HASHING METHODS

Hanan Samet

Computer Science Department and Center for Automation Research and Institute for Advanced Computer Studies University of Maryland College Park, Maryland 20742 e-mail: hjs@umiacs.umd.edu

Copyright © 1996 Hanan Samet

These notes may not be reproduced by any means (mechanical or electronic or any other) without the express written permission of Hanan Samet

HASHING OVERVIEW

- Task: compare the value of a key with a set of key values in a table
- Conventional solutions:
 - 1. use a comparison on key values (tree-based)
 - 2. branching process governed by the digits comprising the key value (trie-based)
- Alternative solution is to find a 1-1 mapping (i.e., function) from set of possible key values to a memory address and use table lookup methods to retrieve the record — O(1) process
- Problem: the set of possible key values is much larger than the number of available memory addresses
 - 1. developing the 1-1 function *h* is time-consuming as it requires puzzle-solving abilities
 - result is called a perfect hashing function
 - 2. once *h* is found, addition of a single key value may render the function meaningless
 - need to develop it anew
 - 3. can replace *h* by a program, which may itself be time-consuming to compute
- Result: usually abandon goal of finding 1-1 mapping and use a special method to resolve any ambiguity (i.e., when more than one key value is mapped to the same address — termed a *collision*)

HASHING

- Def: to "mess things up"
- Hashing function h(k) is used to calculate address where to start the search for the record with key value k
- Issues
 - 1. what kind of a function is h(k)?
 - easy and fast to compute
 - minimize the number of collisions
 - 2. what if h(k) does not yield the desired result?
 - how to handle collisions
- Assume table of size m and $0 \le h(k) < m$
- Example hashing functions:
 - 1. division techniques
 - often use $h(k) = k \mod m$
 - choice of *m* is important
 - a. *m* even
 - bad as h(k) even when k even and odd when k odd
 - b. *m* is a power of the radix of alphanumeric set of character values
 - bad as only least significant characters matter
 - with $m=r^3$, ABCDEF, IJKDEF, and KLMDEF all hash to the same location
 - c. usually choose *m* to be prime
 - 2. multiplicative techniques
 - entire key value is used
 - examples:
 - a. multiply fields and take modulo
 - b. add or exclusive-or of fields

SEPARATE CHAINING

321 hs3 (

- Hash table of size m
- One chain (linked list) for each of m hash values containing all elements that hash to that location (known as a collision list)
- Hash chains are known as buckets
- Hash table locations are known as bucket addresses
- For n key values, average chain size is n/m
- One chain (linked list) for each of m hash values
- Retrieval
 - 1. use sequential search through chain
 - speed up unsuccessful search by sorting chain by key value
 - 3. speed up successful search by self-organizing methods
 - move key value to start of chain each time it is accessed

Ex:

h (k)	NAME	k=KEY	NEXT				
0	JIM	49	Λ —	\rightarrow	JANE	14	Λ
1	JOHN	22	Λ				
2	RAY	30	Λ				
3	SUZY	3	Λ				
4							
5							
6	LUCY	41	Λ				

- 1. add JANE(14) \rightarrow 0
- 2. add LUCY(41) \rightarrow 6

IN-PLACE CHAINING

4321 hs4 O

- When *m* is large, many of the chains are empty
- Use empty locations in table for the chain
- Must be able to distinguish between free and occupied locations
- · Insertion algorithm:
 - 1. if key value not present, then allocate a free location
 - 2. link location to chain which was unsuccessfully searched
- Ex:

h (k)	NAME	k=KEY	NEXT		
0	JIM	49	A-65		
1	JOHN	22	Λ		
2	RAY	30	Λ		
3	SUZY	3	Λ		
4					
5	LUCY JANE	41 14	Λ		
6	JANE LUCY	14 41	A S A		

