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HASHING OVERVIEW

• Task: compare the value of a key with a set of key values
in a table

• Conventional solutions:

1. use a comparison on key values (tree-based)

2. branching process governed by the digits comprising
the key value (trie-based)

• Alternative solution is to  find a 1-1 mapping (i.e.,
function) from set of possible key values to a memory
address and use table lookup methods to retrieve the
record — O (1) process

• Problem: the set of possible key values is much larger
than the number of available memory addresses

1. developing the 1-1 function h is time-consuming as it
requires puzzle-solving abilities
• result is called a perfect hashing function

2. once h is found, addition of a single key value may
render the function meaningless
• need to develop it anew

3. can replace h by a program, which may itself be time-
consuming to compute

• Result: usually abandon goal of finding 1-1 mapping and
use a special method to resolve any ambiguity
(i.e., when more than one key value is mapped to
the same address — termed a collision)
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HASHING

• Def:  to “mess things up”
• Hashing function h(k) is used to calculate address where

to start the search for the record with key value k
• Issues

1. what kind of a function is h(k)?
• easy and fast to compute
• minimize the number of collisions

2. what if h(k) does not yield the desired result?
• how to handle collisions

• Assume table of size m and 0 ≤ h(k) < m
• Example hashing functions:

1. division techniques
• often use h(k) = k mod m
• choice of m is important

a. m even
• bad as h(k) even when k even and odd when k

odd
b. m is a power of the radix of alphanumeric set of

character values
• bad as only least significant characters matter
• with m=r 3, ABCDEF, IJKDEF , and KLMDEF all

hash to the same location
c. usually choose m to be prime

2. multiplicative techniques
• entire key value is used
• examples:

a. multiply fields and take modulo
b. add or exclusive-or of fields
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• Hash table of size m

• One chain (linked list) for each of m hash values 
containing all elements that hash to that location (known 
as a collision list )

• Hash chains are known as buckets

• Hash table locations are known as bucket addresses

• For n key values, average chain size is n/m

• One chain (linked list) for each of m hash values

• Retrieval

1. use sequential search through chain

2. speed up unsuccessful search by sorting chain by key 
value

3. speed up successful search by self-organizing 
methods
• move key value to start of chain each time it is 

accessed

• Ex:

1
bSEPARATE CHAINING

h(k) NAME k=KEY NEXT

0 JIM 49 Λ
1 JOHN 22 Λ
2 RAY 30 Λ
3 SUZY 3 Λ
4
5
6
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 JANE 14 Λ

1. add JANE(14)→0
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2. add LUCY(41)→6

 LUCY 41 Λ
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• When m is large, many of the chains are empty

• Use empty locations in table for the chain

• Must be able to distinguish between free and occupied 
locations

• Insertion algorithm:

1. if key value not present, then allocate a free location

2. link location to chain which was unsuccessfully 
searched

• Ex:

1
bIN-PLACE CHAINING

h(k) NAME k=KEY NEXT

0 JIM 49 Λ
1 JOHN 22 Λ
2 RAY 30 Λ
3 SUZY 3 Λ
4
5    
6
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1. add JANE(14)→0 which collides with JIM (49)→0

6

 JANE 14 Λ
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1. add JANE(14)→0 which collides with JIM (49)→0
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2. add LUCY(41)→6 which collides with JANE(14)→0 
which is stored at 6
• result in coalescing of chains of JANE and LUCY 

making unsuccessful search longer as several 
chains must be searched

 LUCY 41 Λ
5
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5
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• Can avoid coalescing by moving JANE just before adding 
LUCY

