GRAPHS

Hanan Samet
Computer Science Department and Center for Automation Research and Institute for Advanced Computer Studies University of Maryland
College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

Copyright © 1997 Hanan Samet
These notes may not be reproduced by any means (mechanical or electronic or any other) without the express written permission of Hanan Samet

GRAPH (G)

- Generalization of a tree

1. no longer a distinguished node called the root

- implies no need to distinguish between leaf and nonleaf nodes

2. two nodes can be linked by more than one sequence of edges

- Formally: set of vertices (V) and edges (E) joining them, with at most one edge joining any pair of vertices
- $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{n}\right)$: path of length n from V_{0} to V_{n} (chain)
- Simple Path: distinct vertices (elementary chain)
- Connected: path between any two vertices of G
- Cycle: simple path of length ≥ 3 from V_{0} to V_{0} (length in terms of edges)
- Planar: curves intersect only at points of graph
- Degree: number of edges intersecting at the node
- Isomorphic: if there is a one-to-one correspondence between nodes and edges of two graphs

SAMPLE GRAPH PROBLEM

- Given n people at a party who shake hands, show that at the party's end, an even number of people have shaken hands with an odd number of people
- Theorem: For any graph G an even number of nodes have an odd degree
- Proof:

1. each edge joins 2 nodes
2. each edge contributes 2 to the sum of degrees
3. sum of degrees is even
4. thus an even number of nodes with odd degree

FREE TREES

- Connected graph with no cycles
- Given G as a free tree with n vertices

1. Connected, but not so if any edge is removed
2. One simple path from V to $\mathrm{V}^{\prime}\left(\mathrm{V} \neq \mathrm{V}^{\prime}\right)$
3. No cycles and $n-1$ edges
4. G is connected with $n-1$ edges

- Differences from regular trees:

1. No identification of root
2. No distinction between terminal and branch nodes

FREE SUBTREES

- Definition: set of edges such that all the vertices of the graph are connected to form a free tree
- Ex: distribution of telephone networks

FREE SUBTREES

- Definition: set of edges such that all the vertices of the graph are connected to form a free tree
- Ex: distribution of telephone networks

- Free subtree

FREE SUBTREES

- Definition: set of edges such that all the vertices of the graph are connected to form a free tree
- Ex: distribution of telephone networks

- Free subtree
- Given: connected graph G n nodes (5) m edges (8)
- Cyclomatic Number $=$ number of edges that must be deleted to yield a free tree

$$
(=m-n+1)
$$

DIRECTED GRAPH

- Definition: graph with direction attached to the edges
- $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{n}\right)$: path of length n from V_{0} to V_{n}
- Elementary path: all vertices are distinct
- Circuit: cycle (but can have length 1 or 2)
- Elementary Circuit: all vertices are distinct
- Indegree:
- Outdegree:
- Strongly Connected: path from any V to any V^{\prime}
- Rooted: at least one V with paths to all $\mathrm{V}^{\prime} \neq \mathrm{V}$
- Note: strongly connected implies rooted but not vice versa

DATA STRUCTURES FOR GRAPHS

- Must decide what information is to be accessible and with what ease
- Most important information conveyed by a graph is connectivity which is indicated by its edges
- Two choices

1. vertex-based

- keeps track of nodes connected to each node
- can implement as array A of lists
a. one entry for each vertex p
b. $A[p]$ is a list of all vertices P that are connected to p by virtue of the existence of an edge between p and q where $q \in P$ (also known as an adjacency list)

2. edge-based

- keeps track of edges
- usually represented as a list of pairs of form ($p q$) where there is an edge between vertices p and q
- drawback: need to search entire set to determine edges connected to a particular vertex

DATA STRUCTURES FOR GRAPHS

- Must decide what information is to be accessible and with what ease
- Most important information conveyed by a graph is connectivity which is indicated by its edges
- Two choices

1. vertex-based

- keeps track of nodes connected to each node
- can implement as array A of lists
a. one entry for each vertex p
b. $A[p]$ is a list of all vertices P that are connected to p by virtue of the existence of an edge between p and q where $q \in P$ (also known as an adjacency list)

2. edge-based

- keeps track of edges
- usually represented as a list of pairs of form ($p q$) where there is an edge between vertices p and q
- drawback: need to search entire set to determine edges connected to a particular vertex

ADJACENCY MATRIX

- Hybrid approach
- Good for representing a directed graph
$A_{i j}=1 \quad$ if an edge exists from i to j
$\mathrm{A}_{\mathrm{ij}}=0 \quad$ otherwise
$A \cdot A=A^{2}$ adjacency matrix of distance 2
- Somewhat wasteful of space as there is an entry for every possible edge even though the array is usually sparse

