (UNFLAG x y)  removes flag y  from atom x ’s list, e.g.,
   (UNFLAG (QUOTE CASE)(QUOTE RECESSED))

Copyright © 2003 by Hanan Samet


