
gr0

Copyright © 1997 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

GRAPHS

Hanan Samet

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

gr1

GRAPH (G)

• Generalization of a tree

 1. no longer a distinguished node called the root

 • implies no need to distinguish between leaf and
 nonleaf nodes

 2. two nodes can be linked by more than one sequence
 of edges

• Formally: set of vertices (V) and edges (E) joining them,
 with at most one edge joining any pair of vertices

• (V0, V1, …, V): path of length n from V0 to V (chain)

• Simple Path: distinct vertices (elementary chain)

• Connected: path between any two vertices of G

• Cycle: simple path of length ≥ 3 from V0 to V0
 (length in terms of edges)

• Planar: curves intersect only at points of graph

• Degree: number of edges intersecting at the node

• Isomorphic: if there is a one-to-one correspondence
 between nodes and edges of two graphs

A B

C D E

A

B

C

D

nn

Copyright © 1998 by Hanan Samet

gr2

SAMPLE GRAPH PROBLEM

• Given n people at a party who shake hands, show
 that at the party’s end, an even number of people
 have shaken hands with an odd number of people

• Theorem: For any graph G an even number of nodes
 have an odd degree

• Proof:

 1. each edge joins 2 nodes
 2. each edge contributes 2 to the sum of degrees
 3. sum of degrees is even
 4. thus an even number of nodes with odd degree

Copyright © 1998 by Hanan Samet

gr3

FREE TREES

• Connected graph with no cycles

• Given G as a free tree with n vertices
 1. Connected, but not so if any edge is removed
 2. One simple path from V to V´ (V ≠ V´)
 3. No cycles and n – 1 edges
 4. G is connected with n – 1 edges

• Differences from regular trees:
 1. No identification of root
 2. No distinction between terminal and branch nodes

A

B C D

E F

G

Copyright © 1998 by Hanan Samet

gr481
b

FREE SUBTREES

• Definition: set of edges such that all the vertices of the
 graph are connected to form a free tree

• Ex: distribution of telephone networks

 London

 Cpl Clr Cln

Paris Cpr Rio de Janeiro Cnr New York

 Cpb Cbr Cbn

 Buenos Aires

Copyright © 1998 by Hanan Samet

gr481
b

FREE SUBTREES

• Definition: set of edges such that all the vertices of the
 graph are connected to form a free tree

• Ex: distribution of telephone networks

 London

 Cpl Clr Cln

Paris Cpr Rio de Janeiro Cnr New York

 Cpb Cbr Cbn

 Buenos Aires

Copyright © 1998 by Hanan Samet

gr42
r

• Free subtree

Copyright © 1998 by Hanan Samet

gr481
b

FREE SUBTREES

• Definition: set of edges such that all the vertices of the
 graph are connected to form a free tree

• Ex: distribution of telephone networks

 London

 Cpl Clr Cln

Paris Cpr Rio de Janeiro Cnr New York

 Cpb Cbr Cbn

 Buenos Aires

Copyright © 1998 by Hanan Samet

gr42
r

• Free subtree

Copyright © 1998 by Hanan Samet

gr43
z

• Given: connected graph G
 n nodes (5)
 m edges (8)

• Cyclomatic Number = number of edges that must be
 deleted to yield a free tree
 (= m – n + 1)

Copyright © 1998 by Hanan Samet

gr5

DIRECTED GRAPH

• Definition: graph with direction attached to the edges

• (V0, V1,…, V): path of length n from V0 to V

• Elementary path: all vertices are distinct

• Circuit: cycle (but can have length 1 or 2)

• Elementary Circuit: all vertices are distinct

• Indegree:

• Outdegree:

• Strongly Connected: path from any V to any V´

• Rooted: at least one V with paths to all V´ ≠ V

• Note: strongly connected implies rooted but not vice versa

D

A B

C

A

B C

nn

Copyright © 1998 by Hanan Samet

gr6

DATA STRUCTURES FOR GRAPHS

• Must decide what information is to be accessible
 and with what ease

• Most important information conveyed by a graph is
 connectivity which is indicated by its edges

