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BACKGROUND
cd1

Goals

hierarchical representation of both a region and its 
boundary

1.

no thickness associated with a line segment2.

exact representation3.

Vector data vs: raster data

vector keeps track of the boundary1.

polyline:  chain of points with implicit lines 
between them

polygon:  an area bounded by a closed polyline

chain code:  approximation by unit vectors in 4 
(or 8) principal directions

compact

raster keeps track of the pixels intersected by line 
segments

2.

requires much space as increase the resolution

Advantages of hierarchical representations:

enable focussing computational resources where 
they are needed

1.

permit a quick exit (termination) when no more 
information can be gained

2.

the distance from a polygon to a point inside it is 
zero while the distance from the point to the 
polyline that forms the boundary of the polygon 
is nonzero
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EXAMPLES OF QUERIES ON LINE SEGMENT 
DATABASES

cd2

Queries about line segments

All segments that intersect a given point or set of 
points

1.

All segments that have a given set of endpoints2.

All segments that intersect a given line segment3.

All segments that are coincident with a given line 
segment

4.

Proximity queries

The nearest line segment to a given point1.

All segments within a given distance from a given 
point (also known as a range or window query)

2.

Queries involving attributes of line segments

Given a point, find the closest line segment of a 
particular type

1.

Given a point, find the minimum enclosing polygon 
whose constituent line segments are all of a 
specified type

2.

Given a point, find all the polygons that are incident 
on it

3.
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BSPR (Burton)
cd3

Bottom-up hierarchical curve approximation using 
upright rectangles

analogous to a 2-d suite of values (i.e., run) in 
merge sorting

preferable to joining successive pairs of line 
segments

Ex:

Construct a tree by pairing adjacent simple sections to 
yield compound sections

2.

Decompose curve into simple sections

Simple section = segment of a curve whose x and y 
coordinate values are monotonic

Process terminates when the entire curve can be 
approximated by one compound section

1.

Binary Searchable Polygonal Representation

E

D

C

BA

H

G

F

1
b

Similar to an R-tree where the objects are monotonic 
curve segments thereby yielding an object hierarchy

AIDN DJFN HMFK AMHL

2
r

N

M

cd3

I

JK

L

AIJF AFKL

3
z

cd3

IJKL

4
g

cd3

Operations:
point-in-polygon determination1.
polygon intersection2.

5
v

cd3
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STRIP TREE (Ballard, Peucker)
cd4

Top-down hierarchical curve approximation

Assume curve is continuous

Ex:

Rectangle strips of arbitrary orientation

1
b

P

Q

Contact points = where the curve touches the box
not tangent points1.
curve need not be differentiable - just continuous2.

2
r

WL

WR

LEFT
SON

RIGHT
SONWRWLYQXQYPXP

cd43
z

A

B

A B

cd44
g

C

D

C D

cd45
v

cd4

Terminate when all rectangles are of width    W
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SPECIAL CASES
cd5

Closed curve1.

Curve extends beyond its endpoints2.

1
b

cd52
r

enclosed by a rectangle

cd53
z

split into two rectangular strips
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APPLICATIONS
cd6

Curve intersection1.

Union of two curves2.

Others3.

length

1
b

area of a closed curve

intersection of curves with areas

etc.

or

cd62
r

NULL CLEAR POSSIBLE

cd63
z

cd64
g

not possible as the result may fail to be continuous
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cd7
ARC TREE (Günther)

Recursive decomposition based on arc length

Ex:

Drawback: computing arc length requires evaluating 
an elliptical integral

Complete binary tree
nth level approximation has 2n elements
Decomposition process stops when straight line 
approximation of each subarc is within a given tolerance

1
b

2
r

C0

3
z

C1C1

4
g

C2

C2

C2

C2

Use ellipses as bounding boxes instead of rectangles

1. place the foci at the endpoints of each subarc
2. the principal axis is the length of the subarc
3. advantage over the strip tree as no need for special 

provision for closed curves or curves that extend past 
their endpoints

5
v

Two curves are guaranteed to 
intersect if their bounding 
ellipses intersect and the two 
foci of each ellipse are external 
to the other ellipse

6
r

POSSIBLY

7
z

YES

Note that intersection of the principal axes of the bound-
ing ellipses is not enough to guarantee intersection

8
g

`
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COMPARISON: BSPR, STRIP TREE, ARC TREE
cd8

All independent of grid system in which they are 
embedded

1.

BSPR and arc tree do not require special treatment 
for closed curves

2.

Uniqueness:3.

