Introduction

CMSC 414: Computer and Network Security
Fall 2017, Section 0201
Michelle Mazurek

Some material from Prof. Dave Levin
• Normally, we care about **correctness**
 • Does software achieve desired behavior?

• Security is a kind of correctness
 • Does software prevent **undesired** behavior?

The key difference is the adversary!
What are undesired behaviors?

• Reveals info that users want to hide
 • Corporate secrets, private data, PII
 • Confidentiality

• Modifies info or functionality
 • Destroy records, change data mid-processing, install unwanted software
 • Integrity

• Deny access to data or service
 • Crash website, DoS, fairness
 • Access
More than a technical problem

• People, values, power, policy, politics
After phishing attacks, Chrome extensions push adware to millions

Twice in five days, developers of Chrome browser extensions have lost control of their code after unidentified attackers compromised the Google Chrome Web Store accounts used to issue updates.

DAN GOODIN – 8/3/2017, 11:45 AM

27 Is Your Mobile Carrier Your Weakest Link?

AUG 17

More online services than ever now offer two-step authentication — requiring customers to complete a login using their phone or other mobile device after supplying a username and password. But with so many services relying on your mobile for that second factor, there has never been more riding on the security of your mobile account. Below are some tips to

Secret chips in replacement parts can completely hijack your phone’s security

People with cracked touch screens or similar smartphone maladies have a new headache to consider: the possibility the replacement parts installed by repair shops contain secret hardware that completely hijacks the security of the device.

DAN GOODIN – 8/18/2017, 8:27 AM

Building America’s Trust Act would amp up privacy concerns at the border

If a new Senate Republican border security bill is passed as currently drafted, it would dramatically increase the amount of surveillance technologies used against immigrants and, in some cases, American citizens traveling to and from the United...

CYRUS FARIVAR – 8/15/2017, 4:00 AM

Leak of >1,700 valid passwords could make the IoT mess much worse

Security researchers have unearthed a sprawling list of internet-of-things device credentials.

Other – 25 comments

24 Why It’s Still A Bad Idea to Post or Trash Your Airline Boarding Pass

AUG 17

An October 2015 piece published here about the potential dangers of tossing out or posting...
Why are attacks so common?

• Systems are complex, people are limited

• Many attacks exploit a **vulnerability**
 • A **software defect** that can be manipulated to yield an undesired behavior

• Software defects come from:
 • Flaws in **design**
 • Bugs in **implementation**
Case study: Heartbleed

- TLS (was: SSL) is the main protocol for secure (encrypted) online communication
- Heartbleed was a vulnerability in the most popular SSL server
HOW THE HEARTBLEED BUG WORKS:

Server, are you still there? If so, reply "POTATO" (6 letters).

User Meg wants these 6 letters: POTATO. User Ada wants pages about "irl games". Unlocking secure records with master key 5130985733435 makes (happens user reads this message: "U

https://xkcd.com/1354/
SERVER, ARE YOU STILL THERE? IF SO, REPLY "BIRD" (4 LETTERS).

User Olivia from London wants pages about "marmalade in car why". Note: Files for IP 375.381.283.17 are in /tmp/files-3843. User Meg wants these 4 letters: BIRD. There are currently 348 connections open. User Brendan uploaded the file selfie.jpg (contents: 834ba962e20eb9ff89b334e8f).

HMM...

User Olivia from London wants pages about "marmalade in car why". Note: Files for IP 375.381.283.17 are in /tmp/files-3843. User Meg wants these 4 letters: BIRD. There are currently 348 connections open. User Brendan uploaded the file selfie.jpg (contents: 834ba962e20eb9ff89b334e8f).
Server, are you still there? If so, reply "HAT" (500 letters).

User Meg wants these 500 letters: HAT. Lucas requests the "missed connections" page. Eve (administrator) wants to set server's master key to "14835038534". Isabel wants pages about "snakes but not too long". User Karen wants to change account password to "CoK-BaSt".
Case study: Heartbleed

• TLS (was: SSL) is the main protocol for secure (encrypted) online communication
• Malformed packet allows you to see server memory
 • Passwords, keys, emails, visitor logs
• Fix: Don’t let the user tell you how much data to send back!
 • This is a design flaw
RSA breach, 2011

1. **Flash exploit**: When run by vulnerable Flash player version, allows arbitrary code exec.

2. **Excel embed**: Runs automatically when spreadsheet is opened.

3. **Spear phishing**: Spreadsheet attached to email claiming to be from trusted party, about relevant content
 - Any “From” address can be forged
Why are attacks so common?

• Attacks via design flaws, implementation bugs
• All software has bugs
• Normal users don’t see most bugs
 • Post-deployment, usually rare corner cases
• Too expensive to fix every bug
 • Fix what will affect normal users
Why are attacks so common?

• Normal users avoid bugs
• Adversaries look for them to exploit
Why are attacks so common?

• Because it’s profitable
 • (Or attackers think it is)
• Because systems have weak links

Figure 1: Infrastructure involved in a single URL’s value chain, including advertisement, click support and realization steps.
Steps toward more security....