• Two choices

 1. vertex-based

 • keeps track of nodes connected to each node

 • can implement as array A of lists

 a. one entry for each vertex p

 b. A[p] is a list of all vertices P that are
 connected to p by virtue of the existence
 of an edge between p and q where q ∈ P
 (also known as an adjacency list)

 2. edge-based

 • keeps track of edges

 • usually represented as a list of pairs of form (p q)
 where there is an edge between vertices p and q

 • drawback: need to search entire set to determine
 edges connected to a particular vertex

Copyright © 1998 by Hanan Samet

gr6

DATA STRUCTURES FOR GRAPHS

• Must decide what information is to be accessible
 and with what ease

• Most important information conveyed by a graph is
 connectivity which is indicated by its edges

• Two choices

 1. vertex-based

 • keeps track of nodes connected to each node

 • can implement as array A of lists

 a. one entry for each vertex p

 b. A[p] is a list of all vertices P that are
 connected to p by virtue of the existence
 of an edge between p and q where q ∈ P
 (also known as an adjacency list)

 2. edge-based

 • keeps track of edges

 • usually represented as a list of pairs of form (p q)
 where there is an edge between vertices p and q

 • drawback: need to search entire set to determine
 edges connected to a particular vertex

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

ADJACENCY MATRIX

• Hybrid approach

• Good for representing a directed graph

 Aij = 1 if an edge exists from i to j
 Aij = 0 otherwise
 A · A = A2 adjacency matrix of distance 2

• Somewhat wasteful of space as there is an entry for every
 possible edge even though the array is usually sparse

 1. in such cases, a vertex-based representation such as an
 adjacency list is more economical

 2. adjacency matrix is useful if want to detect if an edge
 exists between two vertices
 • cumbersome when using a list as need to search

• Useful if want to keep track of all vertices reachable from
 every vertex

• Ex: Leftmost derivations

 A → bC

 A → Bd

 B → c

• Boolean matrices

 1 + 1 = 1 1 · 1 = 1
 1 + 0 = 1 1 · 0 = 0 · 1 = 0 · 0 = 0
 0 + 0 = 0

• Cycle of length n A = 1

gr7

n
ii

 A B C b c d

A 0 1 0 1 0 0

B 0 0 0 0 1 0

C 0 0 0 0 0 0

b 0 0 0 0 0 0

c 0 0 0 0 0 0

d 0 0 0 0 0 0

Copyright © 1998 by Hanan Samet

gr8
CONNECTED GRAPH

• Def: there exists path between any two vertices of the graph
• Ex: binary image

 1. image graph
 • image elements are vertices
 • horizontal and vertical adjacencies between
 image elements are edges

 2. connected component labeling: determine separate
 regions of binary image
 • image graph is stored implicitly
 • easy to access adjacent vertices given location of a vertex
 • neither a vertex-based or edge-based representation;
 instead algorithms are based on them
 1. vertex-based implies need to follow connectivity
 • depth-first or seed-filling approach
 • many page faults if disk-resident data
 2. edge-based determines edges by examining image
 row-by-row
 • only need to access two rows simultaneously
 • good for disk-resident data
 3. both take ≈ O(number of image elements) time

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16
17

19 20

18

3 4 5

9 10

15

17

1 2

6 7

1211 13
14

16

8

2019

18

Copyright © 1998 by Hanan Samet

gr981
b

MINIMUM SPANNING TREE

• Cost Cij associated with each edge from i to j
• Find the free subtree of G with minimum cost
• Solution:

 C = connected nodes: initially { }
 U = unconnected nodes: initially { all nodes }

 1. choose arbitrary node and place it in C
 2. select node in U that is closest to a node in C and
 add edge; move node from U to C; repeat until
 U is empty

 Ex:

 Start with node 0
 C is built by choosing:

0 B

C E

T

2

5 2

7

5

7
3

4

44

A

D

1 1

0 B

C E

T

A

D

Copyright © 1998 by Hanan Samet

gr981
b

MINIMUM SPANNING TREE

• Cost Cij associated with each edge from i to j
• Find the free subtree of G with minimum cost
• Solution:

 C = connected nodes: initially { }
 U = unconnected nodes: initially { all nodes }