 LUCY 41
 JANE 14

5

Λ
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IN-PLACE CHAINING INSERTION ALGORITHM

location procedure
CHAINING_WITH_COALESCING_INSERTION(k);
begin
  value key k;
  integer i;
  global integer r;
  /* r is the most recently allocated location */
  global hashtable table;
  i ←h(k);
  if OCCUPIED(table[i]) then
    begin
      while NOT(NULL(NEXT(table[i])) do
        begin
          if k=KEY(table[i]) then return(i)
          else i ←NEXT(table[i]);
        end;
      if k=KEY(table[i]) then return(i);
      while OCCUPIED(table[r]) do r ←r-1;
      if r ≤0 then return(`OVERFLOW')
      else
        begin
          NEXT(table[i]) ←r;
          i ←r;
        end;
    end;
  MARK(table[i],`OCCUPIED');
  KEY(table[i]) ←k;
  NEXT(table[i]) ←NIL;
  return(i);
end;
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• Avoid extra space for NEXT field by not storing entire key 
value with record

• k = m · q(k) + h(k), q(k) =   k/m  , h(k) = k mod m
• Store q(k) in table instead of k
• Can compute k given m, q(k), and h(k), 
• Ex:  0 ≤ k < 232

• Since only compare q(k), all elements in same collision 
list must have the same value of h(k) and thus no 
coalescing is allowed

• Data structure:
1. circular collision lists
2. flag FIRST  denoting if first element on collision list
3. pointer NEXT to next element in circular list with same 

h(k) value
• Ex:

1
bLAMPSON’S IN-PLACE CHAINING

h(k) NAME k=KEY FIRST

0 JIM 49 T 7 0
1 JOHN 22 T 3 1
2 RAY 30 T 4 2
3 SUZY 3 T 0 3
4
5
6

q(k) NEXT

q(k) h(k)
 0 21  22 31 
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1. add JANE(14)→0

 JANE 14 F 2 0

     6
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1. add JANE(14)→0

 JANE 14 F 2 0

     6
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2. add LUCY(41)→6 but 6 contains JANE
• if at least one element of the hash chain starting at 6 

exists, then it must be stored there
• must move JANE as it does not belong in 6

 JANE 14 F 2 0
 LUCY 41 T 5 6

     5
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• Nice compromise between use of a key value as an index 
to a table, which is impossible due to large number of 
possible key values, and storing the entire key value as in 
a conventional hashing method
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• Like chaining but NEXT link field is open or unspecified

• Probe sequence: set of locations comprising collision list 
of a key

• Goal: cycle through all locations with little or no duplication

• Linear probing:  h(k), h(k)+1, h(k)+2, …, m–1, 0, 1, h(k)–1

• Insertion Algorithm:

1. calculate hash address i

2. if TABLE(i ) is empty then insert and exit; else i←i+1 
mod m and repeat step 2 until exhausting TABLE

• Ex:

1
bOPEN ADDRESSING

h(k) NAME k=KEY

0 JIM 49 
1 JOHN 22
2 RAY 30
3 SUZY 3
4
5
6
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1. adding JANE(14)→0 yields a collision; cyclic probe 
sequence causes its insertion in 4

JANE 14
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2. adding LUCY(41)→6

LUCY 41
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3. delete RAY(30)→2
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• problem: if look up JANE then don’t find her since a 
collision exists at location 0, and probe 
sequence finds location 2 unoccupied

Copyright © 1998 by Hanan Samet



hs7

• Like chaining but NEXT link field is open or unspecified

• Probe sequence: set of locations comprising collision list 
of a key

• Goal: cycle through all locations with little or no duplication

• Linear probing:  h(k), h(k)+1, h(k)+2, …, m–1, 0, 1, h(k)–1

• Insertion Algorithm:

1. calculate hash address i

2. if TABLE(i ) is empty then insert and exit; else i←i+1 
mod m and repeat step 2 until exhausting TABLE

• Ex:

1
bOPEN ADDRESSING

h(k) NAME k=KEY

0 JIM 49 
1 JOHN 22
2 RAY 30
3 SUZY 3
4
5
6

Copyright © 1998 by Hanan Samet

hs72
r

1. adding JANE(14)→0 yields a collision; cyclic probe 
sequence causes its insertion in 4

