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GRAPH (G)

• Generalization of a tree

 1. no longer a distinguished node called the root

  • implies no need to distinguish between leaf and
   nonleaf nodes 

 2. two nodes can be linked by more than one sequence
  of edges

• Formally: set of vertices (V) and edges (E) joining them,
 with at most one edge joining any pair of vertices

• (V0, V1, …, V   ): path of length n from V0 to V    (chain)

• Simple Path: distinct vertices (elementary chain)

• Connected: path between any two vertices of G

• Cycle: simple path of length ≥ 3 from V0 to V0
    (length in terms of edges)

• Planar: curves intersect only at points of graph

• Degree: number of edges intersecting at the node

• Isomorphic: if there is a one-to-one correspondence
    between nodes and edges of two graphs
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SAMPLE GRAPH PROBLEM

• Given n people at a party who shake hands, show
 that at the party’s end, an even number of people
 have shaken hands with an odd number of people

• Theorem: For any graph G an even number of nodes
   have an odd degree

• Proof:

 1. each edge joins 2 nodes
 2. each edge contributes 2 to the sum of degrees
 3. sum of degrees is even
 4. thus an even number of nodes with odd degree
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FREE TREES

• Connected graph with no cycles

• Given G as a free tree with n vertices
 1. Connected, but not so if any edge is removed
 2. One simple path from V to V´  ( V ≠ V´ )
 3. No cycles and n – 1 edges
 4. G is connected with n – 1 edges

• Differences from regular trees:
 1. No identification of root
 2. No distinction between terminal and branch nodes
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FREE SUBTREES

• Definition:  set of edges such that all the vertices of the
 graph are connected to form a free tree

• Ex: distribution of telephone networks

  London

 Cpl Clr Cln

Paris Cpr Rio de Janeiro Cnr New York

 Cpb Cbr Cbn

  Buenos Aires
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• Free subtree
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• Free subtree
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• Given: connected graph G
  n nodes (5)
  m edges (8)

• Cyclomatic Number  = number of edges that must be
    deleted to yield a free tree
    ( =  m – n + 1 )
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DIRECTED GRAPH

• Definition: graph with direction attached to the edges

• (V0, V1,…, V  ): path of length n from V0 to V

• Elementary path: all vertices are distinct

• Circuit: cycle (but can have length 1 or 2)

• Elementary Circuit: all vertices are distinct

• Indegree:

• Outdegree:

• Strongly Connected: path from any V to any V´

• Rooted: at least one V with paths to all V´ ≠ V

• Note: strongly connected implies rooted but not vice versa
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DATA STRUCTURES FOR GRAPHS

• Must decide what information is to be accessible
 and with what ease

• Most important information conveyed by a graph is
 connectivity which is indicated by its edges

• Two choices

 1. vertex-based

  • keeps track of nodes connected to each node

  • can implement as array A of lists

   a. one entry for each vertex p

   b. A[p] is a list of all vertices P that are
    connected to p by virtue of the existence
    of an edge between p and q where q ∈  P
    (also known as an adjacency list)

 2. edge-based

  • keeps track of edges

  • usually represented as a list of pairs of form (p q)
   where there is an edge between vertices p and q

  • drawback: need to search entire set to determine
     edges connected to a particular vertex
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ADJACENCY MATRIX

• Hybrid approach

• Good for representing a directed graph

 Aij  =  1 if an edge exists from i to j
 Aij  =  0 otherwise
 A · A  =  A2 adjacency matrix of distance 2

• Somewhat wasteful of space as there is an entry for every
 possible edge even though the array is usually sparse

 1. in such cases, a vertex-based representation such as an
  adjacency list is more economical

 2. adjacency matrix is useful if want to detect if an edge
  exists between two vertices
  • cumbersome when using a list as need to search

• Useful if want to keep track of all vertices reachable from
 every vertex

• Ex:  Leftmost derivations

    A → bC

    A → Bd

    B → c

• Boolean matrices

 1 + 1  =  1  1 · 1  =  1
 1 + 0  =  1  1 · 0  =  0 · 1  =  0 · 0  =  0
 0 + 0  =  0

• Cycle of length n A     =  1

gr7

n
ii

 A B C b c d

A 0 1 0 1 0 0

B 0 0 0 0 1 0

C 0 0 0 0 0 0

b 0 0 0 0 0 0

c 0 0 0 0 0 0

d 0 0 0 0 0 0
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CONNECTED GRAPH

• Def: there exists path between any two vertices of the graph
• Ex: binary image

 1. image graph
  • image elements are vertices
  • horizontal and vertical adjacencies between
   image elements are edges