 1. choose arbitrary node and place it in C
 2. select node in U that is closest to a node in C and
 add edge; move node from U to C; repeat until
 U is empty

 Ex:

 Start with node 0
 C is built by choosing:

0 B

C E

T

2

5 2

7

5

7
3

4

44

A

D

1 1

0 B

C E

T

A

D

Copyright © 1998 by Hanan Samet

gr92
r

2

A

Copyright © 1998 by Hanan Samet

gr981
b

MINIMUM SPANNING TREE

• Cost Cij associated with each edge from i to j
• Find the free subtree of G with minimum cost
• Solution:

 C = connected nodes: initially { }
 U = unconnected nodes: initially { all nodes }

 1. choose arbitrary node and place it in C
 2. select node in U that is closest to a node in C and
 add edge; move node from U to C; repeat until
 U is empty

 Ex:

 Start with node 0
 C is built by choosing:

0 B

C E

T

2

5 2

7

5

7
3

4

44

A

D

1 1

0 B

C E

T

A

D

Copyright © 1998 by Hanan Samet

gr92
r

2

A

Copyright © 1998 by Hanan Samet

gr93
z

2

B

Copyright © 1998 by Hanan Samet

gr981
b

MINIMUM SPANNING TREE

• Cost Cij associated with each edge from i to j
• Find the free subtree of G with minimum cost
• Solution:

 C = connected nodes: initially { }
 U = unconnected nodes: initially { all nodes }

 1. choose arbitrary node and place it in C
 2. select node in U that is closest to a node in C and
 add edge; move node from U to C; repeat until
 U is empty

 Ex:

 Start with node 0
 C is built by choosing:

0 B

C E

T

2

5 2

7

5

7
3

4

44

A

D

1 1

0 B

C E

T

A

D

Copyright © 1998 by Hanan Samet

gr92
r

2

A

Copyright © 1998 by Hanan Samet

gr93
z

2

B

Copyright © 1998 by Hanan Samet

gr94
g

1

C

Copyright © 1998 by Hanan Samet

gr981
b

MINIMUM SPANNING TREE

• Cost Cij associated with each edge from i to j
• Find the free subtree of G with minimum cost
• Solution:

 C = connected nodes: initially { }
 U = unconnected nodes: initially { all nodes }

 1. choose arbitrary node and place it in C
 2. select node in U that is closest to a node in C and
 add edge; move node from U to C; repeat until
 U is empty

 Ex:

 Start with node 0
 C is built by choosing:

0 B

C E

T

2

5 2

7

5

7
3

4

44

A

D

1 1

0 B

C E

T

A

D

Copyright © 1998 by Hanan Samet

gr92
r

2

A

Copyright © 1998 by Hanan Samet

gr93
z

2

B

Copyright © 1998 by Hanan Samet

gr94
g

1

C

Copyright © 1998 by Hanan Samet

gr95
v

3

E

Copyright © 1998 by Hanan Samet

gr981
b

MINIMUM SPANNING TREE

• Cost Cij associated with each edge from i to j
• Find the free subtree of G with minimum cost
• Solution:

 C = connected nodes: initially { }
 U = unconnected nodes: initially { all nodes }

 1. choose arbitrary node and place it in C
 2. select node in U that is closest to a node in C and
 add edge; move node from U to C; repeat until
 U is empty

 Ex:

 Start with node 0
 C is built by choosing:

0 B

C E

T

2

5 2

7

5

7
3

4

44

A

D

1 1

0 B

C E

T

A

D

Copyright © 1998 by Hanan Samet

gr92
r

2

A

Copyright © 1998 by Hanan Samet

gr93
z

2

B

Copyright © 1998 by Hanan Samet

gr94
g

1

C

Copyright © 1998 by Hanan Samet

gr95
v

3

E

Copyright © 1998 by Hanan Samet

gr96
r

1

D

Copyright © 1998 by Hanan Samet

gr981
b

MINIMUM SPANNING TREE

• Cost Cij associated with each edge from i to j
• Find the free subtree of G with minimum cost
• Solution:

 C = connected nodes: initially { }
 U = unconnected nodes: initially { all nodes }