JANE 14

Copyright © 1998 by Hanan Samet

hs73
z

2. adding LUCY(41)→6

LUCY 41

Copyright © 1998 by Hanan Samet

hs74
g

3. delete RAY(30)→2

Copyright © 1998 by Hanan Samet

hs75
r

• problem: if look up JANE then don’t find her since a 
collision exists at location 0, and probe 
sequence finds location 2 unoccupied
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• solution: add DELETED flag to each entry to halt the 
search during insertion but not during lookup

N
N
Y
N
N
N
N

DELETED

Copyright © 1998 by Hanan Samet



hs8

PILEUP PHENOMENON

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

• Next key to be inserted goes into one of the vacant
locations

• Not all vacant locations are equally probable

• Ex:  insert k into location 3 if 0 ≤ h(k) ≤ 3
insert k into location 6 if h(k)=6
3 is four times as likely as 6

• Coalescing in open addressing with linear probing can
lead to big growth (e.g., inserting into location 9 makes
the list of 8 grow by 4)

• Different from in-place chaining where coalescing causes
a list to grow by only one element

• Pileup phenomenon arises whenever consecutive values
are likely to occur

• Overcome by a number of techniques:

1. use additive constant instead of 1
• should be relatively prime to m so can cycle through

table

2. use a pseudo random number generator to create
successive offsets from h(k) (random probing)
• make sure cycle through table
• uniform hashing = when all possible configurations

of empty and occupied locations are equally likely =
model of hashing for comparing various methods
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ANALYSIS OF PERFORMANCE

• n= number of key values in table

• m= maximum size of table

• α = n/m = load factor

• Expected number of probes for successful search:

α linear probing random probing
(under uniform
hashing model)

separate
chaining

(1–α/2)/(1-α) –(ln (1-α))/α 1+α/2
0.1 1.06 1.05 1.05
0.5 1.50 1.34 1.25
0.75 2.50 1.83 1.375
0.9 5.50 2.56 1.45
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QUADRATIC PROBING

• Alternative to linear probing

• Avoids primary clustering

• hi = (h(k)+i 2) mod m

• Locations in the probe sequence can be computed with
no multiplication
1. hi is location of element i

2. hi+1 = (hi + di mod m ) where d0 = 1 and di+1 = di +2

• Theorem: if m is prime, then quadratic probing will
search through at least 50% of the table
before seeing a particular location again

• Ex:  m=7
h0 = 0, h1 = 1, h2 = 4
h3 = 9 mod 7 = 2 and h4 = 16 mod 7 =2

• Proof:
1. let probes i, j probe the same location (assume i ≠j )
2. i 2 mod m = j 2 mod m
3. (i 2 – j 2) mod m = (i+j) · (i–j) mod m = 0 mod m
4. but i,j are both < m implying (i –j ) ≠ c · m
5. therefore, i+j = c ·m and i or j must be at least m/2 since

probe sequence starts with i =1, and recycling of values
won’t occur until at least 50% of table has been searched

• Sequence differs from one obtained from the pseudo random
number generator as the pseudo random number generator
guarantees that every location will be on a probe sequence
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DOUBLE HASHING

• Use an additional hash function g(k) to generate a
constant increment for the probe sequence

• Probe sequence for key value k:
p0 = h(k)
p1 = (h(k) + g(k)) mod m
p2 = (h(k) + 2·g(k)) mod m
p3 = (h(k) + 3·g(k)) mod m
…
pi = (h(k) + i  ·g(k)) mod m

• h(k) and g(k) should be independent

• g(k) generates values between 1 and m –1

• Two different key values will have the same value for h
and g with probability O (1/m 2) instead of O (1/m)

• Key value k is stored at any one of the locations along its
probe sequence

• Key values stored along the probe sequence of k are not
necessarily part of k’s probe sequence

