HASHING METHODS

Hanan Samet

Computer Science Department and Center for Automation Research and Institute for Advanced Computer Studies University of Maryland College Park, Maryland 20742 e-mail: hjs@umiacs.umd.edu

Copyright © 1996 Hanan Samet

These notes may not be reproduced by any means (mechanical or electronic or any other) without the express written permission of Hanan Samet

hs0

HASHING OVERVIEW

- Task: compare the value of a key with a set of key values in a table
- Conventional solutions:
 - 1. use a comparison on key values (tree-based)
 - 2. branching process governed by the digits comprising the key value (trie-based)
- Alternative solution is to find a 1-1 mapping (i.e., function) from set of possible key values to a memory address and use table lookup methods to retrieve the record O(1) process
- Problem: the set of possible key values is much larger than the number of available memory addresses
 - 1. developing the 1-1 function *h* is time-consuming as it requires puzzle-solving abilities
 - result is called a perfect hashing function
 - 2. once *h* is found, addition of a single key value may render the function meaningless
 - need to develop it anew
 - 3. can replace *h* by a program, which may itself be timeconsuming to compute
- Result: usually abandon goal of finding 1-1 mapping and use a special method to resolve any ambiguity (i.e., when more than one key value is mapped to the same address termed a *collision*)

HASHING

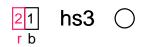
- Def: to "mess things up"
- Hashing function *h*(*k*) is used to calculate address where to start the search for the record with key value *k*
- Issues
 - 1. what kind of a function is h(k)?
 - easy and fast to compute
 - minimize the number of collisions
 - 2. what if h(k) does not yield the desired result?
 - how to handle collisions
- Assume table of size m and $0 \le h(k) < m$
- Example hashing functions:
 - 1. division techniques
 - often use $h(k) = k \mod m$
 - choice of *m* is important
 - a. *m* even
 - bad as h(k) even when k even and odd when k odd
 - b. *m* is a power of the radix of alphanumeric set of character values
 - bad as only least significant characters matter
 - with *m*=*r*³, ABCDEF, IJKDEF, and KLMDEF all hash to the same location
 - c. usually choose *m* to be prime
 - 2. multiplicative techniques
 - entire key value is used
 - examples:
 - a. multiply fields and take modulo
 - b. add or exclusive-or of fields

SEPARATE CHAINING

- Hash table of size *m*
- One chain (linked list) for each of *m* hash values containing all elements that hash to that location (known as a *collision list*)
- Hash chains are known as buckets
- Hash table locations are known as *bucket addresses*
- For *n* key values, average chain size is *n*/*m*
- One chain (linked list) for each of *m* hash values
- Retrieval
 - 1. use sequential search through chain
 - 2. speed up unsuccessful search by sorting chain by key value
 - 3. speed up successful search by self-organizing methods
 - move key value to start of chain each time it is accessed

• Ex:	h(k)	NAME	k=KEY	NEXT
	0	JIM	49	Λ
	1	JOHN	22	Λ
	2	RAY	30	Λ
	3	SUZY	3	Λ
	4			
	5			
	6			

SEPARATE CHAINING

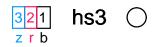


- Hash table of size *m*
- One chain (linked list) for each of *m* hash values containing all elements that hash to that location (known as a *collision list*)
- Hash chains are known as buckets
- Hash table locations are known as *bucket addresses*
- For *n* key values, average chain size is *n*/*m*
- One chain (linked list) for each of *m* hash values
- Retrieval
 - 1. use sequential search through chain
 - 2. speed up unsuccessful search by sorting chain by key value
 - 3. speed up successful search by self-organizing methods
 - move key value to start of chain each time it is accessed

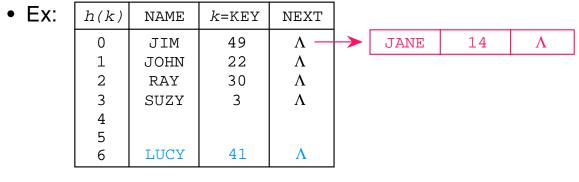
• Ex:	h(k)	NAME	k=KEY	NEXT			
	0	JIM	49	Λ —	JANE	14	Λ
	1	JOHN	22	Λ	_		
	2	RAY	30	Λ			
	3	SUZY	3	Λ			
	4						
	5						
	6						

1. add JANE(14) \rightarrow 0

SEPARATE CHAINING

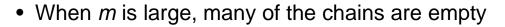


- Hash table of size *m*
- One chain (linked list) for each of *m* hash values containing all elements that hash to that location (known as a *collision list*)
- Hash chains are known as buckets
- Hash table locations are known as bucket addresses
- For n key values, average chain size is n/m
- One chain (linked list) for each of *m* hash values
- Retrieval
 - 1. use sequential search through chain
 - 2. speed up unsuccessful search by sorting chain by key value
 - 3. speed up successful search by self-organizing methods
 - move key value to start of chain each time it is accessed



- 1. add JANE(14) \rightarrow 0
- 2. add LUCY(41)→6

IN-PLACE CHAINING



- Use empty locations in table for the chain
- Must be able to distinguish between free and occupied locations

1

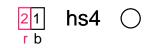
hs4

- Insertion algorithm:
 - 1. if key value not present, then allocate a free location
 - 2. link location to chain which was unsuccessfully searched