 1. choose arbitrary node and place it in C
 2. select node in U that is closest to a node in C and
 add edge; move node from U to C; repeat until
 U is empty

 Ex:

 Start with node 0
 C is built by choosing:

0 B

C E

T

2

5 2

7

5

7
3

4

44

A

D

1 1

0 B

C E

T

A

D

Copyright © 1998 by Hanan Samet

gr92
r

2

A

Copyright © 1998 by Hanan Samet

gr93
z

2

B

Copyright © 1998 by Hanan Samet

gr94
g

1

C

Copyright © 1998 by Hanan Samet

gr95
v

3

E

Copyright © 1998 by Hanan Samet

gr96
r

1

D

Copyright © 1998 by Hanan Samet

gr97
z

5

T

Copyright © 1998 by Hanan Samet

gr1081
b

SHORTEST ELEMENTARY CHAIN

• Given node X0 in G find the shortest (cheapest) chain
 joining X0 with all the nodes of G

• Solution:
 C = connected nodes: initially X0
 U = unconnected nodes: initially all but X0
 E = set of edges: initially empty

 1. find the closest node in U to X0 (say X1)
 2. move X1 from U to C
 3. add (X0, X1) to E
 4. for each Xi in C find Yi in U that is closest;
 choose Ym such that cost from X0 to Ym is
 a minimum and add (Xm, Ym) to E; repeat
 until U is empty

Ex: start at node 0

0 B

C E

T

2

5 2

7

5

7
3

4

44

A

D

1 1

Result:

good for designing flight schedules

0 B

C E

T

A

D

Copyright © 1998 by Hanan Samet

gr1081
b

SHORTEST ELEMENTARY CHAIN

• Given node X0 in G find the shortest (cheapest) chain
 joining X0 with all the nodes of G

• Solution:
 C = connected nodes: initially X0
 U = unconnected nodes: initially all but X0
 E = set of edges: initially empty

 1. find the closest node in U to X0 (say X1)
 2. move X1 from U to C
 3. add (X0, X1) to E
 4. for each Xi in C find Yi in U that is closest;
 choose Ym such that cost from X0 to Ym is
 a minimum and add (Xm, Ym) to E; repeat
 until U is empty

Ex: start at node 0

0 B

C E

T

2

5 2

7

5

7
3

4

44

A

D

1 1

Result:

good for designing flight schedules

0 B

C E

T

A

D

Copyright © 1998 by Hanan Samet

gr102
r

2

0(0,A)

Copyright © 1998 by Hanan Samet

gr1081
b

SHORTEST ELEMENTARY CHAIN

• Given node X0 in G find the shortest (cheapest) chain
 joining X0 with all the nodes of G

• Solution:
 C = connected nodes: initially X0
 U = unconnected nodes: initially all but X0
 E = set of edges: initially empty

 1. find the closest node in U to X0 (say X1)
 2. move X1 from U to C
 3. add (X0, X1) to E
 4. for each Xi in C find Yi in U that is closest;
 choose Ym such that cost from X0 to Ym is
 a minimum and add (Xm, Ym) to E; repeat
 until U is empty

Ex: start at node 0

0 B

C E

T

2

5 2

7

5

7
3

4

44

A

D

1 1

Result:

good for designing flight schedules

0 B

C E

T

A

D

Copyright © 1998 by Hanan Samet

gr102
r

2

0(0,A)

Copyright © 1998 by Hanan Samet

gr103
z

4

 A(0,C) or (A,B)

Copyright © 1998 by Hanan Samet

gr1081
b

SHORTEST ELEMENTARY CHAIN

• Given node X0 in G find the shortest (cheapest) chain
 joining X0 with all the nodes of G

• Solution:
 C = connected nodes: initially X0
 U = unconnected nodes: initially all but X0
 E = set of edges: initially empty

 1. find the closest node in U to X0 (say X1)
 2. move X1 from U to C
 3. add (X0, X1) to E
 4. for each Xi in C find Yi in U that is closest;
 choose Ym such that cost from X0 to Ym is
 a minimum and add (Xm, Ym) to E; repeat
 until U is empty