BSPR not as flexible as the strip tree or arc tree4.

no for BSPR as depends on the side of the start
no for all when curve is closed

resolution of approximation is fixed since width of the 
approximating rectangles cannot be varied

resolution drawback is same as that associated with 
hexagonal-based tiling methods
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APPLICATION OF THE MX QUADTREE (Hunter)
cd9

A record in a DBMS may be considered a point in multi-
dimensional space

Ex: a line can be a point in 4-d with (x1,y1,x2,y2)

Good for queries about line segments

Not good for proximity queries since points not on the line 
(i.e., the query point) are not mapped into the 4-d space

The representative points of two lines that are physically 
close to each other in 2-d space may be very far from 
each other in 4-d space

Problem is that the transformation only transforms the 
space occupied by the lines of the 2-d space and not the 
rest of the space (e.g., the query point)

example:
A

B
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ONE APPROACH
cd10

A data structure based upon spatial occupancy is the 
best solution

1. decompose the space from which the data is drawn 
into regions called buckets

3. interest is in methods that are designed specifically 
for the spatial data type being stored

Four basic approaches to decomposing space

1. minimum bounding rectangles

2. disjoint cells

3. uniform grid
4. quadtrees

2. with each block only store whether or not it is 
occupied by the object or a part of it

i.e., a pointer to a descriptor of the object

non-disjointness forces longer search since 
several bounding rectangles may cover an 
object, yet the object will only be associated with 
one box

object associated with possibly many cells thereby 
causing it to be represented more than once!

Q: how to report each object only once!
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MINIMUM BOUNDING RECTANGLES
cd15

Objects grouped into hierarchies, stored in another 
structure such as a B-tree

Object has single bounding rectangle, yet area that it 
spans may be included in several bounding rectangles

Does not result in disjoint decomposition of space

Examples include the R-tree and the R*-tree  

a

b

c

d

e

f

g

h

i

1
b

Order (m,M ) R-tree
1. between m     M/2  and M entries in each node 

except root
2. at least 2 entries in root unless a leaf node

2
r

R3

R4

R5
R6

ic feba hgd

cd15

R3: R4: R5: R6:

3
z

R4R3 R6R5

R1

R2

cd15

R2:R1:

4
g

R2R1

cd15

R0:

R0
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INSERTING A LINE SEGMENT IN AN R-TREE
cd16

traverse the tree starting at the root

Determine the appropriate node1.

Once leaf node has been determined2.

choose the subtree whose minimum bounding 
rectangle needs to be enlarged the least (areawise)

add the line segment to the node
check if insertion causes overflow
split node if necessary and redistribute records
propagate split up the tree
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SPLITTING AN R-TREE NODE ON OVERFLOW cd17

minimize total area of covering rectangles (coverage)

Reduce likelihood the node will be visited in 
subsequent searches

2.

Reduce likelihood that both nodes are examined in 
subsequent searches

1.

minimize area common to both nodes (overlap)

Line Segments Goal 2Goal 1
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R*-TREE
cd18

R-tree variant with more sophisticated node insertion 
and splitting algorithms

choose the subtree whose minimum bounding 
rectangle has the minimum increase of amount of 
overlap with its brothers (i.e., the other nodes 
pointed at by its father) : satisfies goal 1

1.

Node insertion

better than choosing the node whose minimum 
bounding rectangle would have to be enlarged the 
least : satisfies goal 2

2.

rationale: reduce likelihood that remaining nodes 
are examined in subsequent searches

3.

Node splitting - a node has M+1 objects

determine axis (x or y )1.
examine all possible vertical and horizontal splits 
(so each resulting node has at least m and at 
most M+1-m bounding rectangles)
choose the split axis for which the sum of the 
perimeters of the two resulting nodes from all the 
possible splits is minimized

determine the position of the split2.

M-2m+2 possibilities
choose the split that minimizes the overlap 
between the two new nodes
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SEARCHING FOR A POINT OR LINE 
SEGMENT IN AN R-TREE

cd191
b

ba hgd ic fe

R2R1

R4R3 R6R5

a

b

c

d

e

f

g

h

i

R3

R4

R5

R6R2

R1

Q

May have to examine many nodes since a line segment 
can be contained in the covering rectangles of many 
nodes yet its record is contained in only one leaf node 
(e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

R3: R4: R5: R6:

R1: R2:

R0:

R0

Q is in R0

2
v

cd19

Q can be in both R1 and R2

3
r

cd194
z

Searching R1 first means that R4 is searched but this 
leads to failure even though Q is part of i which is in R4

cd195
g

Searching R2 finds that Q can only be in R5

cd19
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DISJOINT CELLS cd20

Objects decomposed into disjoint subobjects; each 
subobject in different cell

In order to determine area covered by object, must 
retrieve all cells that it occupies

