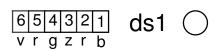
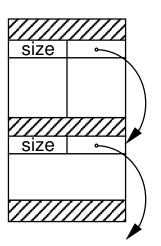
DYNAMIC STORAGE ALLOCATION


Hanan Samet

Computer Science Department and Center for Automation Research and Institute for Advanced Computer Studies University of Maryland College Park, Maryland 20742 e-mail: hjs@umiacs.umd.edu

Copyright © 1997 Hanan Samet


These notes may not be reproduced by any means (mechanical or electronic or any other) without the express written permission of Hanan Samet

\bigcirc

DYNAMIC STORAGE ALLOCATION

- Explicit allocation and deallocation ('freeing' or 'liberating') of blocks of contiguous storage locations
- Issues:
 - 1. how to keep track of available space and its partitioning
 - usually keep a linked list of available blocks
 - a. elements
 - location of start of block
 - size of block
 - pointer to next block in list
 - b. how to order (i.e., 'sort') list
 - by location (i.e., increasing order)
 - by size
 - no order

- 2. how to find a block of b consecutive locations
 - if list sorted by location, find first one with $s \ge b$ (first fit)
 - a. requires a search
 - but good if want to merge adjacent empty blocks into larger ones upon storage deallocation
 - if list sorted by size, find smallest one with $s \ge b$ (best fit)
- Ex: first fit is superior to best fit

request	available areas first fit	available areas best fit
start	1300,1200	1300,1200
1000	300,1200	1300,200
1100	300,100	200,200
250	50,100	STUCK!

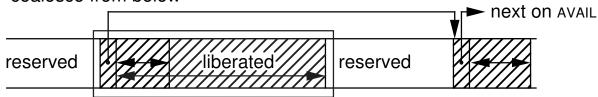
- Requests in order of increasing size: first fit is better
- Requests in order of decreasing size: best fit is better
- Can give example where best fit is better than first fit

FRAGMENTATION

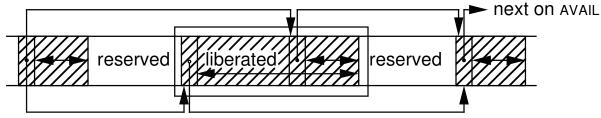
- Fragmentation results when too many small blocks are generated
- Solutions:
 - 1. can avoid by choosing a constant k and selecting block a of size s to satisfy the request for a block of size b if s b < k
 - eliminates small blocks
 - speeds up search in first-fit method as list of blocks is smaller
 - can avoid inspecting blocks that are too small in first-fit by performing search in a circular manner so that it resumes where the last block was found
 - can also avoid by using compaction upon deallocation

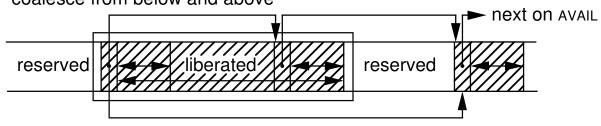
LIBERATION

- 1. Want to return storage to the AVAIL list as soon as possible
 - implies that can coalesce elements of AVAIL list into larger blocks
- 2. Contrast with methods based on garbage collection which allocate storage continuously until exhausting the AVAIL list
 - followed by a pass for storage reclamation and compaction
- 3. Combining garbage collection with compaction
 - storage locations must be moved
 - need to exercise care when moving pointer data
 - presence of relocation registers obviates some of the problems, since the pointers could be offset addresses


LIBERATION WITH COALESCING

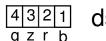
Ex: assume a sorted AVAIL list by memory locations


• i.e., $LINK(p)\neq\Omega \Rightarrow LINK(p)>p$


coalesce from below

coalesce from above

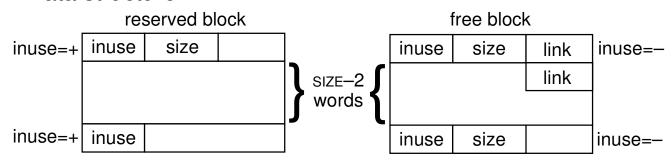
coalesce from below and above


Problem: each time the algorithm is invoked to liberate block pointed at by p, we must search through approximately half the list to locate q such that LINK(q)>p

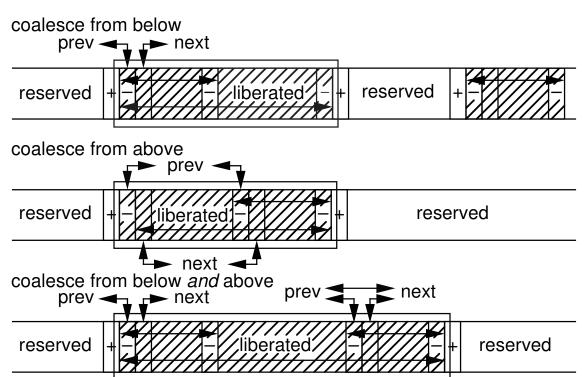
LIBERATION ALGORITHM

- \bullet Assume ${\tt N}$ consecutive words starting at ${\tt P0}$ are being liberated
- Algorithm:
 - 1. search through AVAIL until finding a node Q such that link(Q) = P > P0

```
2. if PO+N = P then
      begin /* coalesce from above */
         size(P0) \leftarrow size(P) + N;
         link(P0) \leftarrow link(P);
      end
   else
      begin
         link(P0) \leftarrow P;
         size(P0) \leftarrow N;
      end;
3. if Q+size(Q) = P0 then
      begin /* coalesce from below */
         size(Q) \leftarrow size(Q) + size(P);
         /* N was already accounted for in step 2 (above) */
         link(Q) \leftarrow link(P0);
      end
   else link(Q)\leftarrowP0;
```