- 1. add JANE(14) \rightarrow 0 which collides with JIM(49) \rightarrow 0
- 2. add LUCY(41)→6 which collides with JANE(14)→0 which is stored at 6
 - result in coalescing of chains of JANE and LUCY making unsuccessful search longer as several chains must be searched
- Can avoid coalescing by moving JANE just before adding LUCY

IN-PLACE CHAINING INSERTION ALGORITHM

```
location procedure
CHAINING_WITH_COALESCING_INSERTION(k);
begin
  value key k;
  integer i;
  global integer r;
  /* r is the most recently allocated location */
  global hashtable table;
  i\leftarrow h(k);
  if OCCUPIED(table[i]) then
    begin
       while NOT(NULL(NEXT(table[i])) do
         begin
           if k=KEY(table[i]) then return(i)
           else i \leftarrow NEXT(table[i]);
         end:
       if k=KEY(table[i]) then return(i);
       while OCCUPIED(table[r]) do r\leftarrowr-1;
       if r≤0 then return(`OVERFLOW')
       else
         begin
           NEXT (table[i]) \leftarrowr;
           i←r;
         end;
    end;
  MARK(table[i], `OCCUPIED');
  KEY(table[i])\leftarrowk;
  NEXT(table[i]) \leftarrow NIL;
  return(i);
end;
```

LAMPSON'S IN-PLACE CHAINING

4321 hs6 O

 Avoid extra space for NEXT field by not storing entire key value with record

•
$$k = m \cdot q(k) + h(k)$$
, $q(k) = \lfloor k/m \rfloor$, $h(k) = k \mod m$

- Store q(k) in table instead of k
- Can compute k given m, q(k), and h(k),
- Ex: $0 \le k < 2^{32}$ q(k) h(k) 0 21 22 31
- Since only compare q(k), all elements in same collision list must have the same value of h(k) and thus no coalescing is allowed
- Data structure:
 - 1. circular collision lists
 - 2. flag FIRST denoting if first element on collision list
 - 3. pointer NEXT to next element in circular list with same h(k) value

• Ex:	h(k)	NAME	k=KEY	FIRST	q(k)	NEXT	
		JIM JOHN RAY	1 49 1 22 1 30	T T T	7 3	++5 1 2	
	I 3 I 4	SUZY	1 3 1 3	T	0	3	
	I 5 I 6	JANE JANE LUCY	14 14 41	F T	2 5	0 \$ 6	

- 1. add JANE(14) \rightarrow 0
- 2. add LUCY(41)→6 but 6 contains JANE
 - if at least one element of the hash chain starting at 6 exists, then it must be stored there
 - must move JANE as it does not belong in 6
- Nice compromise between use of a key value as an index to a table, which is impossible due to large number of possible key values, and storing the entire key value as in a conventional hashing method

OPEN ADDRESSING

654321 hs7 O

- Like chaining but NEXT link field is open or unspecified
- Probe sequence: set of locations comprising collision list of a key
- Goal: cycle through all locations with little or no duplication
- Linear probing: h(k), h(k)+1, h(k)+2, ..., m-1, 0, 1, h(k)-1
- Insertion Algorithm:
 - 1. calculate hash address i
 - 2. if TABLE(i) is empty then insert and exit; else $i \leftarrow i+1$ mod m and repeat step 2 until exhausting TABLE
- Ex:

h (k)	NAME	k=KEY	DELETED
0 1	JIM JOHN	49 22	N N
2	RAY	30	Y
3	SUZY	3	N
4	JANE	14	N
5			N
6	LUCY	41	N

- 1. adding JANE(14)→0 yields a collision; cyclic probe sequence causes its insertion in 4
- 2. adding LUCY(41) \rightarrow 6
- 3. delete RAY(30) \rightarrow 2
 - problem: if look up JANE then don't find her since a collision exists at location 0, and probe sequence finds location 2 unoccupied
 - solution: add DELETED flag to each entry to halt the search during insertion but not during lookup