Techniques differ in degree of regularity

Deletion is achieved in a similar manner
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cd21cd21cd21cd21
R+-TREES

Extension of the k-d-B-tree

Pages are not guaranteed to be m/M full without very 
complicated node insertion and deletion procedures

Motivated by a desire to avoid overlap among the 
minimum bounding rectangles

a

b

c

d

e

f

g

h

i

1
b

2
r

R3

R4

R5

R6

hgd ihc ifcba e iR3: R4: R5: R6:

3
z

R4R3 R6R5

R1

R2

R1: R2:

4
g

R2R1R0:

R0
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cd22

a
b

c

d

e

f

g
h

i

1
bDISJOINT CELLS:  K-D-B-TREE

1. Same principle as R+-tree but developed much earlier

• in R+-tree, rectangle at depth i is a minimum bound-
ing rectangle of contained rectangles at depth i+1

• aggregates blocks of k-d tree partition of space 
rather than minimum bounding rectangles into 
nodes of finite capacity

• both use minimum bounding rectangles for objects 
at deepest level

2. R+-tree reduces number of false hits compared to k-d-
B-tree

3. Same drawback of duplicate reporting as in R+-tree

2
r

cd22

R6

R5

R4

R3

iR5: eba R6:R3: gd R4: ihc ifch

cd223
z

R1 R2

R2: R6R5R1: R4R3

cd224
g

R0

R0: R2R1
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COMPARISON OF R+-TREES AND K-D-B-TREES
cd23

k-d-B-tree has faster building times than R+-tree1.

Storage costs are the same2.

point search queries are thus faster as failure is 
detected earlier

range and nearest line segment queries are faster as 
the minimum bounding rectangles lead to more 
pruning

R+-tree minimizes dead space3.
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HYBRID R+-TREES
cd24

Use minimum bounding rectangle for the line segments 
in the leaf nodes while not in the nonleaf nodes

R1 R2

R3 R4 R5 R6

h icg hd e ia b f ic

a
b

c

d

e

f

g
h

i

1
b

R6:R5:

R2:R1:

R4:R3:

R0:

Simplified construction algorithm

Absence of minimum bounding rectangles in the nonleaf 
nodes is not so costly given that the number of leaf 
nodes is much greater than the number of nonleaf nodes

Use this variant in all tests

2
r

cd24

R3

R4

R5

R6

3
z

R1 R2

cd244
g

R0

cd24
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INSERTING A LINE SEGMENT IN A HYBRID R+-TREE
cd25

Place line segment in every leaf node that it intersects

Check if nodes should be split if overflow takes place

1. split so that the resulting total number of portions of 
line segments (bounding rectangles if nonleaf node) 
is minimized

2. must try all possible horizontal and vertical split lines

for each split line calculate number of line 
segments (or bounding rectangles) intersected by 
the line

select the line with the minimum number of 
intersections

in case of a tie, select the one that yields the most 
even distribution of line segments (or bounding 
rectangles) among the two constituent nodes
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UNIFORM GRID

Ideal for uniformly distributed data

Supports set-theoretic operations

Spatial data (e.g., line segment data) is rarely uniformly 
distributed

cd26
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QUADTREES

Hierarchical variable resolution data structure based 
on regular decomposition

Many different decomposition schemes and applicable 
to different data types:

cd27

Supports set-theoretic operations among different 
maps and different data types

1. points

2. lines
3.
4.

regions
rectangles

5. surfaces
6. volumes
7. higher dimensions including time

Shape is usually independent of order of inserting the 
data

Ex:   region quadtree
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LINE QUADTREE
cd28

Hierarchical encoding of both the interior and the 
boundary of a region

Only works for polygonal data with orthogonal edges

1
b

2
r

Repeatedly subdivide until the leaf nodes represent 
regions with no line segments passing through their 
interiors

cd283
z

At each leaf node a code indicates which of its four sides 
forms a boundary (not a partial border of a region)

cd284
g

cd28

Hierarchical because the information is also recorded for 
nonleaf nodes as long as there is no T-junction at the 
interior side of the boundary of the block corresponding 
to the node

5
v

cd28
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MX QUADTREE

• Represent the boundary as a sequence of BLACK 
pixels in a region quadtree

• Useful for a simple digitized polygon (i.e., non-
intersecting edges)

• Three types of nodes

1. interior - treat like WHITE nodes
2. exterior - treat like WHITE nodes
3. boundary - the edge of the polygon passes 

through them and treated like BLACK nodes

• Disadvantages

1. a thickness is associated with the line segments
2. cannot have more than 4 lines meet at a point

cd291
b

cd292
r

• Raster-to-vector conversion is very difficult
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EDGE QUADTREES (Shneier, Warnock)
cd30