\bigcirc

ds6 (


LIBERATION USING DOUBLY-LINKED LISTS

Data structure

- INUSE and SIZE fields
 - easy to locate immediately adjacent blocks to determine if coalescing is possible
 - 2. obviate need to sort list of available blocks (AVAIL) in increasing memory size
 - more complex if sort AVAIL by block size as need to update
- Doubly-linked AVAIL enables easy removal of coalesced blocks

BUDDY SYSTEM

- Restrict block size to be a power of 2
 - 1. all blocks of size 2^k start at location x where x mod $2^k = 0$
 - 2. given a block starting at location x such that x mod $2^k = 0$
 - BUDDY_k(x) = $x + 2^k$ if $x \mod 2^{k+1} = 0$
 - BUDDY_k(x) = $x 2^k$ if $x \mod 2^{k+1} = 2^k$
 - Ex: $BUDDY_2(10100) = 10000$
 - 3. only buddies can be merged
 - 4. try to coalesce buddies when storage is deallocated
- k different available block lists one for each block size
- When request a block of size 2^k and none is available:
 - 1. split smallest block $2^{j} > 2^{k}$ into a pair of blocks of size 2^{j-1}
 - 2. place block on appropriate AVAIL list and try again
- Data structure
 - 1. doubly-linked list (not circular) FREE of available blocks indexed by \boldsymbol{k}
 - links stored in actual blocks
 - FREE[k] points to first available block of size 2^k
 - 2. each block contains
 - INUSE bit
 - SIZE
 - NEXT and PREV links for FREE list
- Can get greater variety in block sizes using Fibonacci sequence of block sizes so $b_i = b_{i-1} + b_{i-2}$ and now ratio of successive block sizes is 2/3 instead of 1/2

EXAMPLE OF BUDDY ALGORITHM

• M = 4

			Ι					S					Р					N		
15																				
14																				
13																				
12			0	0	0			4	4	4			Ω	Ω	Ω			Ω	Ω	0
11																				
10			0	0	0			2	2	2			Ω	Ω	Ω			Ω	2	Ω
9																				
8		0	1	1	1		8	2	2	2		Ω	-	_	_		Ω	-	_	_
7																				
6																				
5																				
4		0	1	1	1		4	4	4	4		Ω	-	_	_		Ω	1	_	_
3																				
2		0	1	0			2	2	2			Ω	١	10			Ω	١	Ω	
1																				
0	0	1	1	1	0	16	2	2	2	4	Ω	_	_	_	12	Ω	_	_	_	Ω

k	FR	EE	[k]
0	Ω		
1	Ω	2	10
2	Ω	4	12
3	Ω	8	Ω
4	\cap	O	

initially, one block of size 16 starting at location 0 is available allocate a block of size 2 allocate blocks of size 4, 2, 2 in order free the block at location 2 free the block at location 0

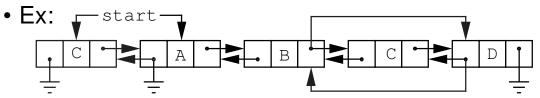
- merge block at 0 with its buddy at 2
- no further merging is possible as the buddy at 4 is in use

BUDDY ALGORITHM NOTES

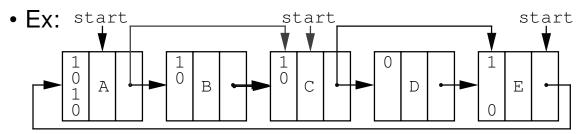
- Assume storage runs from locations 0 to m-1
- To reserve a block of size 2^k:
 - 1. find smallest j for which $FREE[j] \neq \Omega$ (assume this block starts at location n)
 - 2. remove the block at location n from FREE[j]

```
3. while j>k do
    begin
    j←j-1;
    add block at location n+2<sup>j</sup> to FREE[j];
end;
```

• To liberate a block of size 2^k starting at location n:


```
while k\neq m and NOT(INUSE(BUDDY<sub>k</sub>(n))) do begin remove BUDDY<sub>k</sub>(n) from FREE[k]; k\leftarrow k+1; if BUDDY<sub>k</sub>(n)<n then n\leftarrow BUDDY_k(n); end;
```

- INUSE flag only needs to be set in first word of each reserved block
 - all remaining elements (words) have their buddies within the same block
 - no one outside the block will look for buddies within the block


\supset

OVERFLOW

- At times, have more storage allocation requests than available memory
- Can perform garbage collection with compaction but will soon run out of memory again
- Alternatively, remove blocks to secondary storage:
 - keep a doubly-linked list of blocks in use, sorted according to frequency of use
 - whenever a block is accessed, move it to front of list
 - like a self-organizing file

- accessing c causes it to move to the front
- circular list of blocks and a recently-used bit indicating if the block was accessed since the last time blocks were removed to secondary storage
 - to remove a block, march down the list looking for a 0 and reset all 1s that were encountered to 0
 - curculating pointer ensures that a block reset to 0 will not be checked again for removal until all other blocks have been checked

- block D is the first to be removed
- access block A
- block B is removed next