	—
•	-x

h(k)	NAME	k=KEY	NEXT
0	JIM	49	Λ
1	JOHN	22	Λ
2	RAY	30	Λ
3	SUZY	3	Λ
4			
5			
6			

IN-PLACE CHAINING



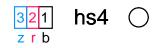
- When *m* is large, many of the chains are empty
- Use empty locations in table for the chain
- Must be able to distinguish between free and occupied locations
- Insertion algorithm:
 - 1. if key value not present, then allocate a free location
 - 2. link location to chain which was unsuccessfully searched
- Ex:

h(k)	NAME	k=KEY	NEXT
0	JIM	49	A ∕6
1	JOHN	22	Λ
2	RAY	30	Λ
3	SUZY	3	Λ
4			
5			
6	JANE	14	Λ

1. add JANE(14) \rightarrow 0 which collides with JIM(49) \rightarrow 0

 \bigcirc

IN-PLACE CHAINING



- When *m* is large, many of the chains are empty
- Use empty locations in table for the chain
- Must be able to distinguish between free and occupied locations
- Insertion algorithm:
 - 1. if key value not present, then allocate a free location
 - 2. link location to chain which was unsuccessfully searched
- Ex:

h(k)	NAME	k=KEY	NEXT
0	JIM	49	X 6
1	JOHN	22	Λ
2	RAY	30	Λ
3	SUZY	3	Λ
4			
5	LUCY	41	Λ
6	JANE	14	A ∕5

- 1. add JANE(14) \rightarrow 0 which collides with JIM(49) \rightarrow 0
- 2. add LUCY(41) \rightarrow 6 which collides with JANE(14) \rightarrow 0 which is stored at 6
 - result in coalescing of chains of JANE and LUCY making unsuccessful search longer as several chains must be searched

 \bigcirc

IN-PLACE CHAINING

- When *m* is large, many of the chains are empty
- Use empty locations in table for the chain
- Must be able to distinguish between free and occupied locations
- Insertion algorithm:
 - 1. if key value not present, then allocate a free location
 - 2. link location to chain which was unsuccessfully searched
- Ex:

h(k)	NAME	k=KEY	NEXT
0	JIM	49	A 6 5
1	JOHN	22	Λ
2	RAY	30	Λ
3	SUZY	3	Λ
4			
5	LUCY JANE	41 14	Λ
6	JANE LUCY	14 41	$A > \Lambda$

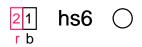
- 1. add JANE(14) \rightarrow 0 which collides with JIM(49) \rightarrow 0
- 2. add LUCY(41) \rightarrow 6 which collides with JANE(14) \rightarrow 0 which is stored at 6
 - result in coalescing of chains of JANE and LUCY making unsuccessful search longer as several chains must be searched
- Can avoid coalescing by moving JANE just before adding LUCY

IN-PLACE CHAINING INSERTION ALGORITHM

```
location procedure
CHAINING_WITH_COALESCING_INSERTION(k);
begin
  value key k;
  integer i;
  global integer r;
  /* r is the most recently allocated location */
  global hashtable table;
  i \leftarrow h(k);
  if OCCUPIED(table[i]) then
    begin
      while NOT(NULL(NEXT(table[i])) do
        begin
           if k=KEY(table[i]) then return(i)
           else i←NEXT(table[i]);
        end;
      if k=KEY(table[i]) then return(i);
      while OCCUPIED(table[r]) do r\leftarrowr-1;
      if r≤0 then return(`OVERFLOW')
      else
        begin
          NEXT(table[i])←r;
           i←r;
        end;
    end;
  MARK(table[i], `OCCUPIED');
  KEY(table[i]) \leftarrow k;
  NEXT(table[i])←NIL;
  return(i);
end;
```


- Avoid extra space for NEXT field by not storing entire key value with record
- $k = m \cdot q(k) + h(k), q(k) = \lfloor k/m \rfloor, h(k) = k \mod m$
- Store *q*(*k*) in table instead of *k*
- Can compute k given m, q(k), and h(k),
- Ex: $0 \le k < 2^{32}$ q(k) h(k)0 21 22 31
- Since only compare q(k), all elements in same collision list must have the same value of h(k) and thus no coalescing is allowed
- Data structure:
 - 1. circular collision lists
 - 2. flag FIRST denoting if first element on collision list
 - pointer NEXT to next element in circular list with same h(k) value

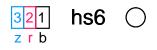
• Ex:	$\begin{bmatrix} - & - & - \\ h(k) \end{bmatrix}$	NAME	k = KEY	FIRST	q(k)	NEXT
	0 1 2 3 1 4 1 5 1 5	JIM JOHN RAY SUZY	49 22 30 3 1	T T T	7 3 4 0	0 1 2 3



- Avoid extra space for NEXT field by not storing entire key value with record
- $k = m \cdot q(k) + h(k), q(k) = \lfloor k/m \rfloor, h(k) = k \mod m$
- Store *q*(*k*) in table instead of *k*
- Can compute k given m, q(k), and h(k),
- Ex: $0 \le k < 2^{32}$ q(k) h(k)0 21 22 31
- Since only compare q(k), all elements in same collision list must have the same value of h(k) and thus no coalescing is allowed
- Data structure:
 - 1. circular collision lists
 - 2. flag FIRST denoting if first element on collision list
 - pointer NEXT to next element in circular list with same h(k) value

• Ex:	$\begin{bmatrix} - & - & - \\ h(k) \end{bmatrix}$	NAME	<i>k</i> =KEY	FIRST	q(k)	NEXT
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	JIM JOHN RAY SUZY	49 22 30 3	Ч Ч Ч	7 3 4 0	4 1 2 3
	6 	JANE	14	F	2	0

1. add JANE(14) \rightarrow 0



- Avoid extra space for NEXT field by not storing entire key value with record
- $k = m \cdot q(k) + h(k), q(k) = \lfloor k/m \rfloor, h(k) = k \mod m$
- Store q(k) in table instead of k
- Can compute k given m, q(k), and h(k),
- Ex: $0 \le k < 2^{32}$ q(k) h(k)0 21 22 31
- Since only compare q(k), all elements in same collision list must have the same value of h(k) and thus no coalescing is allowed
- Data structure:
 - 1. circular collision lists
 - 2. flag FIRST denoting if first element on collision list
 - pointer NEXT to next element in circular list with same h(k) value