• Eliminate bugs or design flaws, or make them harder to exploit
 – Think like an attacker!
 – Proactive vs. reactive
• Deeply understand systems we build?
• Be mindful of user-controlled inputs
• Never roll your own
Today’s agenda

• What is security
• Administrivia
• Case study
• Trusting trust
People

• Me: Michelle Mazurek (mmazurek@cs)

• TAs: Tommy Hegarty, Stephan Kostreski, Nishant Rodrigues
Resources

• Everything is on the class website:
 • https://sites.umiacs.umd.edu/mmazurek/414-f17
 • Or will be soon

• We will also use Piazza
 • You were probably added
 • https://piazza.com/class/j6sfbp20xe836u
 • Office hours on website
 • Also by request when necessary
Reading

• Mostly papers
• Recommended: textbooks, outside resources
 • Listed on website
 • Share recommendations, news articles, etc. on Piazza
Prerequisites

• Moderately proficient in C and Unix
 • Willing to learn a little x86 assembly
 • See self-test on resources section of website

• Creative and resourceful

• No prior knowledge in networking, crypto
Grading

• Projects: 50%
 • 12, 12, 12, 14
• Midterms: 15%, 15%
 • Schedule and excused absences on website
• Final: 20%
Ethics and legality

• You will learn about, implement attacks
• *Do not use them without explicit written consent from everyone involved!*
 • Make sure you know who is involved
• If you want to try something, tell me and I will try to help set up a test environment
• Don’t violate: ethics, UMD policies, state and national laws, good sense
Read the syllabus

• Late policy
• Good-faith effort requirement
• Excused absences
• Academic integrity
Other stuff

• 414 is for everyone
• Anonymous comments: ter.ps/414forum
 • Password: Section0201
What’s in this course?

- Software security
- Crypto
- Network security
- Human behavior
Software security

Memory safety

Malware

Web security

Static analysis

Design principles
What’s in this course?

• Software security
• Crypto
• Network security
• Human behavior
Applied crypto

• What it is (medium-high level)
• How to use it responsibly

Black-box approach

Authentication

Anonymity

Designing protocols that use crypto
What’s in this course?

• Software security
• Crypto
• Network security
• Human behavior
Network security

• How to build secure networked systems

Attacks on TCP, DNS, BGP

Anonymity
What’s in this course?

• Software security
• Crypto
• Network security
• Human behavior
Human behavior

• Security is limited by humans’ incentives, capabilities, and preferences

Security as secondary task

Warnings and habituation

Passwords

Design principles
Undergrad research plugs

- My lab (human-centered security): email me
- Prof. Babis Papamanthou (ECE)
 - Building end-to-end encrypted gmail w/ search
 - cpap@umd.edu (with CV)
- Undergrad honors:
 - http://undergrad.cs.umd.edu/departmental-honors
 - Honors Chair Prof. Dave Levin: dml@cs.umd.edu
case study

E-VOTING ANALYSIS

Kohno et al., IEEE S&P 2004

Halderman, 2016
“Security mindset”

• Consider a complex system:
 • Potential security threats?
 • Hidden and explicit assumptions
 • How to mitigate the risks?
 • What are different players’ incentives?
1. Summarize the system

1. Pre-election: Poll worker loads “ballot definition” via e.g. USB
2. Voting: Voter obtains single-use smartcard, votes, vote stored encrypted, card canceled
3. Post-election: Votes decrypted and sent to tabulator, who counts
2. Identify goals/requirements

• **Confidentiality**: Can’t find out who I voted for

• **Integrity**: Can’t alter votes

• **Availability**: Can’t deny opportunity to vote

• **Usability**: General public can vote correctly without undue burden

What if the attacker can violate these, but you catch him/her?
3. Identify adversaries/threats

- Poll worker, voter, outsider
- Display one vote / count a different vote
- Vote multiple times
- End election early (DOS)
- Tamper with stored data
- Reveal who voted for whom
Diebold Accuvote TS

• Used in 37 states! (in 2004)
• No cryptography protects smartcards, ballot definition file
• “Protected counter” in single, mutable file
• Pose as voting machine, send to tabulator
• Homebrew crypto protects vote logs
 • Hardcoded key since at least 1998
• Read the paper for more
Diebold Accuvote TS

- Used in 37 states (in 2004)
- No cryptography protects smartcards, ballot definition file
- “Protected counter” in single, mutable file
- Pose as voting machine, send to tabulator
- Homebrew crypto protects vote logs
- Hardcoded key since at least 1998
- Read the paper for more

https://crayfisher.files.wordpress.com/2012/07/double_facepalm_tng1.jpg
Follow-up

• More researchers confirmed these bugs and found others (got real hardware)
• State investigations: MD, CA, OH
 • Similar problems from other manufacturers
 • Sequoia AVC: designed 1980, used in NJ 2009
• “By the 2014 general election, 70% of American voters were casting ballots on paper”
Takeaways

• Adversarial thinking
• Whole-systems view
 • Hardware, software, network, users, economics
• Only as strong as weakest link
 • Break into building vs. sniff unencrypted traffic
 • You have to be right always, adversary once
• Never homebrew crypto!
• Security through obscurity DOESN’T WORK!
Is anything really secure?

- Security requires context
 - Threat model
 - Definition of security / protection
 - Who/what do you trust? (Assumptions)
 - Cui bono? (Incentives)

- Trust no one!
 - How did you compile?
 - Who built your OS?
 - And your hardware?
 - Required reading: Thompson