1. in such cases, a vertex-based representation such as an adjacency list is more economical
2. adjacency matrix is useful if want to detect if an edge exists between two vertices

- cumbersome when using a list as need to search
- Useful if want to keep track of all vertices reachable from every vertex
- Ex: Leftmost derivations
$\mathrm{A} \rightarrow \mathrm{bc}$
$A \rightarrow B d$
$B \rightarrow C$
- Boolean matrices

	A	B	C	b	c	d
	0	1	0	1	0	0
A	0	0	0	0	1	0
C	0	0	0	0	0	0
b	0	0	0	0	0	0
C	0	0	0	0	0	0
d	0	0	0	0	0	0

$$
\begin{aligned}
& 1+1=1 \\
& 1+0=1 \\
& 0+0=0
\end{aligned}
$$

- Cycle of length $n \quad A_{i i}^{n}=1$

CONNECTED GRAPH

- Def: there exists path between any two vertices of the graph
- Ex: binary image

1. image graph

- image elements are vertices
- horizontal and vertical adjacencies between image elements are edges

2. connected component labeling: determine separate regions of binary image

- image graph is stored implicitly
- easy to access adjacent vertices given location of a vertex
- neither a vertex-based or edge-based representation; instead algorithms are based on them

1. vertex-based implies need to follow connectivity

- depth-first or seed-filling approach
- many page faults if disk-resident data

2. edge-based determines edges by examining image row-by-row

- only need to access two rows simultaneously
- good for disk-resident data

3. both take $\approx O$ (number of image elements) time

MINIMUM SPANNING TREE

- $\operatorname{Cost} \mathrm{C}_{\mathrm{ij}}$ associated with each edge from i to j
- Find the free subtree of G with minimum cost
- Solution:

C = connected nodes: initially $\}$
$\mathrm{U}=$ unconnected nodes: initially $\{$ all nodes $\}$

1. choose arbitrary node and place it in C
2. select node in U that is closest to a node in C and add edge; move node from U to C ; repeat until U is empty

Start with node 0
C is built by choosing:
(A)
(0)
(B)
(D)
(c)
(E)
(T)

MINIMUM SPANNING TREE

- $\operatorname{Cost} \mathrm{C}_{\mathrm{ij}}$ associated with each edge from i to j
- Find the free subtree of G with minimum cost
- Solution:

C = connected nodes: initially \{\}
$\mathrm{U}=$ unconnected nodes: initially $\{$ all nodes $\}$

1. choose arbitrary node and place it in C
2. select node in U that is closest to a node in C and add edge; move node from U to C ; repeat until U is empty

Start with node 0
C is built by choosing: A

(B)
(D)
(T)
(c)
(E)

MINIMUM SPANNING TREE

- $\operatorname{Cost} \mathrm{C}_{\mathrm{ij}}$ associated with each edge from i to j
- Find the free subtree of G with minimum cost
- Solution:

C = connected nodes: initially \{\}
$\mathrm{U}=$ unconnected nodes: initially $\{$ all nodes $\}$

1. choose arbitrary node and place it in C
2. select node in U that is closest to a node in C and add edge; move node from U to C ; repeat until U is empty

Start with node 0
C is built by choosing: A B

(c)
(E)

MINIMUM SPANNING TREE

- $\operatorname{Cost} \mathrm{C}_{\mathrm{ij}}$ associated with each edge from i to j
- Find the free subtree of G with minimum cost
- Solution:

C = connected nodes: initially \{\}
$\mathrm{U}=$ unconnected nodes: initially $\{$ all nodes $\}$

1. choose arbitrary node and place it in C
2. select node in U that is closest to a node in C and add edge; move node from U to C ; repeat until U is empty

Start with node 0
C is built by choosing:

(T)

MINIMUM SPANNING TREE

- Cost C_{ij} associated with each edge from i to j
- Find the free subtree of G with minimum cost
- Solution:

C = connected nodes: initially \{ \}
$\mathrm{U}=$ unconnected nodes: initially $\{$ all nodes $\}$

1. choose arbitrary node and place it in C
2. select node in U that is closest to a node in C and add edge; move node from U to C ; repeat until U is empty

Start with node o
C is built by choosing: A BC E

MINIMUM SPANNING TREE

- $\operatorname{Cost} \mathrm{C}_{\mathrm{ij}}$ associated with each edge from i to j
- Find the free subtree of G with minimum cost
- Solution:

C = connected nodes: initially $\}$
$\mathrm{U}=$ unconnected nodes: initially $\{$ all nodes $\}$