• Ex:	$\begin{bmatrix} - & - & - \\ h(k) \end{bmatrix}$	NAME	k=KEY	FIRST	q(k)	NEXT
		JIM JOHN RAY SUZY	49 22 30 3	T T T T	7 3 4 0	0-6-5 1 2 3
		JANE JANE LUCY	14 14 41	F T	2	0 -0 6

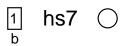
- 1. add JANE(14) \rightarrow 0
- 2. add LUCY(41) \rightarrow 6 but 6 contains JANE
 - if at least one element of the hash chain starting at 6 exists, then it must be stored there
 - must move JANE as it does not belong in 6



- Avoid extra space for NEXT field by not storing entire key value with record
- $k = m \cdot q(k) + h(k), q(k) = \lfloor k/m \rfloor, h(k) = k \mod m$
- Store *q*(*k*) in table instead of *k*
- Can compute k given m, q(k), and h(k),
- Ex: $0 \le k < 2^{32}$ q(k) h(k)0 21 22 31
- Since only compare q(k), all elements in same collision list must have the same value of h(k) and thus no coalescing is allowed
- Data structure:
 - 1. circular collision lists
 - 2. flag FIRST denoting if first element on collision list
 - pointer NEXT to next element in circular list with same h(k) value

• Ex:	$\begin{bmatrix} - & - & - \\ h(k) \end{bmatrix}$	NAME	k=KEY	FIRST	q(k)	NEXT
		JIM JOHN RAY SUZY	49 22 30 3	T T T T	7 3 4 0	0-6-5 1 2 3
	4 5 6 ∟	JANE JANE LUCY	14 14 41	F F	2	0 - 0 - 6

- 1. add JANE(14) \rightarrow 0
- 2. add LUCY(41) \rightarrow 6 but 6 contains JANE
 - if at least one element of the hash chain starting at 6 exists, then it must be stored there
 - must move JANE as it does not belong in 6
- Nice compromise between use of a key value as an index to a table, which is impossible due to large number of possible key values, and storing the entire key value as in a conventional hashing method



OPEN ADDRESSING

- Like chaining but NEXT link field is open or unspecified
- Probe sequence: set of locations comprising collision list of a key
- Goal: cycle through all locations with little or no duplication
- Linear probing: *h*(*k*), *h*(*k*)+1, *h*(*k*)+2, ..., *m*-1, 0, 1, *h*(*k*)-1
- Insertion Algorithm:
 - 1. calculate hash address *i*
 - 2. if TABLE(*i*) is empty then insert and exit; else *i*←*i*+1 mod *m* and repeat step 2 until exhausting TABLE

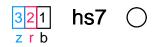
• Ex:	h(k)	NAME	k=KEY
	0	JIM	49
	1	JOHN	22
	2	RAY	30
	3	SUZY	3
	4		
	5		
	6		

OPEN ADDRESSING

- Like chaining but NEXT link field is open or unspecified
- Probe sequence: set of locations comprising collision list of a key
- Goal: cycle through all locations with little or no duplication
- Linear probing: *h*(*k*), *h*(*k*)+1, *h*(*k*)+2, ..., *m*-1, 0, 1, *h*(*k*)-1
- Insertion Algorithm:
 - 1. calculate hash address *i*
 - 2. if TABLE(*i*) is empty then insert and exit; else *i*←*i*+1 mod *m* and repeat step 2 until exhausting TABLE

• Ex:	h(k)	NAME	k=KEY
	0	JIM	49
	1	JOHN	22
	2	RAY	30
	3	SUZY	3
	4	JANE	14
	5		
	6		

 adding JANE(14)→0 yields a collision; cyclic probe sequence causes its insertion in 4



- Like chaining but NEXT link field is open or unspecified
- Probe sequence: set of locations comprising collision list of a key
- Goal: cycle through all locations with little or no duplication
- Linear probing: *h*(*k*), *h*(*k*)+1, *h*(*k*)+2, ..., *m*-1, 0, 1, *h*(*k*)-1
- Insertion Algorithm:
 - 1. calculate hash address *i*
 - 2. if TABLE(*i*) is empty then insert and exit; else *i*←*i*+1 mod *m* and repeat step 2 until exhausting TABLE

• Ex:	h(k)	NAME	k=KEY
	0	JIM	49
	1	JOHN	22
	2	RAY	30
	3	SUZY	3
	4	JANE	14
	5		
	6	LUCY	41

- adding JANE(14)→0 yields a collision; cyclic probe sequence causes its insertion in 4
- 2. adding LUCY(41) \rightarrow 6

- Like chaining but NEXT link field is open or unspecified
- Probe sequence: set of locations comprising collision list of a key
- Goal: cycle through all locations with little or no duplication
- Linear probing: *h*(*k*), *h*(*k*)+1, *h*(*k*)+2, ..., *m*-1, 0, 1, *h*(*k*)-1
- Insertion Algorithm:
 - 1. calculate hash address *i*
 - 2. if TABLE(*i*) is empty then insert and exit; else *i*←*i*+1 mod *m* and repeat step 2 until exhausting TABLE

• Ex:	h(k)	NAME	k=KEY
	0	JIM	49
	1	JOHN	22
	2	RAY	
	3	SUZY	3
	4	JANE	14
	5		
	6	LUCY	41

- adding JANE(14)→0 yields a collision; cyclic probe sequence causes its insertion in 4
- 2. adding LUCY(41) \rightarrow 6
- 3. delete RAY(30) \rightarrow 2

- Like chaining but NEXT link field is open or unspecified
- Probe sequence: set of locations comprising collision list of a key
- Goal: cycle through all locations with little or no duplication
- Linear probing: *h*(*k*), *h*(*k*)+1, *h*(*k*)+2, ..., *m*-1, 0, 1, *h*(*k*)-1
- Insertion Algorithm:
 - 1. calculate hash address *i*
 - 2. if TABLE(*i*) is empty then insert and exit; else *i*←*i*+1 mod *m* and repeat step 2 until exhausting TABLE

