Economic Incentives and Underground Economies
CMSC 414

December 4, 2017
Economics

Money drives both attack and defense

- What data is for sale?
- By whom?
- How?
- Who is buying?

Attackers buy this, but so do

- AV vendors
- Firewall vendors
- Software developers

Understand incentives ⇒ Find choke points
Why is Everything So Bad?

Externalities

- Everybody says they want security
- Nobody wants to pay extra for security
- Everybody actually wants features
- Security only noticeable when it fails

Secure software

- Costs more to develop and maintain
- Provides no benefit to companies
- Costs companies nothing to neglect

Actual software/system security requires *either*

- Customer demand (make it worthwhile for developers)
- Regulation (make it mandatory for developers)

We have *neither*
Zero-Days

Vulnerability introduced

Exploit released

Vulnerability discovered by vendor

Vulnerability disclosed publicly

AV signatures released

Patch released

Patch deployment completed

Discovering by

- Security researchers
- Random hackers
- Organizations (criminal or nation-state)

Bought by

- Software vendors
- Malware authors
- Organizations (criminal or nation-state)

Payment via

- Bug bounties
- Exploit brokers
Buying and Selling Zero-Days

Big business!

Exploit brokers act as *middlemen*
 ⇒ Match buyers/sellers for a commission

Payments often continue until vulnerability disclosed

The bigger the target, the more they sell for
 ▶ $5k–$30k for Adobe Reader
 ▶ $100k–$250k for iOS
Spam

Costly nuisance
- Delivery/storage costs for email providers
- Filtering requires hardware/time
- Annoys users who receive it
- Leads to malware infections, fraud, ...

How do we fight spam?
- At delivery ⇒ See costs above
- Try to understand why it exists, how it works
 ⇒ Can we disrupt it?
Limitations on Spam

One server sends lots of spam
⇒ Block it!

Spoof the source address?
⇒ Email uses TCP, so must complete 3-way handshake

What's a spammer to do?
⇒ Use a botnet!
What Happens When You Click on a Spam Link?

Most spam contains a URL to click on
⇒ Block that URL, or get them TOSed\(^1\)!

Avoid this by

▶ Use URL shorteners (bit.ly, tinyurl.com, ...)
▶ Have lots of URLs (randomly generated hosts/domains)
▶ Can redirect to a single server, or one of many (ie, replication for censorship avoidance)

Eventually end up at a *storefront*

\(^1\)Report a server to its provider for violating its *Terms of Service*, in an effort to have them shut down
Bulletproof Hosting

Most people don’t like spam or spammers

Scams and fraud also generally frowned upon

Hosting, name service, domain registration vulnerable to take-downs

For enough money, **Bulletproof Hosting** services
 - Won’t block you
 - Won’t take your servers down

Frequently associated with organized crime

Legitimate uses, too: *dissident groups* and *whistleblowers*

The **bad guys** use the same technologies as the **good guys**
 ⇒ Only way to stop the **former** also stops the **latter**
Fast-Flux DNS

DNS records have a Time-to-Live (TTL)
 ▶ Measured in seconds
 ▶ Expires ⇒ Invalidate cached records

In Fast-Flux DNS, this TTL is small (minutes to hours)

Hostname to IP addr binding changes often
 ⇒ Hard to filter IP addresses

Spammers use proxies as spam URLs
 ▶ Fast-Flux proxy DNS records
 ▶ Proxies redirect to more-stable addresses

Not all uses of Fast-Flux DNS are malicious
Group Exercise 1

The econ repository’s README file has your exercises for today. Task 1 deals with Fast-Flux DNS bindings, both good and bad.

DO NOT VISIT ANY OF THE SERVERS YOU FIND WHEN LOOKING THROUGH SPAM-ORIGINATING HOSTNAMES!
Botnets as Business

Botnets are big business

Can be used to:
- Steal data via keylogging, etc
- Propagate ransomware
- Launch man-on-the-side attacks (piggyback malicious transactions)
- Perform DDoS-for-hire
- Engage in click fraud
- Host rogue services
- Send lots of spam

Impact on users of infected machines almost negligible
⇒ May not even notice or care
Fighting Botnets

How do we fight botnets?

Prevent initial infection ⇒ Hard!

Botnets rely on a **Command-and-Control (C&C) server** ⇒ Often called a *Bot Herder*

Take down the bot herder, the botnet goes idle

▶ Move the herder around frequently
▶ Bots configured with list of possible herder nodes
▶ Try nodes at random, looking for current herder
▶ Herder responds with signed messages

These guys are pretty good at building robust distributed systems!
Specialization

Building a house requires lots of people with different skills

- Architects
- Excavation crews
- Carpenters
- Electricians
- Plumbers
- Roofers
- etc.

Same thing in scams/black markets
⇒ Not everyone is able/wants to do everything

Focus on what you’re good at, and hire out your services!
Affiliate Programs

Affiliate Network provides

- Domain purchasing
- Web storefronts and shopping carts
- Customer analytics
- Advertising templates

Spammers

- Pay bot herders to send spam
- Get a commission from Affiliate Program for completed sales

Affiliate Network hands off completed sales for

- Payment processing
- Shipping/fulfillment

Can also be used to buy/sell 0-days, malware vectors, ...
Value Chain

How does all this tie together?

Spammer → User → Registrar in RU → NS in CH

- Spam delivered
- Click on URL
- Shopping
- Delivery
- Check out

Supplier in IN → Affiliate → Bank in AZ → Storefront
What do People Buy?

Mostly

- Pharmaceuticals (apparently legit!)
- Replica luxury goods (cheap junk!)
- Counterfeit software (apparently legit!)

Small number of affiliate programs

<table>
<thead>
<tr>
<th>Stage</th>
<th>Pharmacy</th>
<th>Software</th>
<th>Replicas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>URLs</td>
<td>347M</td>
<td>3M</td>
<td>15M</td>
<td>365M</td>
</tr>
<tr>
<td>Domains</td>
<td>54k</td>
<td>7k</td>
<td>7k</td>
<td>69k</td>
</tr>
<tr>
<td>Web clusters</td>
<td>968</td>
<td>51</td>
<td>20</td>
<td>1039</td>
</tr>
<tr>
<td>Programs</td>
<td>30</td>
<td>5</td>
<td>10</td>
<td>45</td>
</tr>
</tbody>
</table>
Acquiring Banks

This is where payments go

User ➔ Issuing Bank ➔ Acquiring Bank ➔ Vendor

This is the weak point!

- Not too many banks willing to work with criminals
- Take one out, even fewer options
- Going after complicit banks discourages other banks from similar behavior
Payment and Fulfillment

Scammers take Visa and Mastercard
 ▶ Widely available (at least in the West)
 ▶ Convenient (again, at least in the West)

They use the correct product codes
 ▶ No real reason not to
 ▶ Payment processors not big fans of incorrect codes

Fulfillment rate actually pretty good
 ▶ Want repeat customers
 ▶ Failure to deliver could lead to charge-backs
 ⇒ Issues with banks
 ▶ Fraud charges are more serious
Alternative Payment Methods

I don’t want to give these guys my credit card...

Pre-paid credit cards are safer
⇒ More of a pain to get for each purchase

How about BitCoin?

Pros:
▶ No card number in black marketeers’ hands
▶ Public key not tied to your identity

Cons:
▶ No ability to protest charges
▶ More likely to lead to lack of order fulfillment
Group Exercise 2

Task 2 has you explore some more ways of filling in the knowledge gaps for scammer networks.