• Ex: key values s and t can both hash to location u
key value s :  u = (h (s) + c · g (s)) mod m
key value t :  u = (h (t ) + d · g (t )) mod m
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SELF-ORGANIZING DOUBLE HASHING

• Collision lists are long as each location is frequently on 
the collision lists of many different key values

• Develop techniques for rearranging the elements on the 
collision lists so that subsequent searches are shorter

• Assume records are retrieved many times once inserted 
into the table hence it pays to rearrange the collision lists

• Assume trying to insert key value k and probe locations p0 
, p1 , … pi , … pt, where pi = (h(k)+i · g(k)) mod m before 
finding location pt empty

• pi = (h(k)+i · g(k)) mod m

• Each pi (0 ≤ i <t ) is also part of a hash chain consisting of 
locations: (pi +j · g(KEY(pi))) mod m for arbitrary j

• Assume ci = g(KEY(pi)), and pi = h(KEY(pi)) mod m:

1
b

• Actually, pi = (h(KEY(pi)) +di · g(KEY(pi))) mod m

• Brent algorithm:  try to insert key value k in one of pi and 
move the contents of pi to an empty location along its 
probe sequence (column) so as to minimize the effective 
incremental search cost

 p 0 p 1 p 2 p 3 p 4 ···  pt

 p0+ c 0 p 1+ c 1 p 2+ c 2 p 3+ c 3 p 4+ c 4

 p0+2c 0 p 1+2c 1 p 2+2c 2 p 3+2c 3

 p0+3c 0 p 1+3c 1 p 2+3c 2

 p0+4c 0 p 1+4c 1

 p0+5c 0
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 p0+4c 0 p 1+4c 1

 p0+5c 0

Copyright © 1998 by Hanan Samet

hs122
r

• Order for testing candidate locations for moving

1

3

6

10

15

2

5

9

14

4

8

13

7

12

11
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SELF-ORGANIZING DOUBLE HASHING

• Collision lists are long as each location is frequently on 
the collision lists of many different key values

• Develop techniques for rearranging the elements on the 
collision lists so that subsequent searches are shorter

• Assume records are retrieved many times once inserted 
into the table hence it pays to rearrange the collision lists

• Assume trying to insert key value k and probe locations p0 
, p1 , … pi , … pt, where pi = (h(k)+i · g(k)) mod m before 
finding location pt empty

• pi = (h(k)+i · g(k)) mod m

• Each pi (0 ≤ i <t ) is also part of a hash chain consisting of 
locations: (pi +j · g(KEY(pi))) mod m for arbitrary j

• Assume ci = g(KEY(pi)), and pi = h(KEY(pi)) mod m:

1
b

• Actually, pi = (h(KEY(pi)) +di · g(KEY(pi))) mod m

• Brent algorithm:  try to insert key value k in one of pi and 
move the contents of pi to an empty location along its 
probe sequence (column) so as to minimize the effective 
incremental search cost

 p 0 p 1 p 2 p 3 p 4 ···  pt

 p0+ c 0 p 1+ c 1 p 2+ c 2 p 3+ c 3 p 4+ c 4

 p0+2c 0 p 1+2c 1 p 2+2c 2 p 3+2c 3

 p0+3c 0 p 1+3c 1 p 2+3c 2

 p0+4c 0 p 1+4c 1

 p0+5c 0
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• Order for testing candidate locations for moving

1

3

6

10

15

2

5

9

14

4

8

13

7

12

11
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(along diagonals)
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• First free location in RUDY’s probe sequence is p4 for an 
increase in cost of 4

1
bEXAMPLE OF BRENT ALGORITHM

 p0=TIM p1=ALAN p2=JAY p3=KATY p4=?