• Ex:	h(k)	NAME	k=KEY
	0	JIM	49
	1	JOHN	22
	2	RAY	
	3	SUZY	3
	4	JANE	14
	5		
	6	LUCY	41

- adding JANE(14)→0 yields a collision; cyclic probe sequence causes its insertion in 4
- 2. adding LUCY(41) \rightarrow 6
- 3. delete RAY(30) \rightarrow 2
 - problem: if look up JANE then don't find her since a collision exists at location 0, and probe sequence finds location 2 unoccupied

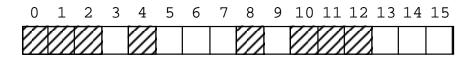


- Like chaining but NEXT link field is open or unspecified
- Probe sequence: set of locations comprising collision list of a key
- Goal: cycle through all locations with little or no duplication
- Linear probing: *h*(*k*), *h*(*k*)+1, *h*(*k*)+2, ..., *m*-1, 0, 1, *h*(*k*)-1
- Insertion Algorithm:
 - 1. calculate hash address *i*
 - 2. if TABLE(*i*) is empty then insert and exit; else *i*←*i*+1 mod *m* and repeat step 2 until exhausting TABLE

h(k)	NAME	k=KEY	DELETED
0	JIM	49	N
1	JOHN	22	N
2	RAY		Y
3	SUZY	3	N
4	JANE	14	N
5			N
6	LUCY	41	Ν

- adding JANE(14)→0 yields a collision; cyclic probe sequence causes its insertion in 4
- 2. adding LUCY(41) \rightarrow 6
- 3. delete RAY(30) \rightarrow 2
 - problem: if look up JANE then don't find her since a collision exists at location 0, and probe sequence finds location 2 unoccupied
 - solution: add DELETED flag to each entry to halt the search during insertion but not during lookup

PILEUP PHENOMENON



- Next key to be inserted goes into one of the vacant locations
- Not all vacant locations are equally probable
- Ex: insert k into location 3 if 0 ≤ h(k) ≤ 3 insert k into location 6 if h(k)=6 3 is four times as likely as 6
- Coalescing in open addressing with linear probing can lead to big growth (e.g., inserting into location 9 makes the list of 8 grow by 4)
- Different from in-place chaining where coalescing causes a list to grow by only one element
- Pileup phenomenon arises whenever consecutive values are likely to occur
- Overcome by a number of techniques:
 - 1. use additive constant instead of 1
 - should be relatively prime to *m* so can cycle through table
 - use a pseudo random number generator to create successive offsets from h(k) (random probing)
 - make sure cycle through table
 - uniform hashing = when all possible configurations of empty and occupied locations are equally likely = model of hashing for comparing various methods

hs8

ANALYSIS OF PERFORMANCE

- *n*= number of key values in table
- *m*= maximum size of table
- $\alpha = n/m = \text{load factor}$
- Expected number of probes for successful search:

α	linear probing	random probing (under uniform hashing model)	separate chaining
	$(1-\alpha/2)/(1-\alpha)$	–(ln (1-α))/α	1+α/2
0.1	1.06	1.05	1.05
0.5	1.50	1.34	1.25
0.75	2.50	1.83	1.375
0.9	5.50	2.56	1.45

QUADRATIC PROBING

- Alternative to linear probing
- Avoids primary clustering
- $h_i = (h(k)+i^2) \mod m$
- Locations in the probe sequence can be computed with no multiplication
 - 1. h_i is location of element *i*
 - 2. $h_{i+1} = (h_i + d_i \mod m)$ where $d_0 = 1$ and $d_{i+1} = d_i + 2$
- Theorem: if *m* is prime, then quadratic probing will search through at least 50% of the table before seeing a particular location again
- Ex: m=7 $h_0 = 0, h_1 = 1, h_2 = 4$ $h_3 = 9 \mod 7 = 2 \text{ and } h_4 = 16 \mod 7 = 2$
- Proof:
 - 1. let probes *i*, *j* probe the same location (assume $i \neq j$)
 - 2. $i^2 \mod m = j^2 \mod m$
 - 3. $(i^2 j^2) \mod m = (i+j) \cdot (i-j) \mod m = 0 \mod m$
 - 4. but *i*,*j* are both < *m* implying $(i-j) \neq c \cdot m$
 - 5. therefore, $i+j = c \cdot m$ and *i* or *j* must be at least m/2 since probe sequence starts with i=1, and recycling of values won't occur until at least 50% of table has been searched
- Sequence differs from one obtained from the pseudo random number generator as the pseudo random number generator guarantees that every location will be on a probe sequence

DOUBLE HASHING

- Use an additional hash function g(k) to generate a constant increment for the probe sequence
- Probe sequence for key value k:

 $p_0 = h(k)$ $p_1 = (h(k) + g(k)) \mod m$ $p_2 = (h(k) + 2 \cdot g(k)) \mod m$ $p_3 = (h(k) + 3 \cdot g(k)) \mod m$... $p_i = (h(k) + i \cdot g(k)) \mod m$

- h(k) and g(k) should be independent
- g(k) generates values between 1 and m-1
- Two different key values will have the same value for h and g with probability $O(1/m^2)$ instead of O(1/m)
- Key value *k* is stored at any one of the locations along its probe sequence
- Key values stored along the probe sequence of *k* are not necessarily part of *k*'s probe sequence
- Ex: key values s and t can both hash to location u key value s: u = (h(s) + c ⋅ g(s)) mod m key value t: u = (h(t) + d ⋅ g(t)) mod m