PILEUP PHENOMENON

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
					l I		1								

- Next key to be inserted goes into one of the vacant locations
- Not all vacant locations are equally probable
- Ex: insert k into location 3 if 0 ≤ h(k) ≤ 3 insert k into location 6 if h(k)=6
 3 is four times as likely as 6
- Coalescing in open addressing with linear probing can lead to big growth (e.g., inserting into location 9 makes the list of 8 grow by 4)
- Different from in-place chaining where coalescing causes a list to grow by only one element
- Pileup phenomenon arises whenever consecutive values are likely to occur
- Overcome by a number of techniques:
 - 1. use additive constant instead of 1
 - should be relatively prime to m so can cycle through table
 - 2. use a pseudo random number generator to create successive offsets from h(k) (random probing)
 - make sure cycle through table
 - uniform hashing = when all possible configurations of empty and occupied locations are equally likely = model of hashing for comparing various methods

ANALYSIS OF PERFORMANCE

- *n*= number of key values in table
- *m*= maximum size of table
- $\alpha = n/m = load factor$
- Expected number of probes for successful search:

α	linear probing	random probing (under uniform hashing model)	separate chaining
	$(1-\alpha/2)/(1-\alpha)$	$-(\ln (1-\alpha))/\alpha$	$1+\alpha/2$
0.1	1.06	1.05	1.05
0.5	1.50	1.34	1.25
0.75	2.50	1.83	1.375
0.9	5.50	2.56	1.45

QUADRATIC PROBING

- Alternative to linear probing
- Avoids primary clustering
- $h_i = (h(k)+i^2) \mod m$
- Locations in the probe sequence can be computed with no multiplication
 - 1. h_i is location of element i
 - 2. $h_{i+1} = (h_i + d_i \mod m)$ where $d_0 = 1$ and $d_{i+1} = d_i + 2$
- Theorem: if *m* is prime, then quadratic probing will search through at least 50% of the table before seeing a particular location again
- Ex: m=7 $h_0 = 0$, $h_1 = 1$, $h_2 = 4$ $h_3 = 9 \mod 7 = 2$ and $h_4 = 16 \mod 7 = 2$
- Proof:
 - 1. let probes i, j probe the same location (assume $i \neq j$)
 - 2. $i^2 \mod m = j^2 \mod m$
 - 3. $(i^2 j^2) \mod m = (i+j) \cdot (i-j) \mod m = 0 \mod m$
 - 4. but i,j are both < m implying $(i-j) \neq c \cdot m$
 - 5. therefore, $i+j=c \cdot m$ and i or j must be at least m/2 since probe sequence starts with i=1, and recycling of values won't occur until at least 50% of table has been searched
- Sequence differs from one obtained from the pseudo random number generator as the pseudo random number generator guarantees that every location will be on a probe sequence

DOUBLE HASHING

- Use an additional hash function g(k) to generate a constant increment for the probe sequence
- Probe sequence for key value k:

```
p_0 = h(k)

p_1 = (h(k) + g(k)) \mod m

p_2 = (h(k) + 2 \cdot g(k)) \mod m

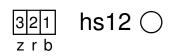
p_3 = (h(k) + 3 \cdot g(k)) \mod m

...

p_i = (h(k) + i \cdot g(k)) \mod m
```

- h(k) and g(k) should be independent
- g(k) generates values between 1 and m−1
- Two different key values will have the same value for h and g with probability $O(1/m^2)$ instead of O(1/m)
- Key value k is stored at any one of the locations along its probe sequence
- Key values stored along the probe sequence of k are not necessarily part of k's probe sequence
- Ex: key values s and t can both hash to location u key value s: u = (h(s) + c · g(s)) mod m key value t: u = (h(t) + d · g(t)) mod m