Repeatedly subdivide until block contains a single 
curve that can be approximated by a single straight line 

Ex:

Special nodes at vertices which are at the maximum 
level of resolution

1
b

2
r

cd30

Martin's least square quadtree: curve in block can be 
approximated by k straight lines within a least square 
tolerance
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PM QUADTREES

• Store a collection of line segments

• Divide space into blocks using some rule

1. vertex-based

• limit number of vertices per block (usually one)

2. edge-based

• involves number of edges per block

• Store line segments intersecting each block

• Generally require variable size nodes

• Enables storing vector data (i.e., quadtree is not limited to
raster data)
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a

PM1 QUADTREE
1

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than 
one segment unless all the segments are incident at 
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

b

2
r

3

z

c

4

g

d

5

v

e

f

6

r

7

z

g

h

8
g

i

9
v
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a

PM2 QUADTREE
1 cd33

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one 
line segment unless all the segments are incident at the 
same vertex (the vertex can be in another block!)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

b

2
r

cd33

c

3
z

cd33

d

4
g

cd33

e

5
v

cd33

f

6
r

cd33

g

7
z

cd33

h

8
g

cd339
v

i

cd33
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a

PM3 QUADTREE
1 cd34

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one 
vertex (i.e., a PR quadtree with edges)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

b

2
r

cd34

c

3
z

cd34

d

4
g

cd34

e

5
v

cd34

f

6
r

cd34

g

7
z

cd34

h

8
g

cd349
v

i

cd34
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a

PMR QUADTREE
1

Split a block once if upon insertion the number of 
segments intersecting a block exceeds N

b

• Edge-based
•  Avoids having to split many times when two vertices or 

lines are very close as in PM1 quadtree
• Probabilistic splitting and merging rules

• Uses a splitting threshold value — say N

DECOMPOSITION RULE:

Merge a block with its siblings if the total number of line 
segments intersecting them is less than N
• Merges can be performed more than once
• Does not guarantee that each block will contain at 

most N line segments
• Splitting threshold is not the same as bucket capacity
• Shape depends on order of insertion

Ex: N = 2

2
r

b

3
z

c

d

4
g

5
v

e

f

6
r

g

7
z

h

8
g

i

9
v

Copyright © 1998 by Hanan Samet



ORGANIZATION OF LEAF NODES IN PM QUADTREES
cd36

PM1 quadtree1.
one segment

set of segments incident at a vertex

PM2 quadtree2.

one segment

set of segments incident at a vertex

PM3 quadtree3.

up to 7 classes of information describing the edges 
passing through it 

each class can be stored in a balanced binary tree 
but a sequential list is usually sufficient unless the 
number is unusually high

incident at the vertexa.
crossing the NW, NE, SE, and SW corners of the 
node's block

b.

PMR quadtree4.

set of segments passing through the block

store in a sequential list but a splitting threshold 
increases (i.e., > 8), performance suffers and 
probably preferable to sort

slopea.

x and/or y intercept valuesb.

orientation around a common pointc.

other?d.

crossing the EW and NS sides of the node's blockc.
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SAMPLE CALIFORNIA TIGER DATASETS

County Segments Blocks
Q-edges /

Block

Mariposa
Sacramento
Lake
Calaveras
Santa Clara
Imperial

92843
104502
107708
112529
113564
133049

42295
52918
49462
51781
62227
74188

4.43
4.31
4.41
4.36
4.26
4.27

cd44

Q-edges /
Segment

1.58
1.92
1.61
1.65
2.14
1.93

Splitting threshold value of 8

Image resolution (i.e., map size) is 16K x 16K
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Q-EDGES PER LINE SEGMENT
cd45

The average number of q-edges per line segment in 
the PMR quadtree as a function of the splitting 
threshold

4

8

12

16 Mariposa

Sacramento

Lake

Calaveras

Santa Clara

Imperial

1

2

3

4

5

1

2

3

4

5

Splitting Threshold

Q-edges /
Segment

Image resolution size (i.e., map size) is 16K x 16K

Observe that as the splitting threshold increases, most 
of the line segments are contained in one or two 
buckets thereby explaining the asymptotic value of 1.4

Copyright © 1998 by Hanan Samet



ADVANTAGES OF EDGE-BASED METHODS

The decomposition is focussed where the line segments 
are the densest

Handles the situation that several non-intersecting lines 
are very close to each other

cd46

Able to represent nonplanar line segment data

Good average behavior in terms of node occupancy

Example:

PM1 PMR (N=2)
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CONSISTENCY OF PM APPROACH
cd47

Stores lines exactly

Each line segment is represented by a pointer to a 
record containing its endpoints