SELF-ORGANIZING DOUBLE HASHING

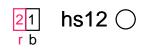
- Collision lists are long as each location is frequently on the collision lists of many different key values
- Develop techniques for rearranging the elements on the collision lists so that subsequent searches are shorter
- Assume records are retrieved many times once inserted into the table hence it pays to rearrange the collision lists
- Assume trying to insert key value k and probe locations p₀
 , p₁ , ... p_i , ... p_t, where p_i = (h(k)+i · g(k)) mod m before finding location p_t empty
- $p_i = (h(k) + i \cdot g(k)) \mod m$
- Each p_i (0 ≤ i <t) is also part of a hash chain consisting of locations: (p_i +j · g(KEY(p_i))) mod m for arbitrary j

P_0	P_1	P_2	P_3	P_4	• • •	\mathcal{P}_t
$p_0 + c_0$	p ₁ + c ₁	p ₂ + c ₂	p ₃ + c ₃	p ₄ + c ₄		
p ₀ +2c ₀	p ₁ +2c ₁	p ₂ +2c ₂	p ₃ +2c ₃			
$p_0 + 3c_0$	p ₁ +3c ₁	p ₂ +3c ₂				
$p_0 + 4c_0$	$p_1 + 4c_1$					
p ₀ +5c ₀						

• Assume $c_i = g(\text{KEY}(p_i))$, and $p_i = h(\text{KEY}(p_i)) \mod m$:

- Actually, $p_i = (h(\text{KEY}(p_i)) + d_i \cdot g(\text{KEY}(p_i))) \mod m$
- Brent algorithm: try to insert key value k in one of p_i and move the contents of p_i to an empty location along its probe sequence (column) so as to minimize the effective incremental search cost

SELF-ORGANIZING DOUBLE HASHING

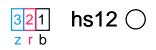


- Collision lists are long as each location is frequently on the collision lists of many different key values
- Develop techniques for rearranging the elements on the collision lists so that subsequent searches are shorter
- Assume records are retrieved many times once inserted into the table hence it pays to rearrange the collision lists
- Assume trying to insert key value k and probe locations p₀
 , p₁ , ... p_i , ... p_t, where p_i = (h(k)+i · g(k)) mod m before finding location p_t empty
- $p_i = (h(k) + i \cdot g(k)) \mod m$
- Each p_i (0 ≤ i <t) is also part of a hash chain consisting of locations: (p_i +j · g(KEY(p_i))) mod m for arbitrary j
- Assume $c_i = g(\text{KEY}(p_i))$, and $p_i = h(\text{KEY}(p_i)) \mod m$:

P_0		p_1		p_2	p_3		P_4	•••	P_t
$p_0 + c_0$	1	$p_1 + c_1$	2	$p_2 + c_2 4$	p ₃ + c ₃	7	$p_4 + c_4 11$		
p ₀ +2c ₀	3	<i>p</i> ₁ +2 <i>c</i> ₁	5	p ₂ +2c ₂ 8	p ₃ +2c ₃	12			
$p_0 + 3c_0$	б	p ₁ +3c ₁	9	p ₂ +3c ₂ 13					
$p_0 + 4c_0$	10	$p_1 + 4c_1$	14						
$p_0 + 5c_0$	15								

- Actually, $p_i = (h(\text{KEY}(p_i)) + d_i \cdot g(\text{KEY}(p_i))) \mod m$
- Brent algorithm: try to insert key value k in one of p_i and move the contents of p_i to an empty location along its probe sequence (column) so as to minimize the effective incremental search cost
- Order for testing candidate locations for moving

SELF-ORGANIZING DOUBLE HASHING



- Collision lists are long as each location is frequently on the collision lists of many different key values
- Develop techniques for rearranging the elements on the collision lists so that subsequent searches are shorter
- Assume records are retrieved many times once inserted into the table hence it pays to rearrange the collision lists
- Assume trying to insert key value k and probe locations p₀
 , p₁ , ... p_i , ... p_t, where p_i = (h(k)+i · g(k)) mod m before finding location p_t empty
- $p_i = (h(k) + i \cdot g(k)) \mod m$
- Each p_i (0 ≤ i <t) is also part of a hash chain consisting of locations: (p_i +j · g(KEY(p_i))) mod m for arbitrary j
- Assume $c_i = g(\text{KEY}(p_i))$, and $p_i = h(\text{KEY}(p_i)) \mod m$:

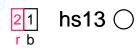
P_0	P_1	P_2	p_3	p_4	•••	P_t
$p_0 + c_0 \bullet 1$	$P_1 + C_1 \cdot 2$	$p_2 + c_2 \cdot 4$	$p_3 + c_3 \cdot 7$	$p_4 + c_4 \cdot 11$		
p ₀ +2c ₀ •3	$P_1 + 2C_1 \cdot 5$	$P_2 + 2C_2 \cdot 8$	$p_3 + 2c_3 \cdot 12$			
p ₀ +3c ₀ •6	$p_1 + 3c_1 \cdot 9$	P2+3C2-13				
$p_0 + 4c_0 \cdot 10$	$P_1 + 4C_1 \cdot 14$					
p ₀ +5c ₀ •15						

- Actually, $p_i = (h(\text{KEY}(p_i)) + d_i \cdot g(\text{KEY}(p_i))) \mod m$
- Brent algorithm: try to insert key value k in one of p_i and move the contents of p_i to an empty location along its probe sequence (column) so as to minimize the effective incremental search cost
- Order for testing candidate locations for moving (along diagonals)

• Attempt to insert RUDY

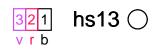
p ₀ =TIM	p_1 =ALAN	p2=JAY	<i>р</i> 3=КАТҮ	p ₄ =?
JOAN	RUTH	φ	KIM	¢
RON	φ	φ	ALEX	φ
RITA	φ	φ	BOB	φ
φ	φ	φ	φ	φ