    

 JOAN RUTH φ KIM φ
 RON φ φ ALEX φ
 RITA φ φ BOB φ
 φ φ φ φ φ

• Attempt to insert RUDY
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• First free location in RUDY’s probe sequence is p4 for an 
increase in cost of 4

1
bEXAMPLE OF BRENT ALGORITHM

 p0=TIM p1=ALAN p2=JAY p3=KATY p4=?

    

 JOAN RUTH φ KIM φ
 RON φ φ ALEX φ
 RITA φ φ BOB φ
 φ φ φ φ φ

• Attempt to insert RUDY
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• Examine locations in diagonal order for first free location
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• First free location in RUDY’s probe sequence is p4 for an 
increase in cost of 4

1
bEXAMPLE OF BRENT ALGORITHM

 p0=TIM p1=ALAN p2=JAY p3=KATY p4=?

    

 JOAN RUTH φ KIM φ
 RON φ φ ALEX φ
 RITA φ φ BOB φ
 φ φ φ φ φ

• Attempt to insert RUDY
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• Examine locations in diagonal order for first free location
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• Alternatively, find first free location in each hash chain and 
check if overall search cost is increased by a movement of it

• Movement must result in an increase <4 in the search cost
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• First free location in RUDY’s probe sequence is p4 for an 
increase in cost of 4

1
bEXAMPLE OF BRENT ALGORITHM

 p0=TIM p1=ALAN p2=JAY p3=KATY p4=?

    

 JOAN RUTH φ KIM φ
 RON φ φ ALEX φ
 RITA φ φ BOB φ
 φ φ φ φ φ

• Attempt to insert RUDY
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• Examine locations in diagonal order for first free location
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• Alternatively, find first free location in each hash chain and 
check if overall search cost is increased by a movement of it

• Movement must result in an increase <4 in the search cost
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• Moving TIM increases the search cost by 4

TIM

RUDY
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• First free location in RUDY’s probe sequence is p4 for an 
increase in cost of 4

1
bEXAMPLE OF BRENT ALGORITHM

 p0=TIM p1=ALAN p2=JAY p3=KATY p4=?

    

 JOAN RUTH φ KIM φ
 RON φ φ ALEX φ
 RITA φ φ BOB φ
 φ φ φ φ φ

• Attempt to insert RUDY
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• Examine locations in diagonal order for first free location
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• Alternatively, find first free location in each hash chain and 
check if overall search cost is increased by a movement of it

• Movement must result in an increase <4 in the search cost
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• Moving TIM increases the search cost by 4

TIM

RUDY

Copyright © 1998 by Hanan Samet

hs135
g

ALAN

• Moving ALAN increases its search cost by 2, while 
increasing that of RUDY by 1 for a total of 3

RUDY
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• First free location in RUDY’s probe sequence is p4 for an 
increase in cost of 4

1
bEXAMPLE OF BRENT ALGORITHM

 p0=TIM p1=ALAN p2=JAY p3=KATY p4=?

    

 JOAN RUTH φ KIM φ
 RON φ φ ALEX φ
 RITA φ φ BOB φ
 φ φ φ φ φ

• Attempt to insert RUDY

Copyright © 1998 by Hanan Samet

hs132
r

• Examine locations in diagonal order for first free location
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• Alternatively, find first free location in each hash chain and 
check if overall search cost is increased by a movement of it

• Movement must result in an increase <4 in the search cost
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• Moving TIM increases the search cost by 4

TIM

RUDY
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ALAN

• Moving ALAN increases its search cost by 2, while 
increasing that of RUDY by 1 for a total of 3

RUDY
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• Moving JAY increases its search cost by 1, while 
increasing that of RUDY by 2 for a total of 3

JAY

RUDY
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• First free location in RUDY’s probe sequence is p4 for an 
increase in cost of 4

1
bEXAMPLE OF BRENT ALGORITHM

 p0=TIM p1=ALAN p2=JAY p3=KATY p4=?