 2. connected component labeling: determine separate
      regions of binary image
  • image graph is stored implicitly
  • easy to access adjacent vertices given location of a vertex
  • neither a vertex-based or edge-based representation;
   instead algorithms are based on them
   1. vertex-based implies need to follow connectivity
    • depth-first or seed-filling approach
    • many page faults if disk-resident data
   2. edge-based determines edges by examining image
    row-by-row
    • only need to access two rows simultaneously
    • good for disk-resident data
   3. both take ≈ O(number of image elements) time
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MINIMUM SPANNING TREE

• Cost Cij associated with each edge from i to j
• Find the free subtree of G with minimum cost
• Solution:

 C = connected nodes: initially  { }
 U = unconnected nodes: initially  { all nodes }

 1. choose arbitrary node and place it in C
 2. select node in U that is closest to a node in C and
  add edge;  move node from U to C;  repeat until
  U is empty

 Ex:

 Start with node 0
 C is built by choosing:
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SHORTEST ELEMENTARY CHAIN

• Given node X0 in G find the shortest (cheapest) chain
 joining X0 with all the nodes of G

• Solution:
 C = connected nodes:  initially X0
 U = unconnected nodes:  initially all but X0
 E = set of edges:  initially empty

 1. find the closest node in U to X0 (say X1)
 2. move X1 from U to C
 3.  add (X0, X1) to E
 4. for each Xi in C find Yi in U that is closest;
  choose Ym such that cost from X0 to Ym is
  a minimum and add (Xm, Ym) to E;  repeat
  until U is empty

Ex: start at node 0
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good for designing flight schedules
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SHORTEST ELEMENTARY CHAIN
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SHORTEST ELEMENTARY CHAIN

• Given node X0 in G find the shortest (cheapest) chain
 joining X0 with all the nodes of G

• Solution:
 C = connected nodes:  initially X0
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 1. find the closest node in U to X0 (say X1)
 2. move X1 from U to C
 3.  add (X0, X1) to E
 4. for each Xi in C find Yi in U that is closest;
  choose Ym such that cost from X0 to Ym is
  a minimum and add (Xm, Ym) to E;  repeat
  until U is empty

Ex: start at node 0

0 B

C E

T

2

5 2

7

5

7
3

4

44

A

D

1 1

Result:

good for designing flight schedules

0 B

C E

T

A

D

Copyright © 1998 by Hanan Samet

gr102
r

2

0(0,A)

Copyright © 1998 by Hanan Samet

gr103
z

4

 A(0,C)  or (A,B)

Copyright © 1998 by Hanan Samet

gr104
g

2

C(A,B)

Copyright © 1998 by Hanan Samet

gr105
v

3

B(B,E)

Copyright © 1998 by Hanan Samet

gr106
r

1

E(D,E)  or (B,D)

Copyright © 1998 by Hanan Samet

gr107
z

5

D(D,T)

Copyright © 1998 by Hanan Samet



gr1181
b

EULERIAN CHAINS AND CYCLES

• When is it possible to trace a planar graph without
 tracing any edge more than once so that the pencil
 is never removed from the paper?

• Eulerian cycle = edges are all the edges of G
   (end up at point where started)

• Theorem: an Eulerian cycle exists for a connected graph
  G whenever all nodes have an even degree
  and vice versa

• Proof: one direction:  if an Eulerian cycle exists,
  then each time we enter a node by one
  edge we leave by another edge

  other direction:  more complex

• Eulerian chain = joins nodes X and Y such that its edges
   are all the edges of G  (end up at point
   different from starting point)

• Theorem: an Eulerian chain between nodes X and Y
  for a connected graph G exists if and only if
  nodes X and Y have odd degree and the
  remaining nodes have even degree
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HAMILTONIAN CHAINS AND CYCLES

• When is it possible for a salesman based in city X to
 cover his territory in such a way that he never visits a
 city more than once, where not every city is connected
 directly to another city?

 Hamiltonian cycle = cycle where each vertex appears once
   (salesman ends up at home!)
 Hamiltonian chain =  chain where each vertex appears once
   (salesman need not end up at home!)

• Unlike Eulerian chains and cycles, no necessary and
 sufficient conditions exist for a graph G to have a
 Hamiltonian chain or cycle

• Sufficient condition:
 Theorem: A simple graph with n ≥ 3 nodes such that for
  any distinct nodes X and Y not joined by an
  edge and degree (X) + degree (Y)  ≥  n,
  then G has a Hamiltonian cycle

 Ex:

A B
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E F
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E F

A B

C D
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Hamiltonian cycle exists No Hamiltonian chain or cycle
Hamiltonian chain exists (only one way from ADE to BCF)
Hamiltonian cycle = A B F C D E A

?
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