Ex: start at node 0

0 B

C E

T

2

5 2

7

5

7
3

4

44

A

D

1 1

Result:

good for designing flight schedules

0 B

C E

T

A

D

Copyright © 1998 by Hanan Samet

gr102
r

2

0(0,A)

Copyright © 1998 by Hanan Samet

gr103
z

4

 A(0,C) or (A,B)

Copyright © 1998 by Hanan Samet

gr104
g

2

C(A,B)

Copyright © 1998 by Hanan Samet

gr1081
b

SHORTEST ELEMENTARY CHAIN

• Given node X0 in G find the shortest (cheapest) chain
 joining X0 with all the nodes of G

• Solution:
 C = connected nodes: initially X0
 U = unconnected nodes: initially all but X0
 E = set of edges: initially empty

 1. find the closest node in U to X0 (say X1)
 2. move X1 from U to C
 3. add (X0, X1) to E
 4. for each Xi in C find Yi in U that is closest;
 choose Ym such that cost from X0 to Ym is
 a minimum and add (Xm, Ym) to E; repeat
 until U is empty

Ex: start at node 0

0 B

C E

T

2

5 2

7

5

7
3

4

44

A

D

1 1

Result:

good for designing flight schedules

0 B

C E

T

A

D

Copyright © 1998 by Hanan Samet

gr102
r

2

0(0,A)

Copyright © 1998 by Hanan Samet

gr103
z

4

 A(0,C) or (A,B)

Copyright © 1998 by Hanan Samet

gr104
g

2

C(A,B)

Copyright © 1998 by Hanan Samet

gr105
v

3

B(B,E)

Copyright © 1998 by Hanan Samet

gr1081
b

SHORTEST ELEMENTARY CHAIN

• Given node X0 in G find the shortest (cheapest) chain
 joining X0 with all the nodes of G

• Solution:
 C = connected nodes: initially X0
 U = unconnected nodes: initially all but X0
 E = set of edges: initially empty

 1. find the closest node in U to X0 (say X1)
 2. move X1 from U to C
 3. add (X0, X1) to E
 4. for each Xi in C find Yi in U that is closest;
 choose Ym such that cost from X0 to Ym is
 a minimum and add (Xm, Ym) to E; repeat
 until U is empty

Ex: start at node 0

0 B

C E

T

2

5 2

7

5

7
3

4

44

A

D

1 1

Result:

good for designing flight schedules

0 B

C E

T

A

D

Copyright © 1998 by Hanan Samet

gr102
r

2

0(0,A)

Copyright © 1998 by Hanan Samet

gr103
z

4

 A(0,C) or (A,B)

Copyright © 1998 by Hanan Samet

gr104
g

2

C(A,B)

Copyright © 1998 by Hanan Samet

gr105
v

3

B(B,E)

Copyright © 1998 by Hanan Samet

gr106
r

1

E(D,E) or (B,D)

Copyright © 1998 by Hanan Samet

gr1081
b

SHORTEST ELEMENTARY CHAIN

• Given node X0 in G find the shortest (cheapest) chain
 joining X0 with all the nodes of G

• Solution:
 C = connected nodes: initially X0
 U = unconnected nodes: initially all but X0
 E = set of edges: initially empty

 1. find the closest node in U to X0 (say X1)
 2. move X1 from U to C
 3. add (X0, X1) to E
 4. for each Xi in C find Yi in U that is closest;
 choose Ym such that cost from X0 to Ym is
 a minimum and add (Xm, Ym) to E; repeat
 until U is empty

Ex: start at node 0

0 B

C E

T

2

5 2

7

5

7
3

4

44

A

D

1 1

Result:

good for designing flight schedules

0 B

C E

T

A

D

Copyright © 1998 by Hanan Samet

gr102
r

2

0(0,A)

Copyright © 1998 by Hanan Samet

gr103
z

4

 A(0,C) or (A,B)

Copyright © 1998 by Hanan Samet

gr104
g

2

C(A,B)

Copyright © 1998 by Hanan Samet

gr105
v

3

B(B,E)

Copyright © 1998 by Hanan Samet

gr106
r

1

E(D,E) or (B,D)

Copyright © 1998 by Hanan Samet

gr107
z

5

D(D,T)

Copyright © 1998 by Hanan Samet

gr1181
b

EULERIAN CHAINS AND CYCLES

• When is it possible to trace a planar graph without
 tracing any edge more than once so that the pencil
 is never removed from the paper?

