
Vertex-Based (Lath) Representations for
Three-Dimensional Objects and Meshes

Hanan Samet

hjs@cs.umd.edu www.cs.umd.edu/˜hjs

Department of Computer Science

Center for Automation Research

Institute for Advanced Computer Studies

University of Maryland

College Park, MD 20742, USA

Copyright 2007 by Hanan Samet
Vertex-Based (Lath) Representations for Three-Dimensional Objects and Meshes – p.1/15

www.cs.umd.edu/~hjs

Vertex-based Data Structures

1. Edge-based winged-edge family are uniform-size

one record per edge

2. Want uniform-size vertex-based or face-based representations

vertex is simplest topological entity while edge and face are more complex

cannot have one record per vertex
each edge is always associated with just two faces (assuming a
two-manifold) and with just two vertices
variable number of edges and faces associated with each vertex

cannot have one record per face

variable number of edges and vertices associated with each face

3. Object can be described by set of all possible edge-face, edge-vertex pairs, or
face-vertex pairs

each pair is termed a lath (Joy, Legakis, and MacCracken)
one vertex is associated with each lath
more than one lath can be associated with a particular vertex
a single edge is associated with each lath
a single face is associated with each lath

Copyright 2007 by Hanan Samet Vertex-Based Lath Representations – p.2/15

Lath Data Structures for Manifold Objects

1. Encodes lath-lath relation rather than edge-edge, edge-face, etc.

2. Must be able to make transitions between instances of lath data structure

3. Given specific lath instance

� ��� � � of relation

��� �
� � 	 �� �
� �

, we need to be
able to transition to

lath corresponding to the next object of type

�

for object �, and to the
lath corresponding to the next object of type � for object �

4. Three items of information
associated vertex
transitions to next (
=clockwise) or prior (

=counterclockwise) objects
if edge object, then just one transition to companion

Copyright 2007 by Hanan Samet Vertex-Based Lath Representations – p.3/15

Nature of Lath Data Structure

1. Implicit data structure in contrast to winged-edge

2. Identity of faces adjacent to an edge as well as one of the vertices that
comprises an edge are represented implicitly

3. Only vertex associated with each lath is represented explicitly

4. Need vertex-lath, face-lath, and edge-lath tables
lath analogs of vertex-edge and face-edge tables

Copyright 2007 by Hanan Samet Vertex-Based Lath Representations – p.4/15

Split-Face Lath Data Structure: Edge-Face Pairs

Split an edge record into two: one per adjacent face

Record structure

� � ��� �
� �

:
1. Pointer to the vertex � associated with

�

2. Pointer to the lath record corresponding to the other face

�

adjacent to

� as well as opposite vertex of edge � to the one associated with

�

(i.e., the next edge-face pair along �) — that is, CE
� � �

3. Pointer to the lath record corresponding to the next edge that follows

�

in a clockwise traversal of face

�

(i.e., the next edge-face pair along

�

)
— that is, CF

� � �

clockwise edge
along face (CF)

companion face
along edge(CE)

ve
rte

x

F

E

B C

G

D

A

Copyright 2007 by Hanan Samet Vertex-Based Lath Representations – p.5/15

Non-primitive Split-Face Operations

clockwise edge
along face (CF)

companion face
along edge(CE)

ve
rte

x

F

E

B C

G

D

A

CCV

� � �

: CF

�

CE

� � � �

CV

� � �

: two possibilities (neither of which is great!)

1. successively traverse laths representing face

�

using CF until obtaining
a lath

� �

such that CF

� � � � � �

and then apply CE

� � � �

to obtain

� � �

so
that CV

� � � � � � �

, OR
2. successively traverse laths surrounding vertex associated with

�

using
CCV until obtaining a lath

� �

such that CCV

� � � � � �

, which means that
CV

� � � � � �

.

CCF

� � �

: CE
�

CV

� � � �

Copyright 2007 by Hanan Samet Vertex-Based Lath Representations – p.6/15

Split-Vertex Lath Data Structure: Edge-Vertex Pairs

Split an edge record into two: one per incident vertex

Record structure

� � ��� � � � :
1. Pointer to the vertex � associated with

�

.
2. Pointer to the lath record that represents the same edge � as

�

but the
opposite vertex of � (i.e., the next edge-vertex pair along �) — that is,
CE

� � �

3. Pointer to the lath record corresponding to the next edge that follows

�

in a clockwise traversal of vertex � (i.e., the next edge-vertex pair
along �) — that is, CV

� � �
companion vertex
along edge (CE)

clockwise edge
along vertex (CV)

F G

D E

Copyright 2007 by Hanan Samet Vertex-Based Lath Representations – p.7/15

Non-primitive Split-Vertex Operations

companion vertex
along edge (CE)

clockwise edge
along vertex (CV)

F G

D E

CCF

� � �

: CE

�

CV

� � � �

CF

� � �

: two possibilities (neither of which is great!)