• First free location in RUDY's probe sequence is p₄ for an increase in cost of 4



p ₀ =TIM	p_1 =ALAN	p₂=JAY	<i>р</i> 3=КАТҮ	p ₄ =?
JOAN •	RUTH	•	KIM •	φ
RON 🔸	0	•	ALEX	φ
RITA 🗸	0	ø	BOB	φ
φ •	φ	φ	φ	φ

- First free location in RUDY's probe sequence is *p*₄ for an increase in cost of 4
- Examine locations in diagonal order for first free location



p ₀ =TIM	p_1 =ALAN	₽₂=JAY	<i>р</i> 3=КАТҮ	p ₄ =?
JOAN •	RUTH	•	KIM	¢
RON 🔸	0	•	ALEX	¢
RITA 🗸	0	Ø	BOB	¢
φ •	φ	φ	φ	φ

- First free location in RUDY's probe sequence is p₄ for an increase in cost of 4
- Examine locations in diagonal order for first free location
- Alternatively, find first free location in each hash chain and check if overall search cost is increased by a movement of it
- Movement must result in an increase <4 in the search cost

p ₀ =TIM	p_1 =ALAN	p₂=JAY	<i>р</i> 3=КАТҮ	p4=?
RUDY				
JOAN •	RUTH	•	KIM •	φ
RON	0	•	ALEX	φ
RITA	0	ø	BOB	φ
φ TIM •	•	φ	φ	φ

- First free location in RUDY's probe sequence is *p*₄ for an increase in cost of 4
- Examine locations in diagonal order for first free location
- Alternatively, find first free location in each hash chain and check if overall search cost is increased by a movement of it
- Movement must result in an increase <4 in the search cost
- Moving TIM increases the search cost by 4

p ₀ =TIM	p ₁ =ALAN	p₂=JAY	<i>р</i> 3=КАТҮ	p ₄ =?
RUDY	RUDY			
JOAN •	RUTH	•	KIM •	¢
RON 🔹	¢ ALAN•	•	ALEX	φ
RITA	•	ø	BOB	φ
φ tim •	¢	φ	φ	φ

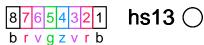
- First free location in RUDY's probe sequence is p₄ for an increase in cost of 4
- Examine locations in diagonal order for first free location
- Alternatively, find first free location in each hash chain and check if overall search cost is increased by a movement of it
- Movement must result in an increase <4 in the search cost
- Moving TIM increases the search cost by 4
- Moving ALAN increases its search cost by 2, while increasing that of RUDY by 1 for a total of 3

p ₀ =TIM	p_1 =ALAN	p2=JAY	<i>р</i> 3=КАТҮ	p4=?
RUDY	RUDY	RUDY		
JOAN •	RUTH	¢ JAY	KIM •	¢
RON •	¢ ALAN•	•	ALEX	φ
RITA	0	φ	BOB	φ
φ TIM •	¢	φ	φ	φ

- First free location in RUDY's probe sequence is p₄ for an increase in cost of 4
- Examine locations in diagonal order for first free location
- Alternatively, find first free location in each hash chain and check if overall search cost is increased by a movement of it
- Movement must result in an increase <4 in the search cost
- Moving TIM increases the search cost by 4
- Moving ALAN increases its search cost by 2, while increasing that of RUDY by 1 for a total of 3
- Moving JAY increases its search cost by 1, while increasing that of RUDY by 2 for a total of 3

p ₀ =TIM	p ₁ =ALAN	p2=JAY	<i>р</i> 3=КАТҮ	p ₄ =?
RUDY	RUDY	RUDY	RUDY	
JOAN •	RUTH	¢ JAY	KIM •	¢
RON	¢ ALAN•	•	ALEX	¢
RITA	0	φ	вов 🇸	φ
φ τιΜ.	ø	φ	φ κατγ	¢

- First free location in RUDY's probe sequence is *p*₄ for an increase in cost of 4
- Examine locations in diagonal order for first free location
- Alternatively, find first free location in each hash chain and check if overall search cost is increased by a movement of it
- Movement must result in an increase <4 in the search cost
- Moving TIM increases the search cost by 4
- Moving ALAN increases its search cost by 2, while increasing that of RUDY by 1 for a total of 3
- Moving JAY increases its search cost by 1, while increasing that of RUDY by 2 for a total of 3
- Moving KATY increases its search cost by 4, while increasing that of RUDY by 3 for a total of 7



p ₀ =TIM	p ₁ =ALAN	p2=JAY	<i>р</i> 3=КАТҮ	p ₄ =?
RUDY	RUDY	RUDY	RUDY	
JOAN •	RUTH	¢ JAY•	KIM •	¢
RON	Ø ALAN•	•	ALEX	φ
RITA	0	φ	вов 🇸	φ
φ TIM •	Ø	φ	φ κατγ	φ

- First free location in RUDY's probe sequence is *p*₄ for an increase in cost of 4
- Examine locations in diagonal order for first free location
- Alternatively, find first free location in each hash chain and check if overall search cost is increased by a movement of it
- Movement must result in an increase <4 in the search cost
- Moving TIM increases the search cost by 4
- Moving ALAN increases its search cost by 2, while increasing that of RUDY by 1 for a total of 3
- Moving JAY increases its search cost by 1, while increasing that of RUDY by 2 for a total of 3
- Moving KATY increases its search cost by 4, while increasing that of RUDY by 3 for a total of 7
- Move JAY as its increase (3) was the least and was encountered first

p ₀ =TIM	p ₁ =ALAN	p2=JAY	p₃=KATY	p ₄ =?
RUDY	RUDY	RUDY	RUDY	
JOAN	RUTH	¢ JAY	KIM •	¢
RON	¢ ALAN	•	ALEX	φ
RITA	0	φ	вов 🧹	φ
φ tim	φ	φ	φ κατγ	¢