Updates can be made in a consistent manner - i.e., 
when a vector feature is deleted, the database can be 
restored to the state it would have been in had the 
deleted feature never been inserted

Uses the decomposition induced by the quadtree to 
specify what parts of the line segments (i.e., q-edges) 
are actually present

1. not a digitized representation
2. no thickness associated with line segments

The line segment descriptor stored in a block only 
implies the presence of the corresponding q-edge - it 
does not mean that the entire line segment is present 
as a lineal feature

Useful for representing fragments of lines such as 
those that result from the intersection of a line map with 
an area map 

Ex:

1
b

2
r

cd473
z

cd47
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FRAGMENTS
cd481

b
cd482

r

a

b

d

e
h

cd483

z

4 cd48
g

When a line segment is split or clipped, a line segment 
fragment is produced

Fragment    any connected piece of a line segment 
(including the whole)

Fragments are represented by a collection of q-edges

Copyright © 1998 by Hanan Samet



STORING FRAGMENTS USING PMR 
QUADTREES

cd49

Split to localize cutpoints

Ex:

Use PMR splitting rule to prevent excessive node 
occupancy

Assume a splitting threshold value of 2

1

b

2 cd49
r

3 cd49
z

4 cd49
g
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INSERTION OF LINE SEGMENTS a AND b
cd501

b

2 cd50
r

a b

3 cd50

No splitting as a and b are entirely in the window and 
the splitting threshold has not been exceeded

z
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INSERTION OF LINE SEGMENT c
cd511

b

a b

2 cd51
r

c

3 cd51

No splitting as c falls outside the window

z
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INSERTION OF LINE SEGMENT d
cd521

b

a b

2 cd52
r

d

3 cd52

Three splits to localize the two cutpoints of d as the 
endpoints of d fall outside the window

z
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INSERTION OF LINE SEGMENT e
cd531

b

a
b

d

2 cd53
r

e

3 cd53

Two splits to localize the cutpoint of e as the endpoint 
falls outside the window

z

4 cd53
g

One PMR split as 3 q-edges (from a, b, and e) are in 
the same block
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INSERTION OF LINE SEGMENTS f AND g
cd541

b

a
b

d

e

2 cd54
r

g

f

3 cd54
z

No splitting as f and g fall outside the window
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INSERTION OF LINE SEGMENT h
cd551

b

a

b

d

e

2 cd55
r

h

3 cd55
z

Two splits to localize the cutpoint of h as the endpoint 
falls outside the window

4 cd55
g

No PMR split necessary as the splitting thresholds in 
the NW quadrant are not exceeded
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INSERTION OF LINE SEGMENT i
cd561

b

a

b

d

e
h

2 cd56
r

i

3 cd56
z

No cutpoint localization split is necessary as the 
cutpoint falls on the boundary of an existing block

4 cd56
g

One PMR split as 3 q-edges (from b, e, and i) meet at 
a vertex and thus are in the same block
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MERGING BLOCKS CONTAINING FRAGMENTS

• Must be careful not to destroy decomposition that 
localizes cutpoints

• Only merge if siblings contain fewer than N (splitting 
threshold value) line segment references and are 
compatible

cd57

• Siblings are incompatible if the inner boundaries 
contain cutpoints

a

b

c

a

b
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MAXIMAL SEARCH RADIUS

P

cd58

Properties of the PM quadtree family (PM1, PMR, etc.) 
greatly localize the search area for nearest line segment

Assume that the query point P falls in the SW corner of 
the small highlighted block

By virtue of the existence of a block of this size, we are 
guaranteed that at least one of the remaining       
siblings contains a line segment

1
b

2
r

three

cd583
z

cd58
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cd59NEAREST LINE SEGMENT ALGORITHM

A four stage intelligent search process

Maximal search radius equal to length of parent node's 
diagonal

Basic algorithm:

Search the block containing the query point1.

1

b
2

Search the three siblings2.

r
cd593

Search the three regions of size equal to that of the 
parent that are incident to the block containing the 
query point

3.

z
cd594

Search the final four groups of two adjacent blocks 
to the previous step

4.

g
cd59
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EMPIRICAL TESTS OF THE ALGORITHM
cd60

What is the relationship between map segment 
density and the search times for finding the nearest 
line segment?

What is the effect of changing the value of the splitting 
threshold on the storage requirements of the PMR 
quadtree?

What is the effect of changing the value of the splitting 
threshold on the execution time?

What is the average execution time for our 
implementation of the algorithm?
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TESTING ENVIRONMENT
cd61

PMR quadtree with a varying splitting threshold 
(i.e., N = 2,4,...,16)

Choice of query points

1.

2.