1. first apply CE

� � �

to obtain the lath

� �

of the same edge � but opposite
vertex � �

, and then successively traverse laths surrounding � �

using CV

until obtaining a lath
� � �

such that CV

� � � � � � � �

which means that
CF

� � � � � � �

, or

2. successively traverse laths representing face

�

in which

�

is a
member using CCF until obtaining a lath

� �

such that CCF

� � � � � �

,
which means that CF

� � � � � �

CCV

� � �

: CF
�

CE

� � � �

Copyright 2007 by Hanan Samet Vertex-Based Lath Representations – p.8/15

Corner Lath Data Structure: Face-Vertex Pairs

Denotes corner of a face

Record structure

� � � �
� � � :
1. Pointer to the vertex � associated with

�

2. Pointer to the lath record corresponding to the next vertex that follows

�

in a clockwise traversal of face

�

(i.e., the next face-vertex pair along

�

) — that is, CF

� � �

3. Pointer to the lath record corresponding to the next face that follows

�

in a clockwise traversal of vertex � (i.e., the next face-vertex pair along

�) — that is, CV

� � �

clockwise vertex
along face (CF)

clockwise face
around vertex (CV)

vertex

F G

E

B

A

C

D

Copyright 2007 by Hanan Samet Vertex-Based Lath Representations – p.9/15

Non-primitive Corner Operations

clockwise vertex
along face (CF)

clockwise face
around vertex (CV)

vertex

F G

E

B

A

C

D

CE

� � �

: CV

�

CF

� � � �

CCF

� � �

: CE

�

CV

� � � �

CCV

� � �

: CF

�

CE

� � � �

Copyright 2007 by Hanan Samet Vertex-Based Lath Representations – p.10/15

Lath Data Structures for Meshes with Boundaries

Unstructured two-dimensional meshes

There exists a face which is not part of the object (termed the boundary
face

Two possible methods
1. add a flag to each lath record indicating whether the associated vertex

and edge combination is part of the boundary of a face in the mesh

2. overload of the primitive operations (transitions to

� �

) on the lath

�

to use the value NULL to indicate that
�

is part of the boundary (i.e.,
the vertex and edge combination associated with

�

corresponds to
a boundary edge whose associated face

�

is not the boundary face
and hence

�

is in the mesh)
while the face

� �

associated with the next lath

� �

is the boundary
face and hence

� �

is not in the mesh

Copyright 2007 by Hanan Samet Vertex-Based Lath Representations – p.11/15

Implementation of Meshes with Boundaries

F

E

A
B C

G

D

F

A

B

E

C

G

D

F G

E

B
A

C

D

Distinguish boundary edges from nonboundary edges by associating just
one lath with them instead of two — that is, CE

� � �

is absent

1. split-face: CE

� � �

=NULL
2. split-vertex: CE

� � �

=NULL
CV

� � � � �

=

�

instead of CV

� � � � �

=

� �

due to

� �

=CE

� � �

=NULL
3. corner: CV

� � �

=NULL as CE

� � �

=CV

�

CF

� � � �

Must use definitions of nonprimitive transitions that do not pass through
missing laths

Copyright 2007 by Hanan Samet Vertex-Based Lath Representations – p.12/15

Problems Caused by Absence of Companion Lath

F

E

A
B C

G

D

F

A

B

E

C

G

D

F G

E

B
A

C

D

Cannot return laths that correspond to an edge of the boundary face (i.e.,
a companion lath of a boundary edge) as a valid value of a transition

Occurs when companion lath is to be returned as value of CV

� � �

which is
NULL, for a lath

�

associated with vertex � regardless of whether

�

corresponds to a boundary edge

Ex: laths A and B when want laths of all edges incident at vertices D and
E, respectively

could use lath corresponding to CCF

� � �

(i.e., lath C for next lath after B
incident at vertex E) but its associated vertex is different (i.e., G)

Copyright 2007 by Hanan Samet Vertex-Based Lath Representations – p.13/15

Alternative Implementation of Split-Vertex for Boundary

Mesh

F G

ED

Retain companion lath (Joy, Legakis, and MacCracken)

Less modifications to transitions -
No need to set CE

� � �

to NULL

But now need a different algorithm to trace boundary of the mesh than one
used for split-face and corner lath data structures

Copyright 2007 by Hanan Samet Vertex-Based Lath Representations – p.14/15

Summary

Corner lath data structure is best
self-dual
similar to quad-edge data structure
all primitive and non-primitive transitions in constant time as long as
no boundaries

Can also form a face-based lath representation
difference from vertex-based is that each lath contains a pointer to the
face associated with the lath instead of the vertex associated with it
same lath types
cumbersome to identify vertices that make up a face as need to
retrieve all faces incident at each vertex

Copyright 2007 by Hanan Samet Vertex-Based Lath Representations – p.15/15

	Vertex-based Data Structures
	Lath Data Structures for Manifold Objects
	Nature of Lath Data Structure
	Split-Face Lath Data Structure: Edge-Face Pairs
	Non-primitive Split-Face Operations
	Split-Vertex Lath Data Structure: Edge-Vertex Pairs
	Non-primitive Split-Vertex Operations
	Corner Lath Data Structure: Face-Vertex Pairs
	Non-primitive Corner Operations
	Lath Data Structures for Meshes with Boundaries
	Implementation of Meshes with Boundaries
	Problems Caused by Absence of Companion Lath
	Alternative Implementation of Split-Vertex for Boundary Mesh
	Summary