    

 JOAN RUTH φ KIM φ
 RON φ φ ALEX φ
 RITA φ φ BOB φ
 φ φ φ φ φ

• Attempt to insert RUDY
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• Examine locations in diagonal order for first free location
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• Alternatively, find first free location in each hash chain and 
check if overall search cost is increased by a movement of it

• Movement must result in an increase <4 in the search cost
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• Moving TIM increases the search cost by 4

TIM

RUDY
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ALAN

• Moving ALAN increases its search cost by 2, while 
increasing that of RUDY by 1 for a total of 3

RUDY
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• Moving JAY increases its search cost by 1, while 
increasing that of RUDY by 2 for a total of 3

JAY

RUDY
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KATY

• Moving KATY increases its search cost by 4, while 
increasing that of RUDY by 3 for a total of 7

RUDY
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• First free location in RUDY’s probe sequence is p4 for an 
increase in cost of 4

1
bEXAMPLE OF BRENT ALGORITHM

 p0=TIM p1=ALAN p2=JAY p3=KATY p4=?

    

 JOAN RUTH φ KIM φ
 RON φ φ ALEX φ
 RITA φ φ BOB φ
 φ φ φ φ φ

• Attempt to insert RUDY
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• Examine locations in diagonal order for first free location
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• Alternatively, find first free location in each hash chain and 
check if overall search cost is increased by a movement of it

• Movement must result in an increase <4 in the search cost
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• Moving TIM increases the search cost by 4

TIM

RUDY
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ALAN

• Moving ALAN increases its search cost by 2, while 
increasing that of RUDY by 1 for a total of 3

RUDY
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• Moving JAY increases its search cost by 1, while 
increasing that of RUDY by 2 for a total of 3

JAY

RUDY
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KATY

• Moving KATY increases its search cost by 4, while 
increasing that of RUDY by 3 for a total of 7

RUDY
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• Move JAY as its increase (3) was the least and was 
encountered first
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• First free location in RUDY’s probe sequence is p4 for an 
increase in cost of 4

1
bEXAMPLE OF BRENT ALGORITHM

 p0=TIM p1=ALAN p2=JAY p3=KATY p4=?

    

 JOAN RUTH φ KIM φ
 RON φ φ ALEX φ
 RITA φ φ BOB φ
 φ φ φ φ φ

• Attempt to insert RUDY
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• Examine locations in diagonal order for first free location
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• Alternatively, find first free location in each hash chain and 
check if overall search cost is increased by a movement of it

• Movement must result in an increase <4 in the search cost
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• Moving TIM increases the search cost by 4

TIM

RUDY
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ALAN

• Moving ALAN increases its search cost by 2, while 
increasing that of RUDY by 1 for a total of 3

RUDY
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• Moving JAY increases its search cost by 1, while 
increasing that of RUDY by 2 for a total of 3

JAY

RUDY
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KATY

• Moving KATY increases its search cost by 4, while 
increasing that of RUDY by 3 for a total of 7

RUDY
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• Move JAY as its increase (3) was the least and was 
encountered first
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• Need 2.5 probes on the average for successful search

• Average number of probes for unsuccessful search is not 
reduced (as high as (m+1)/2 when the table is full)
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GONNET-MUNRO ALGORITHM

• More general than the Brent algorithm

• Brent algorithm only attempts to move records on the
probe sequence of the record being inserted

 p0=TIM p1=ALAN p2=JAY p3=KATY p4=?

