
CMSC 417

Computer Networks

Prof. Ashok K Agrawala

© 2017 Ashok Agrawala

Set 7

September 17 CMSC417 Set 7 1

The Transport Layer

September 17 2CMSC417 Set 7

Message, Segment, Packet, and Frame

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

HTTP message

TCP segment

IP packet IP packetIP packet

Ethernet frame Ethernet frameSONET frameSeptember 17 3CMSC417 Set 7

The Transport Layer

CMSC417 Set 7

Responsible for delivering data
across networks with the
desired reliability or quality

Physical

Link

Network

Transport

Application

The Transport Service

• Services Provided to the Upper Layers

• Transport Service Primitives

• Berkeley Sockets

• An Example of Socket Programming:

– An Internet File Server

September 17 5CMSC417 Set 7

Services Provided to the Upper Layers (1)

Transport layer adds reliability to the network layer

– Offers connectionless (e.g., UDP) and connection-
oriented (e.g, TCP) service to applications

CMSC417 Set 7

Services Provided to the Upper Layers (2)

CMSC417 Set 7

Transport layer sends segments in packets (in
frames)

Segment

Segment

Berkeley Sockets

CMSC417 Set 7

Very widely used primitives started with TCP on UNIX

– Notion of “sockets” as transport endpoints

– Like simple set plus SOCKET, BIND, and ACCEPT

Elements of Transport Protocols

CMSC417 Set 7

– Addressing »

– Connection establishment »

– Connection release »

– Error control and flow control »

– Multiplexing »

– Crash recovery »

Transport Protocol

(a) Environment of the data link layer.
(b) Environment of the transport layer.

Packets may be lost, delayed, duplicated, out of
order, etc.

September 17 10CMSC417 Set 7

Addressing

CMSC417 Set 7

•Transport layer
adds TSAPs

•Multiple clients
and servers can
run on a host with
a single network
(IP) address

•TSAPs are ports for
TCP/UDP

Addressing (2)

How a user process in host 1 establishes a connection
with a mail server in host 2 via a process server.

September 17 CMSC417 Set 7 12

Connection Establishment

• Connect

– Expect confirmation that one and only one connection has
been established

– In a reasonable time

• Send Connection Request

• Expect Connection Accepted

• Segments (Packets) may be lost, corrupted, delayed,
out of order, duplicated.

September 17 CMSC417 Set 7 13

Connection Establishment (1)

CMSC417 Set 7

Key problem is to ensure reliability even though
packets may be lost, corrupted, delayed, and
duplicated

– Detect corrupted packets (error detection – e.g.
checksum)

– Detect lost packets (Time Out)

– Identify retransmitted packets (sequence numbers)

Sequence Numbers

CMSC417 Set 7

• An integer number with finite number of bits

• 8 bits => 256

• 16 bits => 64K

• Roll Over

• How long does it take?

• Can there be old duplicates in the system?

Approach:

– Don’t reuse sequence numbers within twice the MSL
(Maximum Segment Lifetime) of 2T=240 secs

– Three-way handshake for establishing connection

Connection Establishment (2)

CMSC417 Set 7

Use a sequence number space large enough that it will not
wrap, even when sending at full rate
– Clock (high bits) advances & keeps state over crash

Need seq. number not to

wrap within T seconds

Need seq. number not to

climb too slowly for too long

Connection Establishment (3)

CMSC417 Set 7

Three-way handshake used
for initial packet

– Since no state from
previous connection

– Both hosts contribute
fresh seq. numbers

– CR = Connect Request

Connection Establishment (4)

CMSC417 Set 7

Three-way handshake
protects against odd
cases:

a) Duplicate CR. Spurious
ACK does not connect

b) Duplicate CR and DATA.
Same plus DATA will be
rejected (wrong ACK).

a)

b)

X

X

X

Connection Release (1)

CMSC417 Set 7

Key problem is to ensure
reliability while releasing

Asymmetric release (when
one side breaks
connection) is abrupt
and may lose data

X

Connection Release (2)

CMSC417 Set 7

Symmetric release (both sides agree to release)
can’t be handled solely by the transport layer

– Two-army problem shows pitfall of agreement

Attack? Attack?

