
CSMC 412

Computer Networks

Prof. Ashok K Agrawala

© 2017 Ashok Agrawala

Set 2

September 17 CMSC417 Set 2 1

Contents

• Client-server paradigm
– End systems

– Clients and servers

• Sockets
– Socket abstraction

– Socket programming in UNIX

• File-Transfer Protocol (FTP)
– Uploading and downloading files

– Separate control and data connections

September 17 CMSC417 Set 2 2

End System: Computer on the ‘Net

Internet

Also known as a “host”…
September 17 CMSC417 Set 2 3

Clients and Servers
• Client program

– Running on end host

– Requests service

– E.g., Web browser

• Server program

– Running on end host

– Provides service

– E.g., Web server
GET /index.html

“Site under construction”September 17 CMSC417 Set 2 4

Clients Are Not Necessarily Human

• Example: Web crawler (or spider)
– Automated client program

– Tries to discover & download many Web pages

– Forms the basis of search engines like Google

• Spider client
– Start with a base list of popular Web sites

– Download the Web pages

– Parse the HTML files to extract hypertext links

– Download these Web pages, too

– And repeat, and repeat, and repeat…

September 17 CMSC417 Set 2 5

Client-Server Communication

• Client “sometimes on”
– Initiates a request to the

server when interested

– E.g., Web browser on your
laptop or cell phone

– Doesn’t communicate directly
with other clients

– Needs to know the server’s
address

• Server is “always on”
– Services requests from many

client hosts

– E.g., Web server for the
www.cnn.com Web site

– Doesn’t initiate contact with
the clients

– Needs a fixed, well-known
address

September 17 CMSC417 Set 2 6

http://www.cnn.com/

Peer-to-Peer Communication

• No always-on server at the center of it all
– Hosts can come and go, and change addresses

– Hosts may have a different address each time

• Example: peer-to-peer file sharing
– Any host can request files, send files, query to find

where a file is located, respond to queries, and
forward queries

– Scalability by harnessing millions of peers

– Each peer acting as both a client and server

September 17 CMSC417 Set 2 7

Client and Server Processes

• Program vs. process
– Program: collection of code
– Process: a running program on a host

• Communication between processes
– Same end host: inter-process communication

• Governed by the operating system on the end host

– Different end hosts: exchanging messages
• Governed by the network protocols

• Client and server processes
– Client process: process that initiates communication
– Server process: process that waits to be contacted

September 17 CMSC417 Set 2 8

Socket: End Point of Communication

• Sending message from one process to another
– Message must traverse the underlying network

• Process sends and receives through a “socket”
– In essence, the doorway leading in/out of the house

• Socket as an Application Programming Interface
– Supports the creation of network applications

socket socket

User process User process

Operating

System
Operating

System
September 17 CMSC417 Set 2 9

Identifying the Receiving Process

• Sending process must identify the receiver
– Name or address of the receiving end host
– Identifier that specifies the receiving process

• Receiving host
– Destination address that uniquely identifies the host
– An IP address is a 32-bit quantity

• Receiving process
– Host may be running many different processes
– Destination port that uniquely identifies the socket
– A port number is a 16-bit quantity

September 17 CMSC417 Set 2 10

Using Ports to Identify Services

Web server

(port 80)

Client host

Server host 128.2.194.242

Echo server

(port 7)

Service request for

128.2.194.242:80

(i.e., the Web server)

Web server

(port 80)

Echo server

(port 7)

Service request for

128.2.194.242:7

(i.e., the echo server)

OS

OS

Client

Client

September 17 CMSC417 Set 2 11

Knowing What Port Number To Use

• Popular applications have well-known ports
– E.g., port 80 for Web and port 25 for e-mail

– Well-known ports listed at http://www.iana.org

• Well-known vs. ephemeral ports
– Server has a well-known port (e.g., port 80)

• Between 0 and 1023

– Client picks an unused ephemeral (i.e., temporary) port
• Between 1024 and 65535

• Uniquely identifying the traffic between the hosts
– Two IP addresses and two port numbers

– Underlying transport protocol (e.g., TCP or UDP)

September 17 CMSC417 Set 2 12

http://www.iana.org/

Delivering the Data: Division of Labor

• Network
– Deliver data packet to the destination host

– Based on the destination IP address

• Operating system
– Deliver data to the destination socket

– Based on the protocol and destination port #

• Application
– Read data from the socket

– Interpret the data (e.g., render a Web page)

September 17 CMSC417 Set 2 13

UNIX Socket API

• Socket interface
– Originally provided in Berkeley UNIX
– Later adopted by all popular operating systems
– Simplifies porting applications to different OSes

• In UNIX, everything is like a file
– All input is like reading a file
– All output is like writing a file
– File is represented by an integer file descriptor

• System calls for sockets
– Client: create, connect, write, read, close
– Server: create, bind, listen, accept, read, write, close

September 17 CMSC417 Set 2 14

Typical Client Program

• Prepare to communicate
– Create a socket

– Determine server address and port number

– Initiate the connection to the server

• Exchange data with the server
– Write data to the socket

– Read data from the socket

– Do stuff with the data (e.g., render a Web page)