Not a uniform distribution of points

Use a two stage process

a. uniform distribution of blocks in a particular 
map to yield a block containing the query 
point

b. uniform distribution within a block to yield the 
query point

Data sets are Census Bureau TIGER / Line files

Each B+-tree node is stored in a page of size 1K bytes

Sun SPARCstation 1+ (13.8 SPECint92, 11.1 SPECfp92)

Image resolution (i.e., map size) is 16K x 16K

PMR quadtree is implemented as a linear quadtree 
and stored in a B+-tree

Buffer size of 16 pages
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NEAREST LINE SEGMENT PERFORMANCE

County Segments
Line Seg
Comps

Mariposa
Sacramento
Lake
Calaveras
Santa Clara
Imperial

92843
104502
107708
112529
113564
133049

19.42
17.85
19.29
18.91
17.06
17.86

Pages
Accessed

5.71
5.93
5.81
5.83
5.90
6.13

cd62

CPU
Seconds

0.0154
0.0156
0.0155
0.0163
0.0148
0.0158

(N = 8)

Observe that the number of comparisons for Imperial 
County appears to be ~log2(number of line segments)

Sun SPARCstation 1+

Pages accessed includes the B-tree structure and an 
auxiliary segment table.

a

b

d

e
h

i

g

c

f

g x y x y index

Segment Table

f x y x y index
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BUCKETS SEARCHED
cd63

The average number of buckets (blocks) searched for 
each random nearest line segment query in the PMR 
quadtree as a function of the splitting threshold

Buckets
Searched

4

8

12

16 Mariposa

Sacramento

Lake

Calaveras

Santa Clara

Imperial

4.5
4.75

5
5.25
5.5

5.75

4.5
4.75

5
5.25
5.5

5.75

Splitting Threshold

The values are stable since the closest line segment is 
usually in the query block or its siblings
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LINE SEGMENTS COMPARED
cd64

The average number of line segments compared for 
each random nearest line segment query in the PMR 
quadtree as a function of the splitting threshold

Segments
Compared

4

8

12

16
Mariposa

Sacramento

Lake

Calaveras

Santa Clara

Imperial

0

10

20

30

0

10

20

30

Splitting Threshold

Number of comparisons increases with the splitting 
threshold since the average bucket size increases

Uses sequential search in each bucket which causes 
many line segments to be needlessly accessed and 
can be reduced by sorting the line segments in each 
bucket
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DISK I/O 
cd65

The average number of pages (1K page size) read from 
disk for each random nearest line segment query in the 
PMR quadtree as a function of the splitting threshold.

Pages
Read

4

8

12

16 Mariposa

Sacramento

Lake

Calaveras

Santa Clara

Imperial

4
5

6

7

8

4
5

6

7

8

Splitting Threshold

Increases with splitting threshold as buckets contain 
more line segments

Also includes the disk pages that must be read to fetch 
the line segment data from the segment table which is 
disk-resident

Uses sequential search in each bucket which causes 
many line segments to be needlessly accessed and 
can be reduced by sorting the line segments in each 
bucket
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CPU TIME
cd66

The average number of cpu seconds (on a Sun 
SPARCstation 1+) required for each random nearest 
line segment query in the PMR quadtree as a function 
of splitting threshold

CPU
Seconds

4

8

12

16 Mariposa

Sacramento

Lake

Calaveras

Santa Clara

Imperial

0.01

0.02

Splitting Threshold

Increases with splitting threshold as buckets contain 
more line segments

Uses sequential search in each bucket which causes 
many line segments to be needlessly accessed and 
can be reduced by sorting the line segments in each 
bucket
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COMPARISON OF BUILDING TIMES AND SPACE 
REQUIREMENTS

cd67

Structure Build Time (secs.) Leaf Nodes

MX quadtree 22.55 19699
edge quadtree 20.48 7723
PM3 quadtree 29.38 3939
PMR quadtree 19.08 2078

VAX 11/785

Splitting threshold value of 4

No method overwhelmingly superior with repect to build 
time

PMR quadtree as good or better than other methods
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COMPARATIVE INTERSECTION TIMES
cd68

VAX 11/785

Execution times are inversely proportional to the 
storage requirements
As node complexity increases, so does the execution 
time

PM quadtree execution times can be improved slightly 
by sorting the line segments in each block instead of 
performing sequential search in each block (result is a 
two-level storage hierarchy)

Ex: Intersect road map with floodplain

 Structure Time (secs.)