Connection Release (3)

CMSC417 Set 7

Normal release sequence,
initiated by transport
user on Host 1

– DR=Disconnect Request

– Both DRs are ACKed by
the other side

Connection Release (4)

CMSC417 Set 7

Error cases are handled with timer and retransmission

Final ACK lost,

Host 2 times out
Lost DR causes

retransmissions

Extreme: Many lost

DRs cause both

hosts to timeout

Flow Control
• Use Sliding Window
• Buffering

– Sender buffers all TPDUs until acknowledged
– TPDU lost by the network

• Unreliable service
• Receiver not having buffer

• How should buffers be managed
– Dedicate
– Acquire when needed

• Traffic
– Low bandwidth, Bursty – buffer at sender – acquire at receiver
– High bandwidth, smooth – Buffer at both ends

• Exchange Buffer information

September 17 CMSC417 Set 7 23

Error Control and Flow Control (1)

CMSC417 Set 7

Foundation for error control is a sliding window
(from Link layer) with checksums and
retransmissions

Flow control manages buffering at sender/receiver

– Issue is that data goes to/from the network and
applications at different times

– Window tells sender available buffering at receiver

– Makes a variable-size sliding window

Error Control and Flow Control (2)

CMSC417 Set 7

Different buffer strategies trade efficiency / complexity

a) Chained fixed-

size buffers
b) Chained variable-

size buffers

c) One large circular buffer

Error Control and Flow Control (3)

CMSC417 Set 7

Flow control example: A’s data is limited by B’s
buffer

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 3 4 5

3 4 5 6

3 4 5 6

3 4 5 6

3 4 5 6

7 8 9 10

B’s Buffer

Reliable Transmission

• Transfer frames without errors

– Error Correction

– Error Detection

– Discard frames with error

• Acknowledgements and Timeouts

• Retransmission

• ARQ – Automatic Repeat Request

September 17 CMSC417 Set 7 27

Stop and Wait with 1-bit Seq No

September 17 CMSC417 Set 7 28

Stop and Wait Protocols

• Simple

• Low Throughput

– One Frame per RTT

• Increase throughput by having more frames in flight

– Sliding Window Protocol

September 17 CMSC417 Set 7 29

Stop and Wait

September 17 CMSC417 Set 7 30

Duplicate

Frames

Stop-and-Wait – Error-free channel

CMSC417 Set 7

Protocol (p2) ensures sender can’t outpace receiver:

– Receiver returns a dummy frame (ack) when ready

– Only one frame out at a time – called stop-and-wait

– We added flow control!

Sender waits to for ack after

passing frame to physical layer

Receiver sends ack after passing

frame to network layer

Stop-and-Wait – Noisy channel (1)

CMSC417 Set 7

ARQ (Automatic Repeat reQuest) adds error control

– Receiver acks frames that are correctly delivered

– Sender sets timer and resends frame if no ack)

For correctness, frames and acks must be numbered

– Else receiver can’t tell retransmission (due to lost ack
or early timer) from new frame

– For stop-and-wait, 2 numbers (1 bit) are sufficient

Stop-and-Wait – Noisy channel (2)

CMSC417 Set 7

Sender loop (p3):

Send frame (or retransmission)
Set timer for retransmission
Wait for ack or timeout

If a good ack then set up for the

next frame to send (else the old

frame will be retransmitted)

{

Stop-and-Wait – Noisy channel (3)

CMSC417 Set 7

Receiver loop (p3):

Wait for a frame

If it’s new then take

it and advance

expected frame

Ack current frame

Sliding Window Protocols

CMSC417 Set 7

– Sliding Window concept »

– One-bit Sliding Window »

– Go-Back-N »

– Selective Repeat »

Sliding Window concept (1)

CMSC417 Set 7

Sender maintains window of frames it can send

– Needs to buffer them for possible retransmission

– Window advances with next acknowledgements

Receiver maintains window of frames it can
receive

– Needs to keep buffer space for arrivals

– Window advances with in-order arrivals

Go-Back-N (1)

CMSC417 Set 7

Receiver only accepts/acks frames that arrive in
order:

– Discards frames that follow a missing/errored frame

– Sender times out and resends all outstanding frames

Go-Back-N (2)

CMSC417 Set 7

Tradeoff made for Go-Back-N:

– Simple strategy for receiver; needs only 1 frame

– Wastes link bandwidth for errors with large
windows; entire window is retransmitted

Selective Repeat (1)

CMSC417 Set 7

Receiver accepts frames anywhere in receive
window

– Cumulative ack indicates highest in-order frame

– NAK (negative ack) causes sender retransmission of a
missing frame before a timeout resends window

Selective Repeat (2)

CMSC417 Set 7

Tradeoff made for Selective Repeat:

– More complex than Go-Back-N due to buffering at
receiver and multiple timers at sender

– More efficient use of link bandwidth as only lost
frames are resent (with low error rates)

Selective Repeat (3)

CMSC417 Set 7

For correctness, we require:

– Sequence numbers (s) at least twice the window (w)

Originals OriginalsRetransmits Retransmits

Error case (s=8, w=7) – too

few sequence numbers

Correct (s=8, w=4) – enough

sequence numbers

New receive window overlaps

old – retransmits ambiguous

New and old receive window

don’t overlap – no ambiguity

Sliding Window Protocols

CMSC417 Set 7

http://www.ccs-labs.org/teaching/rn/animations/gbn_sr/

http://www.cs.stir.ac.uk/~kjt/software/comms/jasper/SWP3.html

http://www.cs.stir.ac.uk/~kjt/software/comms/jasper/SWP5.html

http://www2.rad.com/networks/2004/sliding_window/

http://www.ccs-labs.org/teaching/rn/animations/gbn_sr/
http://www.cs.stir.ac.uk/~kjt/software/comms/jasper/SWP3.html
http://www.cs.stir.ac.uk/~kjt/software/comms/jasper/SWP5.html
http://www2.rad.com/networks/2004/sliding_window/

Throughput limits

• Buffers

• Bandwidth – subnet’s carrying capacity

– K TPDUs per second

– X paths then total of XK

• Flow control to manage

– Manage window size
• If network can handle c TPDUs/sec and Cycle time is r then the

window size should be cr

September 17 CMSC417 Set 7 43

Multiplexing

• Kinds of transport / network sharing that can occur:
– Multiplexing: connections share a network address

– Inverse multiplexing: addresses share a connection

CMSC417 Set 7

Multiplexing Inverse Multiplexing

September 17 44

Crash Recovery

• Network Failures

– Transport layer handles
• Connectionless

• Connection oriented

• Host Crashes

– Server crash and may reboot
• Send broadcast asking clients to inform of prior connections (stop

and wait protocol)

– Client – one TPDU outstanding or none outstanding

September 17 CMSC417 Set 7 45

Crash Recovery

CMSC417 Set 7

Application needs to help recovering from a crash

– Transport can fail since A(ck) / W(rite) not atomic

Congestion Control

CMSC417 Set 7

Two layers are responsible for congestion
control:

• Transport layer, controls the offered load [here]

• Network layer, experiences congestion [previous]

– Desirable bandwidth allocation »

– Regulating the sending rate »

– Wireless issues »

Desirable Bandwidth Allocation (1)

CMSC417 Set 7

Efficient use of bandwidth gives high goodput, low delay

Delay begins to rise sharply

when congestion sets in
Goodput rises more slowly than

load when congestion sets in

Desirable Bandwidth Allocation (2)

CMSC417 Set 7

Fair use gives bandwidth to all flows (no starvation)

– Max-min fairness gives equal shares of bottleneck

Bottleneck link

Desirable Bandwidth Allocation (3)

CMSC417 Set 7

We want bandwidth levels to converge quickly when
traffic patterns change

Flow 1 slows quickly

when Flow 2 starts

Flow 1 speeds up

quickly when Flow 2

stops

Regulating the Sending Rate (1)

CMSC417 Set 7

Sender may need to slow
down for different
reasons:

– Flow control, when the
receiver is not fast
enough [right]

– Congestion, when the
network is not fast
enough [over]

A fast network feeding a low-capacity receiver

 flow control is needed

Regulating the Sending Rate (2)