• Close the socket

September 17 CMSC417 Set 2 15

Creating a Socket: socket()

• Operation to create a socket
– int socket(int domain, int type, int protocol)
– Returns a descriptor (or handle) for the socket
– Originally designed to support any protocol suite

• Domain: protocol family
– PF_INET for the Internet

• Type: semantics of the communication
– SOCK_STREAM: reliable byte stream
– SOCK_DGRAM: message-oriented service

• Protocol: specific protocol
– UNSPEC: unspecified
– (PF_INET and SOCK_STREAM already implies TCP)

September 17 CMSC417 Set 2 16

Connecting the Socket to the Server

• Translating the server’s name to an address
– struct hostent *gethostbyname(char *name)
– Argument: the name of the host (e.g., “www.cnn.com”)
– Returns a structure that includes the host address

• Identifying the service’s port number
– struct servent *getservbyname(char *name, char *proto)
– Arguments: service (e.g., “ftp”) and protocol (e.g., “tcp”)

• Establishing the connection
– int connect(int sockfd, struct sockaddr *server_address,

socketlen_t addrlen)
– Arguments: socket descriptor, server address, and address

size
– Returns 0 on success, and -1 if an error occurs

September 17 CMSC417 Set 2 17

Sending and Receiving Data

• Sending data
– ssize_t write(int sockfd, void *buf, size_t len)
– Arguments: socket descriptor, pointer to buffer of data to

send, and length of the buffer
– Returns the number of characters written, and -1 on error

• Receiving data
– ssize_t read(int sockfd, void *buf, size_t len)
– Arguments: socket descriptor, pointer to buffer to place

the data, size of the buffer
– Returns the number of characters read (where 0 implies

“end of file”), and -1 on error
• Closing the socket

– int close(int sockfd)

September 17 CMSC417 Set 2 18

Byte Ordering: Little and Big Endian

• Hosts differ in how they store data
– E.g., four-byte number (byte3, byte2, byte1, byte0)

• Little endian (“little end comes first”) Intel PCs!!!
– Low-order byte stored at the lowest memory location

– Byte0, byte1, byte2, byte3

• Big endian (“big end comes first”)
– High-order byte stored at lowest memory location

– Byte3, byte2, byte1, byte 019IP is big endian (aka “network
byte order”)

– Use htons() and htonl() to convert to network byte order

– Use ntohs() and ntohl() to convert to host order

September 17 CMSC417 Set 2 19

Why Can’t Sockets Hide These Details?

• Dealing with endian differences is tedious
– Couldn’t the socket implementation deal with this
– … by swapping the bytes as needed?

• No, swapping depends on the data type
– Two-byte short int: (byte 1, byte 0) vs. (byte 0, byte 1)
– Four-byte long int: (byte 3, byte 2, byte 1, byte 0) vs. (byte

0, byte 1, byte 2, byte 3)
– String of one-byte charters: (char 0, char 1, char 2, …) in

both cases

• Socket layer doesn’t know the data types
– Sees the data as simply a buffer pointer and a length
– Doesn’t have enough information to do the swapping

September 17 CMSC417 Set 2 20

Servers Differ From Clients

• Passive open
– Prepare to accept connections
– … but don’t actually establish one
– … until hearing from a client

• Hearing from multiple clients
– Allow a backlog of waiting clients
– ... in case several try to start a connection at once

• Create a socket for each client
– Upon accepting a new client
– … create a new socket for the communication

September 17 CMSC417 Set 2 21

Typical Server Program

• Prepare to communicate
– Create a socket
– Associate local address and port with the socket

• Wait to hear from a client (passive open)
– Indicate how many clients-in-waiting to permit
– Accept an incoming connection from a client

• Exchange data with the client over new socket
– Receive data from the socket
– Do stuff to handle the request (e.g., get a file)
– Send data to the socket
– Close the socket

• Repeat with the next connection request

September 17 CMSC417 Set 2 22

Server Preparing its Socket

• Bind socket to the local address and port number
– int bind (int sockfd, struct sockaddr *my_addr,

socklen_t addrlen)

– Arguments: socket descriptor, server address, address
length

– Returns 0 on success, and -1 if an error occurs

• Define how many connections can be pending
– int listen(int sockfd, int backlog)

– Arguments: socket descriptor and acceptable backlog

– Returns 0 on success, and -1 on error

September 17 CMSC417 Set 2 23

Accepting a New Client Connection

• Accept a new connection from a client
– int accept(int sockfd, struct sockaddr *addr, socketlen_t

*addrlen)
– Arguments: socket descriptor, structure that will provide

client address and port, and length of the structure
– Returns descriptor for a new socket for this connection

• Questions
– What happens if no clients are around?

• The accept() call blocks waiting for a client

– What happens if too many clients are around?
• Some connection requests don’t get through
• … But, that’s okay, because the Internet makes no promises

September 17 CMSC417 Set 2 24

Putting it All Together

socket()

bind()

listen()

accept()

read()

write()

Server

block

process
request

Client

socket()

connect()

write()

read()
September 17 CMSC417 Set 2 25

Serving One Request at a Time?