 JOAN RUTH φ KIM φ
 RON φ φ ALEX φ
 RITA φ φ BOB φ
 φ φ φ φ φ

• Gonnet-Munro attempts to move in several stages
instead of just one stage

1. RUDY to TIM, TIM  to JOAN, and JOAN to ?

2. RUDY to ALAN, ALAN to RUTH, and RUTH to?

• Need remaining hash chains

 JOAN RITA KIM RUTH RON ALEX BOB

 φ JAY φ KIM KATY φ φ
 φ TIM φ φ ALAN φ φ
 φ φ φ φ JAY φ φ

φ φ φ φ φ φ φ

• Can visualize search for best movement as a binary tree

• Best movement is the closest empty node to the root
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EXAMPLE OF GONNET-MUNRO ALGORITHM

• Attempt to insert RUDY

ALAN

JAY RUTH RON
φ

JOAN

KIM

φ

KATY

φ
KIM

φ

ALEX

φ

RITA KATY

JAY

φ

TIM

φ

ALAN

JAY

φ

RUDY, TIM

• Right son of a is next element in probe sequence of KEY(a)

• Left son of a is next element in probe sequence of a and 
a’s father

BOB

φ φ

φφ

denote pruning 
due to repetition
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EXAMPLE OF GONNET-MUNRO ALGORITHM

• Attempt to insert RUDY

ALAN

JAY RUTH RON
φ

JOAN

KIM

φ

KATY

φ
KIM

φ

ALEX

φ

RITA KATY

JAY

φ

TIM

φ

ALAN

JAY

φ

RUDY, TIM

• Right son of a is next element in probe sequence of KEY(a)

• Left son of a is next element in probe sequence of a and 
a’s father

BOB

φ φ

φφ

denote pruning 
due to repetition
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• Search generates the tree level by level and chooses the 
first empty node as the final target for a sequence of 
relocation steps

Copyright © 1998 by Hanan Samet



hs151
b

EXAMPLE OF GONNET-MUNRO ALGORITHM

• Attempt to insert RUDY

ALAN

JAY RUTH RON
φ

JOAN

KIM

φ

KATY

φ
KIM

φ

ALEX

φ

RITA KATY

JAY

φ

TIM

φ

ALAN

JAY

φ

RUDY, TIM

• Right son of a is next element in probe sequence of KEY(a)

• Left son of a is next element in probe sequence of a and 
a’s father

BOB

φ φ

φφ

denote pruning 
due to repetition
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• Search generates the tree level by level and chooses the 
first empty node as the final target for a sequence of 
relocation steps
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• RUDY can be relocated to any position in the leftmost part of 
the tree
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EXAMPLE OF GONNET-MUNRO ALGORITHM

• Attempt to insert RUDY

ALAN

JAY RUTH RON
φ

JOAN

KIM

φ

KATY

φ
KIM

φ

ALEX

φ

RITA KATY

JAY

φ

TIM

φ

ALAN

JAY

φ

RUDY, TIM

• Right son of a is next element in probe sequence of KEY(a)

• Left son of a is next element in probe sequence of a and 
a’s father

BOB

φ φ

φφ

denote pruning 
due to repetition
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• Search generates the tree level by level and chooses the 
first empty node as the final target for a sequence of 
relocation steps
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• RUDY can be relocated to any position in the leftmost part of 
the tree
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• Apply the relocation step as many times as needed to get 
to desired empty node

• Optimal solution moves RUDY to TIM, TIM to JOAN, and 
JOAN to its empty right son
1. increase in total search cost is 2
2. better than 3 obtained by Brent algorithm

*
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EXAMPLE OF GONNET-MUNRO ALGORITHM

• Attempt to insert RUDY

ALAN

JAY RUTH RON
φ

JOAN

KIM

φ

KATY

φ
KIM

φ

ALEX

φ

RITA KATY

JAY

φ

TIM

φ

ALAN

JAY

φ

RUDY, TIM

• Right son of a is next element in probe sequence of KEY(a)

• Left son of a is next element in probe sequence of a and 
a’s father

BOB

φ φ

φφ

denote pruning 
due to repetition
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• Search generates the tree level by level and chooses the 
first empty node as the final target for a sequence of 
relocation steps
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• RUDY can be relocated to any position in the leftmost part of 
the tree
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• Apply the relocation step as many times as needed to get 
to desired empty node