CMSC417 Set 7

Our focus is dealing
with this problem –
congestion

A slow network feeding a high-capacity receiver

 congestion control is needed

Regulating the Sending Rate (3)

CMSC417 Set 7

Different congestion signals the network may use to tell the
transport endpoint to slow down (or speed up)

Regulating the Sending Rate (3)

CMSC417 Set 7

If two flows increase/decrease their bandwidth in
the same way when the network signals free/busy
they will not converge to a fair allocation

+/– percentage

+ /– constant

Regulating the Sending Rate (4)

CMSC417 Set 7

The AIMD (Additive Increase Multiplicative
Decrease) control law does converge to a fair and
efficient point!

– TCP uses AIMD for this reason

User 1’s bandwidth

U
s
e
r

2
’s

 b
a
n
d
w

id
th

Wireless Issues

CMSC417 Set 7

Wireless links lose packets due to transmission errors
– Do not want to confuse this loss with congestion

– Or connection will run slowly over wireless links!

Strategy:
– Wireless links use ARQ, which masks errors

A Simple Transport Protocol

• The Example Service Primitives

• The Example Transport Entity

• The Example as a Finite State Machine

September 17 57CMSC417 Set 7

Similar to TCP but simpler

Service Primitives

• Connect
– Parameters – local and remote TSAPs

– Caller is blocked

– If connection succeeds the caller is unblocked and
transmission starts

• Listen – specifies a TSAP to listen to

• Disconnect

• Send

• Receive

• ** Library procedures

September 17 CMSC417 Set 7 58

Service Primitives

• Connum=LISTEN(local)

• Connum=Connect(local,remote)

• Status = Send(Connum, buffer,bytes)

– No Connection, illegal buffer address, negative count

• Status = Receive(Connum, buffer, bytes)

• Status = Disconnect(Connum)

September 17 CMSC417 Set 7 59

The Transport Entity

• Use connection oriented, reliable network service

• Transport Entity is part of the user process

• Network Layer interface

– To_net and from_net

– Parameters –
• Connection Identifier

• Q bit – control message

• M bit – more data from this message to follow

• Packet Type

• Pointer to data

September 17 CMSC417 Set 7 60

The Example Transport Entity

The network layer packets used in our example.

September 17 61CMSC417 Set 7

The Example Transport Entity (2)

Each connection is in one of seven states:

1. Idle – Connection not established yet.

2. Waiting – CONNECT has been executed, CALL REQUEST
sent.

3. Queued – A CALL REQUEST has arrived; no LISTEN yet.

4. Established – The connection has been established.

5. Sending – The user is waiting for permission to send a
packet.

6. Receiving – A RECEIVE has been done.

7. DISCONNECTING – a DISCONNECT has been done locally.
September 17 62CMSC417 Set 7

State Transitions

• A primitive is executed

• A packet arrives

• A timer expires

September 17 CMSC417 Set 7 63

Internet Protocols – UDP

CMSC417 Set 7

– Introduction to UDP »

– Remote Procedure Call »

– Real-Time Transport »

User Datagram Protocol

• Connectionless

• Does not do

– Flow control

– Error control

– Retransmissions

• Useful in client-server situations

• Sends segments consisting of an 8-byte header
followed by the payload

September 17 CMSC417 Set 7 65

Introduction to UDP (1)

CMSC417 Set 7

UDP (User Datagram Protocol) is a shim over IP

– Header has ports (TSAPs), length and checksum.

Introduction to UDP (2)

CMSC417 Set 7

Checksum covers UDP segment and IP pseudoheader
– Fields that change in the network are zeroed out

– Provides an end-to-end delivery check

RPC (Remote Procedure Call)
• RPC connects applications over the network with the familiar

abstraction of procedure calls
– Stubs package parameters/results into a message

– UDP with retransmissions is a low-latency transport

CMSC417 Set 7September 17 68

Limitations of RPC

• Pointers

• Weakly Typed languages – variable length arrays

• Not possible always to deduce parameter types

• Global variables

September 17 CMSC417 Set 7 69

Real-Time Transport (1)

CMSC417 Set 7

RTP (Real-time Transport Protocol) provides support
for sending real-time media over UDP