• Eulerian cycle = edges are all the edges of G
 (end up at point where started)

• Theorem: an Eulerian cycle exists for a connected graph
 G whenever all nodes have an even degree
 and vice versa

• Proof: one direction: if an Eulerian cycle exists,
 then each time we enter a node by one
 edge we leave by another edge

 other direction: more complex

• Eulerian chain = joins nodes X and Y such that its edges
 are all the edges of G (end up at point
 different from starting point)

• Theorem: an Eulerian chain between nodes X and Y
 for a connected graph G exists if and only if
 nodes X and Y have odd degree and the
 remaining nodes have even degree

A

B C

DE

A B C

D

EG
F

H
I

A B

CD

E

Copyright © 1998 by Hanan Samet

gr1181
b

EULERIAN CHAINS AND CYCLES

• When is it possible to trace a planar graph without
 tracing any edge more than once so that the pencil
 is never removed from the paper?

• Eulerian cycle = edges are all the edges of G
 (end up at point where started)

• Theorem: an Eulerian cycle exists for a connected graph
 G whenever all nodes have an even degree
 and vice versa

• Proof: one direction: if an Eulerian cycle exists,
 then each time we enter a node by one
 edge we leave by another edge

 other direction: more complex

• Eulerian chain = joins nodes X and Y such that its edges
 are all the edges of G (end up at point
 different from starting point)

• Theorem: an Eulerian chain between nodes X and Y
 for a connected graph G exists if and only if
 nodes X and Y have odd degree and the
 remaining nodes have even degree

A

B C

DE

A B C

D

EG
F

H
I

A B

CD

E

Copyright © 1998 by Hanan Samet

gr112
r

Eulerian chain Eulerian cycle Neither

Copyright © 1998 by Hanan Samet

gr1281
b

HAMILTONIAN CHAINS AND CYCLES

• When is it possible for a salesman based in city X to
 cover his territory in such a way that he never visits a
 city more than once, where not every city is connected
 directly to another city?

 Hamiltonian cycle = cycle where each vertex appears once
 (salesman ends up at home!)
 Hamiltonian chain = chain where each vertex appears once
 (salesman need not end up at home!)

• Unlike Eulerian chains and cycles, no necessary and
 sufficient conditions exist for a graph G to have a
 Hamiltonian chain or cycle

• Sufficient condition:
 Theorem: A simple graph with n ≥ 3 nodes such that for
 any distinct nodes X and Y not joined by an
 edge and degree (X) + degree (Y) ≥ n,
 then G has a Hamiltonian cycle

 Ex:

A B

CD

E F

A B

CD

E F

A B

C D

Copyright © 1998 by Hanan Samet

gr1281
b

HAMILTONIAN CHAINS AND CYCLES

• When is it possible for a salesman based in city X to
 cover his territory in such a way that he never visits a
 city more than once, where not every city is connected
 directly to another city?

 Hamiltonian cycle = cycle where each vertex appears once
 (salesman ends up at home!)
 Hamiltonian chain = chain where each vertex appears once
 (salesman need not end up at home!)

• Unlike Eulerian chains and cycles, no necessary and
 sufficient conditions exist for a graph G to have a
 Hamiltonian chain or cycle

• Sufficient condition:
 Theorem: A simple graph with n ≥ 3 nodes such that for
 any distinct nodes X and Y not joined by an
 edge and degree (X) + degree (Y) ≥ n,
 then G has a Hamiltonian cycle

 Ex:

A B

CD

E F

A B

CD

E F

A B

C D

Copyright © 1998 by Hanan Samet

gr122
r

Hamiltonian cycle exists No Hamiltonian chain or cycle
Hamiltonian chain exists (only one way from ADE to BCF)
Hamiltonian cycle = A B F C D E A

?

Copyright © 1998 by Hanan Samet