1. choose arbitrary node and place it in C
2. select node in U that is closest to a node in C and add edge; move node from U to C ; repeat until U is empty

Start with node o
C is built by choosing:

MINIMUM SPANNING TREE

- $\operatorname{Cost} \mathrm{C}_{\mathrm{ij}}$ associated with each edge from i to j
- Find the free subtree of G with minimum cost
- Solution:

C = connected nodes: initially $\}$
$\mathrm{U}=$ unconnected nodes: initially $\{$ all nodes $\}$

1. choose arbitrary node and place it in C
2. select node in U that is closest to a node in C and add edge; move node from U to C ; repeat until U is empty

Start with node 0
C is built by choosing:

SHORTEST ELEMENTARY CHAIN

- Given node X0 in G find the shortest (cheapest) chain joining X0 with all the nodes of G
- Solution:

C = connected nodes: initially X0
$\mathrm{U}=$ unconnected nodes: initially all but X0
$E=$ set of edges: initially empty

1. find the closest node in U to XO (say X1)
2. move X 1 from U to C
3. add (X0, X1) to E
4. for each Xi in C find Yi in U that is closest; choose Ym such that cost from $\mathrm{X0}$ to Ym is a minimum and add (Km, Mm) to E; repeat until U is empty

Ex: start at node 0

Result:
(A) good for designing flight schedules
(0)

(D)
(T)
(c)
(E)

SHORTEST ELEMENTARY CHAIN

- Given node X0 in G find the shortest (cheapest) chain joining X0 with all the nodes of G
- Solution:

C = connected nodes: initially X0
$\mathrm{U}=$ unconnected nodes: initially all but X0
$\mathrm{E}=$ set of edges: initially empty

1. find the closest node in U to XO (say X 1)
2. move X 1 from U to C
3. add (X0, X1) to E
4. for each Xi in C find Yi in U that is closest; choose Ym such that cost from $\mathrm{X0}$ to Ym is a minimum and add (Km, Mm) to E; repeat until U is empty

Ex: start at node 0

Result: $0_{(0, A)}$

good for designing flight schedules

(c)
(E)

SHORTEST ELEMENTARY CHAIN

- Given node X0 in G find the shortest (cheapest) chain joining X0 with all the nodes of G
- Solution:

C = connected nodes: initially X0
$\mathrm{U}=$ unconnected nodes: initially all but X0
$E=$ set of edges: initially empty

1. find the closest node in U to XO (say X1)
2. move X 1 from U to C
3. add (X0, X1) to E
4. for each Xi in C find Yi in U that is closest; choose Ym such that cost from $\mathrm{X0}$ to Ym is a minimum and add (Xm, Ym) to E; repeat until U is empty

Ex: start at node 0

Result: $0_{(0, A)}{ }^{A}(0, C)$ or (A, B)

SHORTEST ELEMENTARY CHAIN

- Given node X0 in G find the shortest (cheapest) chain joining X0 with all the nodes of G
- Solution:

C = connected nodes: initially X0
$\mathrm{U}=$ unconnected nodes: initially all but X0
$E=$ set of edges: initially empty

1. find the closest node in U to $X 0$ (say X 1)
2. move X 1 from U to C
3. add $(\mathrm{X} 0, \mathrm{X} 1)$ to E
4. for each Xi in C find Yi in U that is closest; choose Ym such that cost from $\mathrm{X0}$ to Ym is a minimum and add (Xm, Ym) to E; repeat until U is empty

Ex: start at node 0

Result: $0_{(0, A)}{ }^{A}(0, C)$ or $(A, B)^{C}{ }_{(A, B)}$

SHORTEST ELEMENTARY CHAIN

- Given node X0 in G find the shortest (cheapest) chain joining X0 with all the nodes of G
- Solution:

C = connected nodes: initially X0
$\mathrm{U}=$ unconnected nodes: initially all but X0
$E=$ set of edges: initially empty

1. find the closest node in U to XO (say X 1)
2. move X 1 from U to C
3. add $(X 0, X 1)$ to E
4. for each Xi in C find Yi in U that is closest; choose Ym such that cost from $\mathrm{X0}$ to Ym is a minimum and add (Xm, Ym) to E; repeat until U is empty

Ex: start at node 0

Result: $0_{(0, A)} A_{(0, C)}$ or $(A, B)^{C}(A, B){ }_{(B, E)}$

SHORTEST ELEMENTARY CHAIN

- Given node X0 in G find the shortest (cheapest) chain joining X0 with all the nodes of G
- Solution:

C = connected nodes: initially X0
$\mathrm{U}=$ unconnected nodes: initially all but X0
$E=$ set of edges: initially empty

1. find the closest node in U to XO (say X1)
2. move X 1 from U to C
3. add $(X 0, X 1)$ to E
4. for each Xi in C find Yi in U that is closest; choose Ym such that cost from $\mathrm{X0}$ to Ym is a minimum and add (Xm, Ym) to E; repeat until U is empty

Ex: start at node 0

Result: $0_{(0, A)}{ }^{A}(0, C)$ or $(A, B) C_{(A, B)} B_{(B, E)} E_{(D, E)}$ or (B,D)

SHORTEST ELEMENTARY CHAIN

- Given node X0 in G find the shortest (cheapest) chain joining X0 with all the nodes of G
- Solution:

C = connected nodes: initially X0
$\mathrm{U}=$ unconnected nodes: initially all but X0
$\mathrm{E}=$ set of edges: initially empty

1. find the closest node in U to XO (say X 1)
2. move X 1 from U to C
3. add (X0, X1) to E
4. for each Xi in C find Yi in U that is closest; choose Ym such that cost from $\mathrm{X0}$ to Ym is a minimum and add (Xm, Ym) to E; repeat until U is empty

Ex: start at node 0

Result: $0_{(0, A)} A_{(0, C) \text { or }(A, B)} C_{(A, B)} B_{(B, E)} E_{(D, E) \text { or }(B, D)} D_{(D, T)}$

EULERIAN CHAINS AND CYCLES

- When is it possible to trace a planar graph without tracing any edge more than once so that the pencil is never removed from the paper?

- Eulerian cycle = edges are all the edges of G (end up at point where started)
- Theorem: an Eulerian cycle exists for a connected graph G whenever all nodes have an even degree and vice versa
- Proof: one direction: if an Eulerian cycle exists, then each time we enter a node by one edge we leave by another edge
other direction: more complex
- Eulerian chain $=$ joins nodes X and Y such that its edges are all the edges of G (end up at point different from starting point)
- Theorem: an Eulerian chain between nodes X and Y for a connected graph G exists if and only if nodes X and Y have odd degree and the remaining nodes have even degree

EULERIAN CHAINS AND CYCLES

- When is it possible to trace a planar graph without tracing any edge more than once so that the pencil is never removed from the paper?

Eulerian cycle

Neither

- Eulerian cycle = edges are all the edges of G (end up at point where started)
- Theorem: an Eulerian cycle exists for a connected graph G whenever all nodes have an even degree and vice versa
- Proof: one direction: if an Eulerian cycle exists, then each time we enter a node by one edge we leave by another edge
other direction: more complex
- Eulerian chain = joins nodes X and Y such that its edges are all the edges of G (end up at point different from starting point)
- Theorem: an Eulerian chain between nodes X and Y for a connected graph G exists if and only if nodes X and Y have odd degree and the remaining nodes have even degree

HAMILTONIAN CHAINS AND CYCLES

- When is it possible for a salesman based in city X to cover his territory in such a way that he never visits a city more than once, where not every city is connected directly to another city?

Hamiltonian cycle $=$ cycle where each vertex appears once (salesman ends up at home!)
Hamiltonian chain $=$ chain where each vertex appears once (salesman need not end up at home!)

- Unlike Eulerian chains and cycles, no necessary and sufficient conditions exist for a graph G to have a Hamiltonian chain or cycle
- Sufficient condition:

Theorem: A simple graph with $n \geq 3$ nodes such that for any distinct nodes X and Y not joined by an edge and degree $(\mathrm{X})+$ degree $(\mathrm{Y}) \geq n$, then G has a Hamiltonian cycle

HAMILTONIAN CHAINS AND CYCLES

- When is it possible for a salesman based in city X to cover his territory in such a way that he never visits a city more than once, where not every city is connected directly to another city?

Hamiltonian cycle exists Hamiltonian chain exists No Hamiltonian chain or cycle Hamiltonian cycle $=$ AB F CD EA

Hamiltonian cycle $=$ cycle where each vertex appears once (salesman ends up at home!)
Hamiltonian chain $=$ chain where each vertex appears once (salesman need not end up at home!)

- Unlike Eulerian chains and cycles, no necessary and sufficient conditions exist for a graph G to have a Hamiltonian chain or cycle
- Sufficient condition:

Theorem: A simple graph with $n \geq 3$ nodes such that for any distinct nodes X and Y not joined by an edge and degree $(\mathrm{X})+$ degree $(\mathrm{Y}) \geq n$, then G has a Hamiltonian cycle