– Often implemented as part of the application

Real-Time Transport (2)

CMSC417 Set 7

RTP header contains fields to describe the type of
media and synchronize it across multiple streams

– RTCP sister protocol helps with management tasks

RTP Header Fields

• Ver – 2

• P – Packet padded to multiple of 4 bytes

• X – extension header present

• CC – number of contributing sources

• M bit – Application specific marker

• Payload Type – encoding used

• Sequence Number

• Time stamp – produced by the source

• Synchronizations Source Identifier – which stream the
packet belongs to

September 17 CMSC417 Set 7 72

RTP Profiles

• RTP payloads may contain multiple samples coded in
any way the application wants

• Profiles – to support interworking
– Single Audio Stream

– Multiple encoding formats may be supported
• 8-bit pcm samples at 8KHz

• Delta encoding

• Predictive encoding

• MP3

• …

September 17 CMSC417 Set 7 73

RTCP – Real-time Transport Control Protocol

• Control Protocol for RTP

• Does not transport any data

• Handles:
– Feedback

• Delay

• Jitter

• Bandwidth

• Congestion, etc.

– Synchronization
• Interstream Synchronization – Different clocks, drifts, etc.

– User Interface

September 17 CMSC417 Set 7 74

Real-Time Transport (3)

CMSC417 Set 7

Buffer at receiver is used to delay packets and
absorb jitter so that streaming media is played out
smoothly

Packet 8’s network delay is

too large for buffer to help

Constant rate

Variable rate

Constant rate

Real-Time Transport (3)

CMSC417 Set 7

High jitter, or more variation in delay, requires a larger
playout buffer to avoid playout misses
– Propagation delay does not affect buffer size

Buffer

Misses

Internet Protocols – TCP

CMSC417 Set 7

– The TCP service model »

– The TCP segment header »

– TCP connection establishment »

– TCP connection state modeling »

– TCP sliding window »

– TCP timer management »

– TCP congestion control »

TCP

• Reliable end-to-end byte stream over an unreliable
internetwork

• Dynamically adapt to the properties of the network

• Robust

• RFC 793 – 1122 and 1323

September 17 CMSC417 Set 7 78

TCP Transport Entity

• Implemented as
– Library procedures

– User process, or

– Part of the kernel

• Accepts data streams from local processes

• Breaks them into segments of >64KB (usually 1460 bytes)

• Sends each piece in a separate IP packet

• On receive side – reconstruct the original byte stream and
give to a process.

• Must recover from errors – time outs, retransmissions, etc.

September 17 CMSC417 Set 7 79

TCP Service Model

• End points called sockets

– Socket number
• IP address of the host

• 16-bit number (called the port)

• Connection Oriented – Full Duplex, Point-to-Point

– Establish a connection between sockets

– An socket may be used for multiple connections at the
same time

– Connection (socket1, socket2)

September 17 CMSC417 Set 7 80

Berkeley Sockets

The socket primitives for TCP.

September 17 81CMSC417 Set 7

The TCP Service Model (1)

CMSC417 Set 7

TCP provides applications with a reliable byte stream
between processes; it is the workhorse of the Internet
– Popular servers run on well-known ports

Internet Daemon

• Attaches to multiple well-known ports and waits

• When a connection comes in it forks off a new
process and executes the appropriate daemon

• That daemon handles the request

September 17 CMSC417 Set 7 83

The TCP Service Model

(a) Four 512-byte segments sent as separate IP datagrams.
(b) The 2048 bytes of data delivered to the application in a single

READ CALL.

September 17 84CMSC417 Set 7

TCP Service

• No message boundaries are preserved

• Send data as received or buffer it

• PUSH Flag

– Send data now

– Useful in sending command from terminal

• Urgent Data

– DEL or CTRL-C to break off a remote computation

– Use URGENT flag – Transmit everything right now
• Receiving application is interrupted

September 17 CMSC417 Set 7 85

TCP Protocol

• Exchange segments
– 20 byte header (plus optional parts)

– 0 or more data bytes

• Accumulate data from several writes into one segment

• May split data from one write into multiple segments

• Each segment, including the header, must be <65515 byte IP
payload

• Each network has MTU- Maximum Transfer Unit
– Each segment must be less than or equal to MTU

