Asymmetric Encryption

With material from Jonathan Katz, David Brumley, and Dave Levin
• Warmup activity
• Overview of asymmetric-key crypto
• Intuition for El Gamal and RSA
 • And intuition for attacks
• Digital signatures / authenticity
Public-Key Crypto
• Recall our three goals:
 • Confidentiality
 • Integrity
 • Authenticity
• Recall: Drawbacks of symmetric crypto
 • How to securely exchange keys?
 • Hard to scale
 • Limited authenticity / non-repudiation

We will use asymmetric crypto to mitigate these drawbacks!
High-level idea

• Generate a pair of keys
 • One for encryption, one for decryption

• Make encryption key public!
 • On your website, in the New York Times
 • Anyone can send you a private message

• Secret key is the trapdoor
Warmup Activity
Public key example map
Message = 66
Private key map

Minimum dominating set = NP hard
Message = 66
Your turn! Public map
private map
Notes on this example

• Finding the (a) private map is very hard
 • Minimum dominating set (NP)
 • For a sufficiently large map

• But, can solve as a system of linear equations

• So, this is *not secure*
 • But it is kind of a fun illustration
Asymmetric crypto

- $k_e \neq k_d$
- $k_d =$ private key, $k_e =$ public key
 - Bob computes both, gives public key to Alice
- Alice sends a message to Bob: $c = E(m, k_e)$
- Bob can decrypt it: $m = D(m, k_d)$
- Anyone can send, only Bob can read!
Asymm. Cryptosystem: Definition

• Three polynomial-time algorithms:
 • KeyGen: Returns k_p (public) and k_s (secret)
 • $E(k_p,m)$: Encrypts m with k_p, returns c in C
 • Must be randomized (why?)
 • $D(k_s,c)$: Decrypts c with k_s, returns m in M
 • Or error

• Correctness condition:
 • For all pairs (k_p, k_s): $D(k_s, E(k_p, m)) = m$
Pros and Cons

- Scales well — everyone makes one key pair
 - Not n keys each

- No direct setup comms between Alice and Bob

- Asymmetric is *much, much slower*

- Asymmetric is easier to attack
 - Requires stronger assumptions
The authenticity problem

- In symmetric, we needed an **authentic, private** channel to exchange keys
 - Diffie-Hellman let us relax to **authentic** only
 - Public-key also requires authentic channel
- Who posted that ad in the NY Times?
 - Much more on this later
In practice: Hybrid

- Bob generates key pair and publishes k_p
- Alice generates new symmetric key k_{AB}
- Alice \rightarrow Bob: $c_1 = E(k_p, (Alice \parallel k_{AB}))$
- Alice \rightarrow Bob: $c_2 = E(k_{AB}, message)$
- Arbitrary-length messages, efficiently
 - Keep k_{AB} as a session key
Intuition for algorithms
El Gamal (simplified)

• Similar to Diffie-Hellman
 • Public key: prime p, generator g, $h = g^x \mod p$
 • Private key: x

• Encryption: Sender chooses y
 • $c_1 = g^y$, $c_2 = m^y h^y$

• Decryption: $m = c_2 / c_1^x$

• Security equivalent to D-H hardness
A little more number theory

• $N = pq$, where p and q are distinct primes

• $\phi(N) = (p-1)(q-1)$
 • Easy to compute if you know p and q; hard if not

• $a^b \mod N = a^b \mod \phi(N) \mod N$
 • Take my word or take 456

• \mathbb{Z}_M^*: integers relatively prime to M
 • Have no common denominators except 1
Building to RSA (simplified)

• Choose e relatively prime to $\phi(N)$
 • You can do mod arithmetic

• Choose d s.t. $e \cdot d \mod \phi(N) = 1$
 • Easy if you know $\phi(N)$; else hard
 • By extension, easy if you know p and q

• Public key = (e, N); Private key = d
Textbook RSA

- Encrypt: $c = m^e \mod N$
- Decrypt: $m = c^d \mod N$
- Why does this work? $m^{ed} = m^1 = m$
Textbook RSA: NOT Secure

- Deterministic
-Leaks info about plaintext
- In practice: Preprocess message before applying RSA permutation
 - Randomized padding, hash permutations
PKCS #1 v1.5

- You need 1024 total bits
- Pad message: $c = (r \ || \ m)^e \mod N$
 - r is (mostly) a random number
- Check padding on decryption to detect error
Is RSA hard?