- First free location in RUDY's probe sequence is *p*₄ for an increase in cost of 4
- Examine locations in diagonal order for first free location
- Alternatively, find first free location in each hash chain and check if overall search cost is increased by a movement of it
- Movement must result in an increase <4 in the search cost
- Moving TIM increases the search cost by 4
- Moving ALAN increases its search cost by 2, while increasing that of RUDY by 1 for a total of 3
- Moving JAY increases its search cost by 1, while increasing that of RUDY by 2 for a total of 3
- Moving KATY increases its search cost by 4, while increasing that of RUDY by 3 for a total of 7
- Move JAY as its increase (3) was the least and was encountered first
- Need 2.5 probes on the average for successful search
- Average number of probes for unsuccessful search is not reduced (as high as (m+1)/2 when the table is full)

GONNET-MUNRO ALGORITHM

- More general than the Brent algorithm
- Brent algorithm only attempts to move records on the probe sequence of the record being inserted

p ₀ =TIM	p_1 =ALAN	p₂=JAY	р ₃ =КАТҮ	p ₄ =?
JOAN	RUTH	φ	KIM	φ
RON	φ	φ	ALEX	φ
RITA	φ	φ	BOB	φ
φ	φ	φ	φ	φ

- Gonnet-Munro attempts to move in several stages instead of just one stage
 - 1. RUDY to TIM, TIM to JOAN, and JOAN to?
 - 2. RUDY to ALAN, ALAN to RUTH, and RUTH to?
- Need remaining hash chains

JOAN	RIT
¢	JAY
φ	TIM
φ	¢
¢	¢

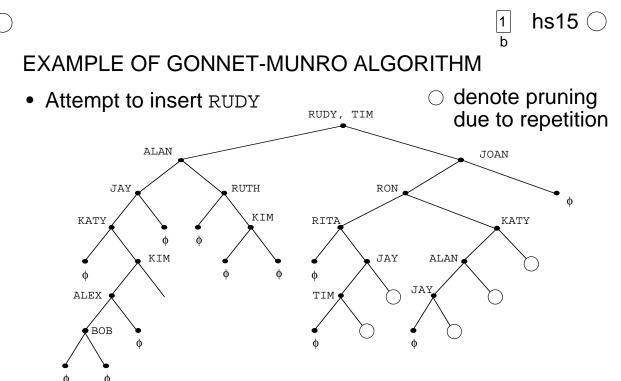
RITA	KIM
JAY	φ
MIT	φ
¢	φ
¢	φ

RUTH	
KIM	
φ	
φ	
φ	

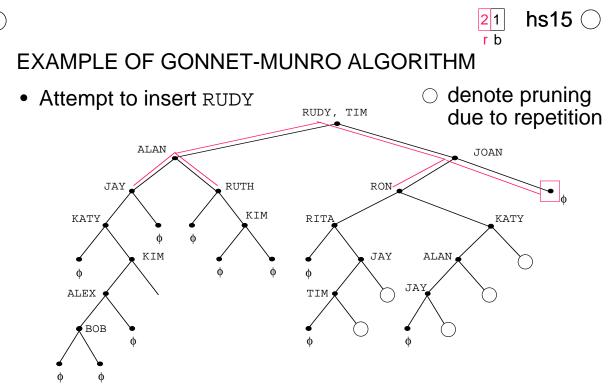
RON	ALEX	BOE
KATY	φ	¢
ALAN	φ	¢
JAY	φ	φ
¢	φ	φ
Ψ	Ψ	Ψ

•	Can visualize se	earch for best mo	ovement as a binary tree
---	------------------	-------------------	--------------------------

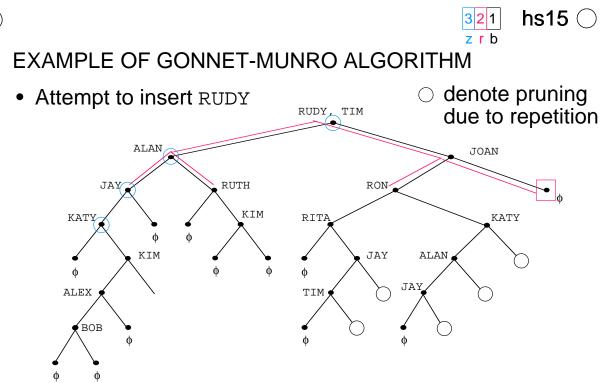
· Best movement is the closest empty node to the root



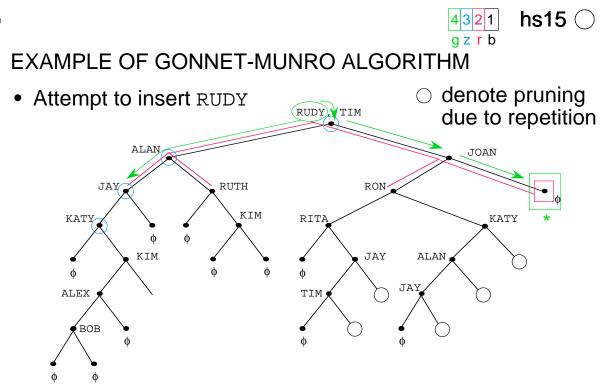
- Right son of a is next element in probe sequence of KEY(a)
- Left son of *a* is next element in probe sequence of *a* and *a*'s father



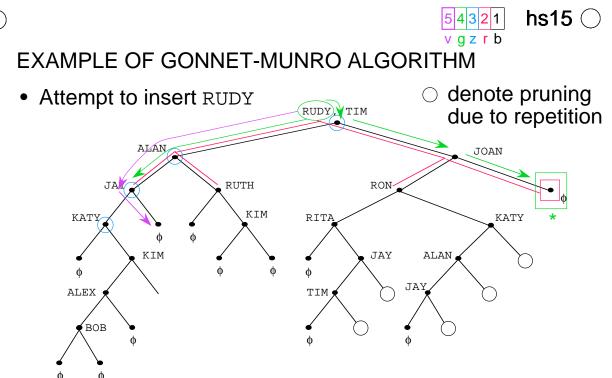
- Right son of a is next element in probe sequence of KEY(a)
- Left son of *a* is next element in probe sequence of *a* and *a*'s father
- Search generates the tree level by level and chooses the first empty node as the final target for a sequence of relocation steps