September 17 CMSC417 Set 7 86

TCP Protocol

• TCP uses sliding window protocol

• Sequence numbers are for bytes not segments

• Sending – start a timer

• Receiving – send an ack with sequence number =
next sequence number expected

September 17 CMSC417 Set 7 87

The TCP Segment Header

TCP Header.September 17 88CMSC417 Set 7

TCP Segment Header

• Source and Destination Port

• Sequence number

• Acknowledgement Number
– Next byte expected

• TCP Header Length – Number of 32 bit words in TCP header

• Flags
– URG – set to 1 if Urgent Pointer is in use

• Used to indicate a byte offset from the current seq no at which urgent data care there

– ACK – set to 1 when ack no is valid

– PSH – Push bit

– RST – Reset

– SYN – Used for connection establishment

– FIN – Used to close a connection

September 17 CMSC417 Set 7 89

The TCP Segment Header (2)

• The pseudoheader included in the TCP checksum

• Checksum the header, the data and the pseudoheader

• Add all 16-bit words in 1’s complement and then take 1’s
complement of the sum

• To check calculate on the entire segment and result should be 0.

September 17 90CMSC417 Set 7

TCP Window

• Window size tells how many bytes may be sent
starting at the byte acknowledged

– If 0 means do not send now.

– May send a segment with same ack no and non-zero
window size.

September 17 CMSC417 Set 7 91

Maximum segment Size

• All hosts are required to accept TCP segments of
536+20 =556 bytes

• May negotiate max segment size using options.

• Another negotiable parameter – Window Scale

– May shift to the left by up to 14 bits

– Giving a max window size of 230 bytes

September 17 CMSC417 Set 7 92

Connection Establishment

• Uses three-way handshake

• Server passively listens

– LISTEN and ACCEPT primitives

• Client executes CONNECT

– Send a TCP Segment with SYN bit on and ACK bit off.

• Check to see if there is a process listening

– If not send a RST

– If yes, then give the segment to the process

– If accepted – send an ACK message

September 17 CMSC417 Set 7 93

TCP Connection Establishment

CMSC417 Set 7

TCP sets up connections with the three-way handshake
– Release is symmetric, also as described before

Normal case Simultaneous connect

TCP Connection State Modeling (1)

CMSC417 Set 7

The TCP connection finite state machine has more
states than our simple example from earlier.

TCP Connection State Modeling (2)

CMSC417 Set 7

Solid line is the normal path
for a client.

Dashed line is the normal
path for a server.

Light lines are unusual
events.

Transitions are labeled by
the cause and action,
separated by a slash.

Connection Release

• Think of the connection as a pair of simplex
connections

– Each is released independently

• Either party sends a segment with FIN bit set

• When FIN acked that direction is shut down

September 17 CMSC417 Set 7 97

TCP Sliding Window (1)

CMSC417 Set 7

TCP adds flow
control to the
sliding window
as before

– ACK + WIN is the
sender’s limit

Sliding Window

CMSC417 Set 7

When Window Size = 0

• Sender stops sending, except

• Urgent Data

• Window Probe –
• One Byte Segment – forcing receiver to re-announce the next

byte expected as Window size.

Example Situation Telnet

• 1 Byte

– 21 Byte Segment

– 41 Byte Packet

• 40 Byte Ack

• 40 Byte Ack

• 41 Byte Echo

CMSC417 Set 7

162 Bytes on the network for one byte data

Delayed Ack - 500 ms

September 17 100

TCP Sliding Window (2)

CMSC417 Set 7

Need to add special cases to avoid unwanted
behavior

– E.g., silly window syndrome [below]

Receiver application reads single bytes, so

sender always sends one byte segments

Handling Silly Window Problem

• Delay ack and window updates for 500 ms.

• Nagle’s Algorithm

– When data comes in one byte at a time

• Send the first byte and buffer the rest till the outstanding byte is
acknowledged

• Then send all the buffered characters in one TCP segment

– Mouse movements have to be sent – Burst does not work well.