• Optimal solution moves RUDY to TIM, TIM to JOAN, and 
JOAN to its empty right son
1. increase in total search cost is 2
2. better than 3 obtained by Brent algorithm

*
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• Brent algorithm only applies one step and thus must find 
the empty node in just one iteration
1. move RUDY to JAY; JAY to empty right son of JAY
2. increase in total search cost is 3
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SHORTCOMING OF GONNET-MUNRO ALGORITHM

• Only moves records in forward direction along their hash 
chains

• Sometimes can reduce the cost by moving backward 
along the chain

• Ex:  suppose ALAN is not in the first position along the 
hash chain starting at h(ALAN) mod m and that BOB 
immediately precedes ALAN along the hash chain, 
although h(ALAN) ≠ h(BOB)  

TIM

ALAN
JAY RUTH

RUDY

JOAN

BOB

p1=ALAN

RUTH

φ

BOB

φ
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SHORTCOMING OF GONNET-MUNRO ALGORITHM

• Only moves records in forward direction along their hash 
chains

• Sometimes can reduce the cost by moving backward 
along the chain

• Ex:  suppose ALAN is not in the first position along the 
hash chain starting at h(ALAN) mod m and that BOB 
immediately precedes ALAN along the hash chain, 
although h(ALAN) ≠ h(BOB)  

TIM

ALAN
JAY RUTH

RUDY

JOAN

BOB

p1=ALAN

RUTH

φ

BOB

φ
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φ

φ
BOB

• Optimal solution  moves RUDY to ALAN, ALAN to BOB, and 
BOB to its empty son
1. increase in total search cost is 1
2. better than 2 obtained by Gonnet-Munro algorithm
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SHORTCOMING OF GONNET-MUNRO ALGORITHM

• Only moves records in forward direction along their hash 
chains

• Sometimes can reduce the cost by moving backward 
along the chain

• Ex:  suppose ALAN is not in the first position along the 
hash chain starting at h(ALAN) mod m and that BOB 
immediately precedes ALAN along the hash chain, 
although h(ALAN) ≠ h(BOB)  

TIM

ALAN
JAY RUTH

RUDY

JOAN

BOB

p1=ALAN

RUTH

φ

BOB

φ
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φ

φ
BOB

• Optimal solution  moves RUDY to ALAN, ALAN to BOB, and 
BOB to its empty son
1. increase in total search cost is 1
2. better than 2 obtained by Gonnet-Munro algorithm
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• Requires a ternary tree
1. need an additional link from a to the previous element 

in the probe sequence of KEY(a)
• e.g., ALAN to BOB

2. search process interprets previous links as indicating a 
decrease in cost

3. if incoming link to a is a “previous element” link, then 
left son of a is the prior element in probe sequence of 
a and its father

4. search process is more complex and empty node at 
closest level to the root no longer represents the 
cheapest relocation sequence 

5. optimal solution may require exhaustive search
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SUMMARY

• Advantages
1. separate chaining is superior with respect to the

number of probes but need more space
2. open addressing with linear probing results in more

accesses but this is compensated by its simplicity
3. compares favorably with other search methods as the

search time is bounded as the number of records
increases (provided the table does not become too full)

• Disadvantages
1. size of hash table is usually fixed

• have to worry about rehashing
• separate chaining with overflow buckets is good
• use linear hashing or spiral hashing which just split

one bucket and rehash its contents instead of
rehashing the entire table

2. after an unsuccessful search we only know that the
record is not present
• we don’t know about the presence or absence of

other records with similar key values such as the
immediate predecessor or successor

• contrast with B-trees and other methods based on
binary search which maintain the natural order of the
key values and permit processing along this order

• order-preserving hashing methods such as those
used to deal with multiattribute data (and spatial
data) are an exception

3. deletion may be cumbersome (e.g., open addressing)
4. only efficient on the average

• contrast with B-tree methods which have
guaranteed upper bounds on search time, etc.

• need faith in probability theory!
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