- Right son of a is next element in probe sequence of KEY(a)
- Left son of *a* is next element in probe sequence of *a* and *a*'s father
- Search generates the tree level by level and chooses the first empty node as the final target for a sequence of relocation steps
- RUDY can be relocated to any position in the leftmost part of the tree



- Right son of a is next element in probe sequence of KEY(a)
- Left son of *a* is next element in probe sequence of *a* and *a*'s father
- Search generates the tree level by level and chooses the first empty node as the final target for a sequence of relocation steps
- RUDY can be relocated to any position in the leftmost part of the tree
- Apply the relocation step as many times as needed to get to desired empty node
- Optimal solution moves RUDY to TIM, TIM to JOAN, and JOAN to its empty right son
 - 1. increase in total search cost is 2
 - 2. better than 3 obtained by Brent algorithm

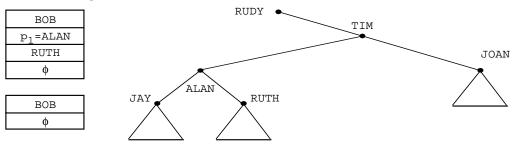


- Right son of a is next element in probe sequence of KEY(a)
- Left son of *a* is next element in probe sequence of *a* and *a*'s father
- Search generates the tree level by level and chooses the first empty node as the final target for a sequence of relocation steps
- RUDY can be relocated to any position in the leftmost part of the tree
- Apply the relocation step as many times as needed to get to desired empty node
- Optimal solution moves RUDY to TIM, TIM to JOAN, and JOAN to its empty right son
 - 1. increase in total search cost is 2
 - 2. better than 3 obtained by Brent algorithm
- Brent algorithm only applies one step and thus must find the empty node in just one iteration
 - 1. move RUDY to JAY; JAY to empty right son of JAY
 - 2. increase in total search cost is 3

1 hs16 ()

SHORTCOMING OF GONNET-MUNRO ALGORITHM

- Only moves records in forward direction along their hash chains
- Sometimes can reduce the cost by moving backward along the chain
- Ex: suppose ALAN is not in the first position along the hash chain starting at *h*(ALAN) mod *m* and that BOB immediately precedes ALAN along the hash chain, although *h*(ALAN) ≠ *h*(BOB)



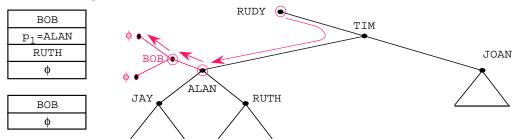
SHORTCOMING OF GONNET-MUNRO ALGORITHM

Only moves records in forward direction along their hash chains

hs16 〇

21

- Sometimes can reduce the cost by moving backward along the chain
- Ex: suppose ALAN is not in the first position along the hash chain starting at *h*(ALAN) mod *m* and that BOB immediately precedes ALAN along the hash chain, although *h*(ALAN) ≠ *h*(BOB)



- Optimal solution moves RUDY to ALAN, ALAN to BOB, and BOB to its empty son
 - 1. increase in total search cost is 1
 - 2. better than 2 obtained by Gonnet-Munro algorithm

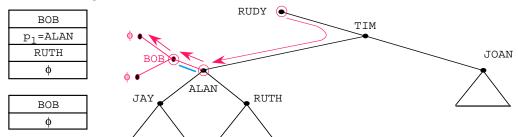
Z r b SHORTCOMING OF GONNET-MUNRO ALGORITHM

Only moves records in forward direction along their hash chains

hs16 〇

321

- Sometimes can reduce the cost by moving backward along the chain
- Ex: suppose ALAN is not in the first position along the hash chain starting at *h*(ALAN) mod *m* and that BOB immediately precedes ALAN along the hash chain, although *h*(ALAN) ≠ *h*(BOB)



- Optimal solution moves RUDY to ALAN, ALAN to BOB, and BOB to its empty son
 - 1. increase in total search cost is 1
 - 2. better than 2 obtained by Gonnet-Munro algorithm
- Requires a ternary tree
 - 1. need an additional link from *a* to the previous element in the probe sequence of KEY(*a*)
 - e.g., ALAN to BOB
 - 2. search process interprets previous links as indicating a decrease in cost
 - 3. if incoming link to *a* is a "previous element" link, then left son of *a* is the prior element in probe sequence of *a* and its father
 - 4. search process is more complex and empty node at closest level to the root no longer represents the cheapest relocation sequence
 - 5. optimal solution may require exhaustive search

SUMMARY

- Advantages
 - 1. separate chaining is superior with respect to the number of probes but need more space
 - 2. open addressing with linear probing results in more accesses but this is compensated by its simplicity
 - 3. compares favorably with other search methods as the search time is bounded as the number of records increases (provided the table does not become too full)
- Disadvantages
 - 1. size of hash table is usually fixed
 - have to worry about rehashing
 - separate chaining with overflow buckets is good
 - use linear hashing or spiral hashing which just split one bucket and rehash its contents instead of rehashing the entire table
 - 2. after an unsuccessful search we only know that the record is not present
 - we don't know about the presence or absence of other records with similar key values such as the immediate predecessor or successor
 - contrast with B-trees and other methods based on binary search which maintain the natural order of the key values and permit processing along this order
 - order-preserving hashing methods such as those used to deal with multiattribute data (and spatial data) are an exception
 - 3. deletion may be cumbersome (e.g., open addressing)
 - 4. only efficient on the average
 - contrast with B-tree methods which have guaranteed upper bounds on search time, etc.
 - need faith in probability theory!