• Clark’s Solution

– Wait until decent amount of space available then advertise

• Max segment size or half buffer

– Sender not send tiny segments

September 17 CMSC417 Set 7 102

Timer Management

• TCP uses multiple timers
– Most important is the retransmission timer
– What value to set it at??

• Round Trip time
– Highly variable
– Varies over time
– Have to track it
– Estimate it
– M is a new measurement
– = 7/8
– Use bRTT for retransmission timer
– Initial values of b were 2 – make is proportional to standard

deviation of M

September 17 CMSC417 Set 7 103

(1)RTT RTT M

TCP Timer Management

CMSC417 Set 7

TCP estimates retransmit timer from segment RTTs

– Tracks both average and variance (for Internet case)

– Timeout is set to average plus 4 x variance

LAN case – small,

regular RTT

Internet case –

large, varied RTT

Timer Management

• Jacobson Approach

• Mean deviation estimate

• D = gD + (1-g) |RTT – M|

• Timeout = RTT + 4 D

• What to do on retransmissions
– Do not know if the ack is for the first or second

• Karn Algorithm
– Do not update RTT on any segments that have been

retransmitted

September 17 CMSC417 Set 7 105

Persistence Timer

• Receiver sends a window of 0

• Later sends a window size but that packet is lost

– Both wait

• Persistence Timer

– When it goes off – sender sends a probe request to
receiver to get a window size

– If still zero – continue to wait and reset persistence timer

• Keepalive Timer

– When a connection is idle for a long time – check if the
other side is still there

September 17 CMSC417 Set 7 106

TCP Congestion Control

• Congestion – a function of total number of packets in the
network, and where they are

• First step – detection
– Is packet loss an indication of congestion??

– All TCP algorithms assume timeouts are caused by congestion

• Initial steps
– When connection is established – use suitable window size

• Loss will not occur due to buffers at receiver

• Two issues
– Network Capacity

– Receiver Capacity

September 17 CMSC417 Set 7 107

TCP Congestion Control

• Network Capacity and Receiver Capacity
• Maintain two windows

– Receiver window
– Congestion window
– Use the min (Receiver window and Congestion window)

• Initially
– Sender sets congestion window to MSS (Max Seg Size)
– If acked add one more MSS – 2 now
– Repeat for each acked MSS
– Congestion window grows exponentially
– If timeout – go back to previous window size
– SLOW START

September 17 CMSC417 Set 7 108

Internet Congestion Control

• Use a Threshold – initially 64 KB

• When a timeout occurs set threshold to half the
current congestion window and reset congestion
window to 1 MSS

• Use slow start till the threshold is reached

• Then successful transmissions grow congestion
window linearly

September 17 CMSC417 Set 7 109

TCP Congestion Control (1)

CMSC417 Set 7

TCP uses AIMD with loss signal to control congestion

– Implemented as a congestion window (cwnd) for the
number of segments that may be in the network

– Uses several mechanisms that work together

Name Mechanism Purpose

ACK clock Congestion window (cwnd) Smooth out packet bursts

Slow-start Double cwnd each RTT Rapidly increase send rate to

reach roughly the right level

Additive

Increase

Increase cwnd by 1 packet

each RTT

Slowly increase send rate to

probe at about the right level

Fast

retransmit

/ recovery

Resend lost packet after 3

duplicate ACKs; send new

packet for each new ACK

Recover from a lost packet

without stopping ACK clock

TCP Congestion Control (2)

CMSC417 Set 7

Congestion window controls the sending rate

– Rate is cwnd / RTT; window can stop sender quickly

– ACK clock (regular receipt of ACKs) paces traffic and
smoothes out sender bursts

ACKs pace new segments into

the network and smooth bursts

TCP Congestion Control (3)

CMSC417 Set 7

Slow start grows congestion window exponentially

– Doubles every RTT while keeping ACK clock going

Increment cwnd for

each new ACK

TCP Congestion Control (4)

CMSC417 Set 7

ACK

Additive increase grows
cwnd slowly

– Adds 1 every RTT

– Keeps ACK clock

TCP Congestion Control (5)

CMSC417 Set 7

Slow start followed by additive increase (TCP Tahoe)

– Threshold is half of previous loss cwnd

Loss causes timeout;