• Serializing requests is inefficient
– Server can process just one request at a time

– All other clients must wait until previous one is done

• Need to time share the server machine
– Alternate between servicing different requests

• Do a little work on one request, then switch to another

• Small tasks, like reading HTTP request, locating the associated file,
reading the disk, transmitting parts of the response, etc.

– Or, start a new process to handle each request
• Allow the operating system to share the CPU across processes

– Or, some hybrid of these two approaches

September 17 CMSC417 Set 2 26

Wanna See Real Clients and Servers?

• Apache Web server
– Open source server first released in 1995
– Name derives from “a patchy server” ;-)
– Software available online at http://www.apache.org

• Mozilla Web browser
– http://www.mozilla.org/developer/

• Sendmail
– http://www.sendmail.org/

• BIND Domain Name System
– Client resolver and DNS server
– http://www.isc.org/index.pl?/sw/bind/

• …

September 17 CMSC417 Set 2 27

http://www.apache.org/
http://www.isc.org/index.pl?/sw/bind/

Advice for Assignments

• Familiarize yourself with the socket API

– Read the online references

– Read the manual pages (e.g., “man socket”)

– Feeling self-referential? Do “man man”!

• Write a simple socket program first

– E.g., simple echo program

– E.g., simple FTP client that connects to server

September 17 CMSC417 Set 2 28

File Transfer Protocol (FTP)

• Allows a user to copy files to/from remote hosts
– Client program connects to FTP server
– … and provides a login id and password
– … and allows the user to explore the directories
– … and download and upload files with the server

• A predecessor of the Web (RFC 959 in 1985)
– Requires user to know the name of the server machine
– … and have an account on the machine
– … and find the directory where the files are stored
– … and know whether the file is text or binary
– … and know what tool to run to render and edit the file

• That is, no URL, hypertext, and helper applications

September 17 CMSC417 Set 2 29

FTP Protocol

• Control connection (on server port 21)
– Client sends commands and receives responses
– Connection persists across multiple commands

• FTP commands
– Specification includes more than 30 commands
– Each command ends with a carriage return and a line feed

(“\r\n” in C)
– Server responds with a three-digit code and optional

human-readable text (e.g., “226 transfer completed”)

• Try it at the UNIX prompt
– ftp ftp.cs.umd.edu
– Id “anonymous” and password as your e-mail address

September 17 CMSC417 Set 2 30

ftp://ftp.cs.princeton.edu/

Example Commands

• Authentication
– USER: specify the user name to log in as
– PASS: specify the user’s password

• Exploring the files
– LIST: list the files for the given file specification
– CWD: change to the given directory

• Downloading and uploading files
– TYPE: set type to ASCII (A) or binary image (I)
– RETR: retrieve the given file
– STOR: upload the given file

• Closing the connection
– QUIT: close the FTP connection

September 17 CMSC417 Set 2 31

Server Response Codes

• 1xx: positive preliminary reply
– The action is being started but expect another reply before

sending the next command.

• 2xx: positive completion reply
– The action succeeded and a new command can be sent.

• 3xx: positive intermediate reply
– The command was accepted but another command is now

required.

• 4xx: transient negative completion reply
– The command failed and should be retried later.

• 5xx: permanent negative completion reply
– The command failed and should not be retried.

September 17 CMSC417 Set 2 32

FTP Data Transfer
• Separate data connection

– To send lists of files (LIST)

– To retrieve a file (RETR)

– To upload a file (STOR)

control

data

September 17 CMSC417 Set 2 33

Creating the Data Connection
• Client acts like a server

– Creates a socket

– Client acquires an ephemeral port number

– Binds an address and port number

– Waits to hear from the FTP server
control

socket
September 17 CMSC417 Set 2 34

Creating Data Connection (cont.)
• But, the server doesn’t know the port number

– So, the client tells the server the port number

– Using the PORT command on the control connection

PORT <IP address, port #>

September 17 CMSC417 Set 2 35

Creating Data Connection (cont)
• Then, the server initiates the data connection

– Connects to the socket on the client machine

– … and the client accepts to complete the connection

socket
September 17 CMSC417 Set 2 36

Why Out-of-Band Control?

• Avoids need to mark the end of the data transfer
– Data transfer ends by closing of data connection
– Yet, the control connection stays up

• Aborting a data transfer
– Can abort a transfer without killing the control connection
– … which avoids requiring the user to log in again
– Done with an ABOR on the control connection

• Third-party file transfer between two hosts
– Data connection could go to a different hosts
– … by sending a different client IP address to the server
– E.g., user coordinates transfer between two servers

September 17 CMSC417 Set 2 37

Closing

• Client-server paradigm
– Model of communication between end hosts

– Client asks, and server answers

• Sockets
– Simple byte-stream and messages abstractions

– Common application programmable interface

• File-Transfer Protocol (FTP)
– Protocol for downloading and uploading files

– Separate control and data connections

September 17 CMSC417 Set 2 38