MX quadtree 4.10
edge quadtree 5.60
PM3 quadtree 6.83
PMR quadtree 8.02
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IMPLEMENTATION ISSUES IN MAKING COMPARISONS

cd69

Often details are left out

Danger that compare implementations rather than data 
structures

Goal is to implement data structures in way that make 
them look best

Ex. R+-tree description is silent on building algorithm 
and ideal parameters

Use implementations described in the literature unless 
can find something better
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MAKING THE TESTING ENVIRONMENTS SIMILAR
cd70

Try to ensure that the data structures all use the same 
amount of storage

1. R*-tree always uses less than R+-tree (and PMR 
quadtree) since each line segment is stored in only 
one block

2. can make node (i.e., page) sizes the same

If a time vs. space issue, then opt for an implementation 
that is more time-efficient at the cost of increasing space

PMR quadtree page can store more line 
segments than R-tree variants since no need for 
bounding box information

Not always possible

1. e.g., node format for R-tree variants

one bounding box for each node, OR

one bounding box for each line segment

2. prefer second choice as otherwise an extra disk 
access is needed for each access to a line segment

3. PMR quadtree:

each block is a bounding box but is not a 
minimum bounding box as for the R-tree variants

bounding box  can be encoded by its locational 
code (i.e., x and y coordinate values of a corner 
and its size)
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ACTUAL IMPLEMENTATION ENVIRONMENT
cd71

Assume database is disk resident and 1K byte nodes

1. linear quadtree (only leaf nodes retained)

2. each line segment passing through a block is a 
2-tuple (L,O)

R-tree variants

L is the locational code of the block (4 bytes)

PMR quadtree

1. each line segment and bounding box is a 2-tuple 
(R,O)

O points to segment table entry for a leaf node or 
a son for a nonleaf node (4 bytes)

2. can store 50 line segments in each page

O is a pointer to a segment table entry (on disk) 
for the line segment

3. can store 120 line segments in each page
4. embedded in the QUILT spatial database system

5. splitting threshold is 4 since it is rare for more than 
4 roads to intersect

R is minimum bounding box (4 values of 4 bytes)

3. m is 40% of M
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QUERIES
cd72

Given an endpoint of a line segment, find all the line 
segments that are incident at it (point query)

1.

Given an endpoint of a line segment, find all the line 
segments that are incident at the other endpoint of the 
line segment

2.

ex:  find all roads passing through a given region

Given a point in the two-dimensional space containing 
the line segments, find the nearest line segment using 
a Euclidean distance metric

3.

Given a point in the two-dimensional space containing 
the line segments, find the minimal enclosing polygon 
by outputting its constituent line segments

4.

Given a rectangular window, find all the line segments 
in the window (range query or window query)

5.

simple search query that does not require that the 
space occupied by the line segments be sorted

ex:  find nearest subway line to a given house

more efficient when the line segments are sorted
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ACTUAL TESTING ENVIRONMENT
cd73

Main statistic is number of disk accesses (actually 
where a potential for them exists)

1. can distinguish between operations that access the 
same page and those that do not

2. meaningful execution times hard to obtain

Choice of query points

1. uniform distribution

2. two-stage process

drawback is that many of the query points lie 
outside the boundary of the map or in large 
empty areas

uniform distribution of blocks in a particular map 
to yield the block containing the query point

Window queries used .01% of total area

Data sets are Census Bureau TIGER/Line files

HP 720 (58.2 SPECfp92, 36.4 SPECint92)

16K x 16K image

Buffer pool of 16 1K pages using an LRU page 
replacement policy

uniform distribution within the block to yield the 
query point
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DATA STRUCTURE BUILDING STATISTICS
cd74

Observations:

R+-tree is the fastest1.

PMR quadtree requires sorting contents of B-tree 
nodes and hence must move data around

2.

R*-tree slow because of expensive node overflow 
handler

3.

number of disk accesses are comparable with PMR 
quadtree usually smaller

4.

must reinsert about 30% of bounding boxes

R*-tree uses the least space but not by much5.

space requirements of PMR quadtree and R+-tree 
are comparable

6.

~50% slower for PMR than R+

slower by about a factor of 8!

10 - 30% less space
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EFFECT OF BUFFER AND PAGE SIZES
cd75

Disk accesses decrease as the page size and the size 
of the buffer pool increase

Lower values for the PMR quadtree since R+-tree 
pages contain fewer line segment tuples
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MAP DATA
cd76

Line segment distributions for maps were quite different

1. urban: 5-6 line segments per polygon (Baltimore)

2. suburban: 19 line segments per polygon (Anne Arundel)

Normalize R-tree variants with respect to PMR quadtree

3. rural: 132 line segments per polygon (Charles)

Sample un-normalized data (Charles)

Query Metric PMR R+ R*

Point1 disk I/O 1.55 2.07 2.74
 seg comps 3.48 2.43 2.39
 bbox/bucket comps 1.00 105.02 149.89