- Easy to compute m when we know d (of course)
 - But what about if we don’t?

- Challenge: Compute x given \(c = m^e \mod N \)
 - Easiest known way: Factor N into p and q
 - Believed (not proven) nothing easier
 - Factoring N is believed hard (but not proven)
How hard is hard?

- Best current algorithms to factor $N=pq$
 - p and q equal-length
 - runs in $\approx \exp(|N|^{1/3})$

- Currently $|N| \sim 1024$ for OK security
 - ~ 2048 to be sure
How hard is hard?

- World record: RSA-768 (232 digits)
 - Two years, hundreds of machines
 - Equivalent to 2000 single-core years!

- Factoring 1024-bit integer
 - About 1000 times harder
 - Possible this decade?
Implementation attacks

• Timing and power:
 • How long / how much to compute $c^d \mod N$

• Bad randomness:
 • p and q can’t be predictably generated
 • If $N = pq$ and $N’ = pq’$, both are broken

• Bad padding / malleability
Malleability

• Given c (m unknown), can construct c' that will decrypt to a related message m'
 • Recall CBC attack last time
CBC is not CCA-secure

Challenge:
Choose $b = x$ or y at uniform random

m_x and m_y

$|m_x| = |m_y| = 1$ blk

$c = E(k, m_b) = IV \| c[0]$

$c' = (IV \text{ xor } 1) \| c[0]$

$m' = D(k, c') = m_b \text{ xor } 1$

Recall:

Uh oh.
Malleability

• Given c (m unknown), can construct c’ that will decrypt to a related message m’
 • Recall CBC attack last time
 • CBC, CTR are malleable; auth. encr. is not!
• Basic El Gamal and basic RSA are malleable
 • CCA-safe variations exist
Adaptive CCA attacks

- Insecure padding, malleability
 - Return error if padding not formatted correctly
- Allows gradual CCA attack based on error detection
 - Analogous to blind ROP attack?
- Ex: Bleichenbacher attack on PKCS #1 v 1
In practice

- Need CCA security for real applications
- Symmetric: Use authenticated encryption
- Asymm: Use approved pub key scheme
- Hybrid: Combine!
 - Secure if components are
Digital signatures
Signatures for integrity

- Sign with your private key
- Anyone can verify using public key
 - Assuming private key is secret, only you could have sent the message
- e.g., Sign software patches
 - Public key bundled with initial software
Signatures vs. MACs

<table>
<thead>
<tr>
<th>Manage one key</th>
<th>Manage n keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign once, verifiable by anyone</td>
<td>Sign separately per verifier</td>
</tr>
<tr>
<td>Public non-repudiation</td>
<td>Nope</td>
</tr>
</tbody>
</table>
Defining a signature scheme

- Keygen: outputs k_p and k_s
- $s = S(k_s, m)$
- $V(k_p, m, s)$ outputs true or false
- Correctness:
 - For all pairs (k_p, k_s): $V(k_p, m, S(k_s, m)) = true$
Signature security game

• No existential forgeries (analogous to MAC)

Signing oracle

Verify s’ or error

\[s_1 = S(k_s, m_1) \ldots s_n \]

\[m_1 \ldots m_n \]

Eve

(not in \(m_i \))

\[m', s' \]

Security IFF \(\Pr[V(k_p, m', s') = 1] \) is very small!
Naive RSA signatures

- Public key \((e,N)\) and private key \((d,N)\)
 - Recall: \(e \cdot d \sim 1 \pmod{\text{arithmetic}}\)
- \(s = m^d \pmod{N}\)
- Verify whether \(s^e \pmod{N} = m\)
- This is \textit{easily existentially forgeable}
 - Choose \(s\). Calculate \(m\).
RSA signatures (better)

- Send $s = H(m)^d \mod N$ along with m
 - Use a good cryptographic hash function H
- Recipient calculates digest $g = s^e \mod N$
 - Verify $g == H(m)$

Why does this fix the problem?
- You can choose s' and find the matching digest g'
- BUT, preimage resistance means that you can’t pick a message m' s.t. $g == H(m')$

Variants of this approach are believed secure
- Assuming RSA is hard
- Bonus: Handles long messages “for free”