Anonymity

With material from:
Dave Levin
• What is anonymity?
• Dining cryptographers
• Mixnets and Tor
• Web/device fingerprinting
What is anonymity?

• An observer/attacker cannot determine who is communicating

• **Sender** anonymity: Cannot distinguish true sender from set of potential senders

• **Receiver** anonymity: Cannot distinguish true receiver from set of potential receivers
Sender anonymity

- Ransom note
- Pass a note when teacher is not looking
- Hang fliers / chalk messages late at night
- etc.
Receiver anonymity

- Dedicate a book/song/etc. to “you know who”
- Codes in classified ads
- Cold war spies: Number stations
- etc.
Quantifying anonymity

• K-anonymity: Can’t distinguish sender/receiver from pool of K potential senders/receivers

• Most of these real-world examples are not “provably” anonymous — how could you break the anonymity of each?

• We want something with stronger mathematical properties
Dining cryptographers
Problem setup

• From David Chaum (optional reading)

• Three cryptographers having dinner
 • Waiter says someone has paid
 • Was it one of them? Or a third party?

• Can one of them admit to paying without the others knowing which one it was?
How to do it

- Each pair of cryptographers flips one coin, hidden from the 3rd person
- Everyone reports “same” or “different” for the two coins they can see
- **Except**, person who paid reports the wrong answer
Why does this work?

A : \((b_{AB} \text{ XOR } b_{AC}) \text{ XOR } m\)
B : \((b_{AB} \text{ XOR } b_{BC})\)
C : \((b_{AC} \text{ XOR } b_{BC})\)

All messages:
\[
\begin{align*}
(b_{AB} \text{ XOR } b_{AB}) \text{ XOR } (b_{AC} \text{ XOR } b_{AC}) \\
\text{ XOR } (b_{BC} \text{ XOR } b_{BC}) \text{ XOR } m \\
= m
\end{align*}
\]
Why is this secure?

• Suppose you did not pay

• If the result is 1 (odd “diff”)
 • You can tell one of the others is lying
 • But without coin they share, can’t tell which

• If result is 0 (even “diff”) then no anonymity issue
 • We all know the third party paid
Potential issues

• Unfair coins
• Not executing the protocol honestly
Generalizing the protocol

• More than 3 people:
 • Fine with one shared bit per pair of users

• More than 1 bit of data
 • Proceed in rounds, one bit per round
 • Now we need a shared key (one bit per round)

• What about collisions?
Pros and Cons

• Pro: Not interactive
 • After key establishment, no crosstalk by users
 • Make systems simpler, proofs easier

• Pro: Collusion is hard
 • Generally need everyone conspiring against you

• Cons:
 • Collisions / Jamming
 • N^2 shared keys
Problem setup

- One mail server, M
 - Lots of senders (S_i) and receivers (R_i)
- One global observer G
- Goal: Send messages without G being able to determine which sender -> which receiver
Strawman protocol

- Every sender sends a message to M
 - Encrypted with M’s pub key
 - Indicates intended receiver
- M waits for all messages; shuffles the order
- Send messages encrypted for recipient
- Why is this a strawman?
Fixing this protocol (1)

- Problem: Mail server reads all messages
- Solution: Encryption layers
 - $E(k_M, R_i \| E(k_{R_i}, m))$
Fixing this protocol (2)

- Problem: What if not everyone has a message
 - Mail server might wait forever!

- Solution: Everyone sends every round
 - Some is labeled as junk
 - Wastes bandwidth/resources on junk
Fixing this protocol (3)

• Problem: Mail server knows who talks to who

• Solution: Chain of mail servers

• …. wrapped in layers

• …. like an onion
Only know your links

I only know M1 and M3
Encryption layers

\[E(k_{M3}, M4 \parallel E(k_{M4}, R \parallel E(k_R, m))) \]

\[E(k_{M4}, R \parallel E(k_R, m)) \]

\[E(k_R, m) \]
Tor: The Onion Router

• This layers idea is the basis for Tor

• End-to-end path = a circuit
 • Default = 3-hop circuits
 • Download a big list of available peers

• **Exit node**: last hop before destination
 • Looks like it connects to all receivers
 • Nodes decide whether to be exit, for where
Tor vs. Mix-nets

• Tor doesn’t assume global observer
 • Instead, some (small) proportion of Tor nodes are assumed to be malicious
 • Instead, eavesdroppers on a fraction of links

• As a result, does not batch/delay packets
 • Which would not be very practical for many use-cases, e.g. web browsing

• Relies on lots of cover traffic!
Confirmation vs. analysis

- If you suspect Alice is talking to Bob
 - Watch both ends
 - **Confirm** via timing, volume

- Tor instead aims to prevent analysis attacks
 - Figure out who Alice is talking to