ACK clock has stopped

so slow-start again

TCP Congestion Control (6)
• With fast recovery, we get the classic sawtooth (TCP

Reno)

– Retransmit lost packet after 3 duplicate ACKs

– New packet for each dup. ACK until loss is repaired

CMSC417 Set 7

The ACK clock doesn’t stop,

so no need to slow-start

September 17 115

TCP Congestion Control (7)

CMSC417 Set 7

SACK (Selective ACKs) extend ACKs with a vector to
describe received segments and hence losses

– Allows for more accurate retransmissions / recovery

No way for us to know that 2 and

5 were lost with only ACKs

Wireless TCP and UDP

Splitting a TCP connection into two connections.

September 17 117CMSC417 Set 7

Transactional TCP

(a) RPC using normal TPC.
(b) RPC using T/TCP.

September 17 118CMSC417 Set 7

Performance Issues

CMSC417 Set 7

Many strategies for getting good performance
have been learned over time

– Performance problems »

– Measuring network performance »

– Host design for fast networks »

– Fast segment processing »

– Header compression »

– Protocols for “long fat” networks »

Performance Problems

CMSC417 Set 7

Unexpected loads often interact with protocols to
cause performance problems

– Need to find the situations and improve the protocols

Examples:

– Broadcast storm: one broadcast triggers another

– Synchronization: a building of computers all contact the
DHCP server together after a power failure

– Tiny packets: some situations can cause TCP to send
many small packets instead of few large ones

Host Design for Fast Networks

CMSC417 Set 7

Poor host software can greatly slow down networks.

Rules of thumb for fast host software:

– Host speed more important than network speed

– Reduce packet count to reduce overhead

– Minimize data touching

– Minimize context switches

– Avoiding congestion is better than recovering from it

– Avoid timeouts

Fast Segment Processing (1)

CMSC417 Set 7

Speed up the common case with a fast path [pink]

– Handles packets with expected header; OK for others
to run slowly

Segment

segment

Fast Segment Processing (2)

CMSC417 Set 7

Header fields are often the same from one packet to the next
for a flow; copy/check them to speed up processing

IP header fields that are often the

same for a one-way flow (shaded)

TCP header fields that stay the

same for a one-way flow (shaded)

Fast TPDU Processing (3)

A timing wheel.
September 17 128CMSC417 Set 7

Header Compression

CMSC417 Set 7

Overhead can be very large for small packets

– 40 bytes of header for RTP/UDP/IP VoIP packet

– Problematic for slow links, especially wireless

Header compression mitigates this problem

– Runs between Link and Network layer

– Omits fields that don’t change or change predictably

• 40 byte TCP/IP header 3 bytes of information

– Gives simple high-layer headers and efficient links

Protocols for “Long Fat” Networks (1)

CMSC417 Set 7

Networks with high bandwidth (“Fat”) and high
delay (“Long”) can store much information inside
the network

– Requires protocols with ample buffering and few RTTs,
rather than reducing the bits on the wire

Starting to send 1 Mbit

San Diego Boston
20ms after start 40ms after start

Protocols for “Long Fat” Networks (2)

CMSC417 Set 7

You can buy more bandwidth but not lower delay

– Need to shift ends (e.g., into cloud) to lower further

Minimum time to send and ACK a 1-Mbit file over a 4000-km line

Propagation delay

Delay Tolerant Networking

CMSC417 Set 7

DTNs (Delay Tolerant Networks) store messages
inside the network until they can be delivered

– DTN Architecture »

– Bundle Protocol »

DTN Architecture (1)

CMSC417 Set 7

Messages called bundles are stored at DTN nodes
while waiting for an intermittent link to become a
contact

– Bundles might wait hours, not milliseconds in routers

– May be no working end-to-end path at any time

DTN Architecture (2)

CMSC417 Set 7

Example DTN connecting a satellite to a collection
point

Bundle Protocol (1)

CMSC417 Set 7

The Bundle protocol uses TCP or other transports
and provides a DTN service to applications

Bundle Protocol (2)

CMSC417 Set 7

Features of the bundle message format:
• Dest./source add high-level addresses (not port/IP)

• Custody transfer shifts delivery responsibility

• Dictionary provides compression for efficiency