SELF-ORGANIZING DOUBLE HASHING



- Collision lists are long as each location is frequently on the collision lists of many different key values
- Develop techniques for rearranging the elements on the collision lists so that subsequent searches are shorter
- Assume records are retrieved many times once inserted into the table hence it pays to rearrange the collision lists
- Assume trying to insert key value k and probe locations p_0 , p_1 , ... p_i , ... p_t , where $p_i = (h(k) + i \cdot g(k))$ mod m before finding location p_t empty
- $p_i = (h(k) + i \cdot g(k)) \mod m$
- Each p_i ($0 \le i < t$) is also part of a hash chain consisting of locations: $(p_i + j \cdot g(\text{KEY}(p_i))) \mod m$ for arbitrary j
- Assume $c_i = g(\text{KEY}(p_i))$, and $p_i = h(\text{KEY}(p_i))$ mod m:

p_0	p_1	p_2	p_3	p_4	• • •	p_t
$p_0 + c_0 \bullet 1$	$p_1 + c_1 = 2$	P2+ C2 4	p3+ c3 7	$p_4 + c_4 \bullet 11$		
p_0+2c_0	P ₁ +2C ₁ •5	P2+2C2-8	D3+2C3-12			
$p_0 + 3c_0 \bullet 6$	p ₁ +3c ₁ •9	P2+3C2-13				
p_0+4c_0 •10	$p_1 + 4c_1 \bullet 14$					
$p_0 + 5c_0 \bullet 15$						

- Actually, $p_i = (h(\text{KEY}(p_i)) + d_i \cdot g(\text{KEY}(p_i))) \mod m$
- Brent algorithm: try to insert key value k in one of p_i and move the contents of p_i to an empty location along its probe sequence (column) so as to minimize the effective incremental search cost
- Order for testing candidate locations for moving (along diagonals)

EXAMPLE OF BRENT ALGORITHM

987654321 hs13 g b r v g z v r b

Attempt to insert RUDY

p_0 =TIM	p ₁ =ALAN	p_2 =JAY	p_3 =KATY	p ₄ =?
RUDY	RUDY	RUDY	RUDY	
JOAN	RUTH	• JAY	KIM	ф
RON	\$ ALAN•	•	ALEX	ф
RITA	0	ф	вов	φ
φ TIM	•	ф	ф КАТҮ	φ

- First free location in RUDY's probe sequence is p_4 for an increase in cost of 4
- Examine locations in diagonal order for first free location
- Alternatively, find first free location in each hash chain and check if overall search cost is increased by a movement of it
- Movement must result in an increase <4 in the search cost
- Moving TIM increases the search cost by 4
- Moving ALAN increases its search cost by 2, while increasing that of RUDY by 1 for a total of 3
- Moving JAY increases its search cost by 1, while increasing that of RUDY by 2 for a total of 3
- Moving KATY increases its search cost by 4, while increasing that of RUDY by 3 for a total of 7
- Move JAY as its increase (3) was the least and was encountered first
- Need 2.5 probes on the average for successful search
- Average number of probes for unsuccessful search is not reduced (as high as (m+1)/2 when the table is full)

GONNET-MUNRO ALGORITHM

- More general than the Brent algorithm
- Brent algorithm only attempts to move records on the probe sequence of the record being inserted

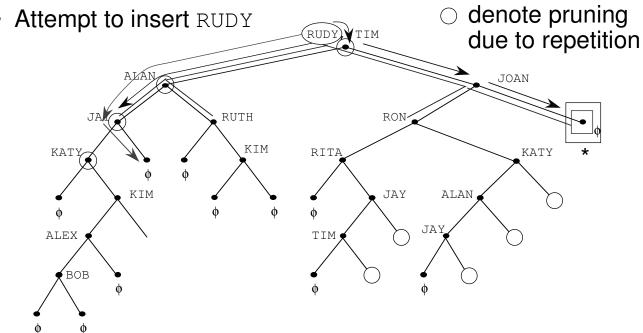
p_0 =TIM	p_1 =ALAN	<i>p</i> ₂ =JAY	рз=кату	p ₄ =?
JOAN	RUTH	ф	KIM	ф
RON	ф	ф	ALEX	ф
RITA	ф	ф	ВОВ	ф
ф	ф	ф	ф	ф