Point2 disk I/O 1.72 2.29 2.90
 seg comps 4.43 3.38 3.35
 bbox/bucket comps 2.00 209.75 299.10

Nearest disk I/O 2.21 2.52 3.35
Line seg comps 11.23 27.02 36.16
(2-stage) bbox/bucket comps 5.33 248.01 389.05

Nearest disk I/O 7.18 6.75 3.38
Line seg comps 22.32 75.08 40.35
(1-stage) bbox/bucket comps 8.77 387.86 765.98

Polygon disk I/O 13.19 18.46 14.07
(2-stage) seg comps 451.43 388.23 389.85
 bbox/bucket comps 185.98 16996.69 23730.10

Polygon disk I/O 12.62 18.67 13.43
(1-stage) seg comps 368.10 347.95 333.55
 bbox/bucket comps 152.35 14101.58 20387.28

Range disk I/O 2.93 3.24 3.50
 seg comps 14.70 8.17 6.88
 bbox/bucket comps 16.57 149.24 179.76
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BOUNDING BOX COMPUTATIONS
cd83

Bounding bucket comparisons for PMR quadtree is 
analogous to bounding box for R-trees but omitted 
since 2 orders of magnitude difference in favor of the 
PMR quadtree

Contents of a PMR quadtree B-tree node (i.e., page) 
are sorted by locational code and thus no need to do 
sequential search within the B-tree node as in the R-
variants

We did not count the logarithmic search within each B-
tree node for the right PMR quadtree node

2.0

1.0

Relative
Bounding Box
Computations
by Query Type

(R+ = 1.0)

R+-tree
R*-tree

Point1 Nearest
Line

2-stage

Point2 Nearest
Line

1-stage

Range Polygon
2-stage

Polygon
1-stage

high

low
ave.

Could define R-tree variants to also sort the bounding 
boxes but build times will now be slower

R+-tree better than R*-tree since a disjoint 
decomposition of space
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DISK ACCESSES
cd84

Exclude accesses to segment table

1. R*-tree is better for the polygon query due to the 
effect of locality on the repeated application of the 
point query

2. R*-tree is better for 1-stage nearest line query due 
to the emptyness of the regions queried thereby 
forcing larger initial search radii

When the R+-tree is better than the R*-tree, the reason 
is the disjoint decomposition of space

Exceptions:

PMR quadtree usually had a slight edge over R-tree 
variants

2.0

1.0

0.0

Relative
Disk Accesses
by Query Type

(PMR = 1.0)

R+-tree
R*-tree
PMR quadtree

Nearest
Line

2-stage

Point2Point1 Nearest
Line

1-stage

RangePolygon
2-stage

Polygon
1-stage

max

min
ave.

large initial search radii meant more disk 
accesses for PMR and R+ as pages are not 
organized by locality to the same extent as the R*
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SEGMENT COMPARISONS
cd85

Implies access to segment table which is disk-resident

1. bounding bucket comparisons are very small for the 
PMR quadtree

2. PMR quadtree is superior to R-tree variants by 
several orders of magnitude

PMR quadtree is significantly better than R-trees for 
the nearest line segment query since it sorts the line 
segments and hence can prune the search space

Insignificant differences for point and polygon queries

Little actual difference in disk activity as segments are 
usually in close proximity

Look at sum of segment comparisons and bounding 
box and bucket comparisons as no bounding boxes 
stored in PMR quadtree

3. poor range query performance of PMR quadtree is 
due to absence of a good bounding box mechanism

2.0

1.0

0.0

Relative
Segment

Comparisons
by Query Type

(PMR = 1.0)

R+-tree
R*-tree
PMR quadtree

Point1 Nearest
Line

2-stage

Point2 Nearest
Line

1-stage

RangePolygon
2-stage

Polygon
1-stage

max

min
ave.

3.0
3.22
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CONCLUSIONS
cd86

No overwhelming superiority for any particular data 
structure

1.

Choice of data structure depends on repertoire of 
operations

2.

choose a splitting threshold value that yields an 
average bucket (node) occupancy similar to the 
average page occupancy in an R-tree

If operations involve search, then the R+-tree and PMR 
quadtree are best as they yield a disjoint decomposition 
of space

3.

If results are to be composed with the results of other 
operations, then the PMR quadtree is best as it uses a 
regular decomposition

4.

R*-tree is most compact space-wise but performance is 
not as good as the R+-tree due to non-disjointness of 
the decomposition induced by it

5.

Performance could be improved by addressing the 
issue of how to organize line segments in each bucket 
or node (e.g., sort them)

6.

Splitting threshold plays similar role to bucket capacity7.
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