- Gonnet-Munro attempts to move in several stages instead of just one stage
 - 1. RUDY to TIM, TIM to JOAN, and JOAN to?
 - 2. RUDY to ALAN, ALAN to RUTH, and RUTH to?
- Need remaining hash chains

JOAN	RITA	KIM	RUTH	RON	ALEX	BOB
ф	JAY	ф	KIM	KATY	ф	ф
ф	TIM	ф	ф	ALAN	ф	ф
ф	ф	ф	ф	JAY	ф	ф
ф	ф	ф	ф	ф	ф	ф

- · Can visualize search for best movement as a binary tree
- Best movement is the closest empty node to the root

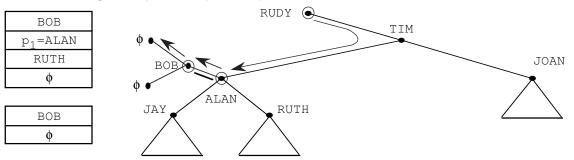
EXAMPLE OF GONNET-MUNRO ALGORITHM



- Right son of a is next element in probe sequence of KEY(a)
- Left son of a is next element in probe sequence of a and a's father
- Search generates the tree level by level and chooses the first empty node as the final target for a sequence of relocation steps
- RUDY can be relocated to any position in the leftmost part of the tree
- Apply the relocation step as many times as needed to get to desired empty node
- Optimal solution moves RUDY to TIM, TIM to JOAN, and JOAN to its empty right son
 - 1. increase in total search cost is 2
 - 2. better than 3 obtained by Brent algorithm
- Brent algorithm only applies one step and thus must find the empty node in just one iteration
 - 1. move RUDY to JAY; JAY to empty right son of JAY
 - 2. increase in total search cost is 3

SHORTCOMING OF GONNET-MUNRO ALGORITHM

- Only moves records in forward direction along their hash chains
- Sometimes can reduce the cost by moving backward along the chain
- Ex: suppose ALAN is not in the first position along the hash chain starting at h(ALAN) mod m and that BOB immediately precedes ALAN along the hash chain, although h(ALAN) ≠ h(BOB)



- Optimal solution moves RUDY to ALAN, ALAN to BOB, and BOB to its empty son
 - 1. increase in total search cost is 1
 - 2. better than 2 obtained by Gonnet-Munro algorithm
- Requires a ternary tree
 - 1. need an additional link from a to the previous element in the probe sequence of KEY(a)
 - e.g., ALAN to BOB
 - 2. search process interprets previous links as indicating a decrease in cost
 - 3. if incoming link to a is a "previous element" link, then left son of a is the prior element in probe sequence of a and its father
 - 4. search process is more complex and empty node at closest level to the root no longer represents the cheapest relocation sequence
 - 5. optimal solution may require exhaustive search

SUMMARY

- Advantages
 - 1. separate chaining is superior with respect to the number of probes but need more space
 - 2. open addressing with linear probing results in more accesses but this is compensated by its simplicity
 - 3. compares favorably with other search methods as the search time is bounded as the number of records increases (provided the table does not become too full)
- Disadvantages
 - 1. size of hash table is usually fixed
 - have to worry about rehashing
 - separate chaining with overflow buckets is good
 - use linear hashing or spiral hashing which just split one bucket and rehash its contents instead of rehashing the entire table
 - 2. after an unsuccessful search we only know that the record is not present
 - we don't know about the presence or absence of other records with similar key values such as the immediate predecessor or successor
 - contrast with B-trees and other methods based on binary search which maintain the natural order of the key values and permit processing along this order
 - order-preserving hashing methods such as those used to deal with multiattribute data (and spatial data) are an exception
 - 3. deletion may be cumbersome (e.g., open addressing)
 - 4. only efficient on the average
 - contrast with B-tree methods which have guaranteed upper bounds on search time, etc.
 - need faith in probability theory!