CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Advanced Tree Structures

Department of Computer Science
University of Maryland, College Park
IMPORTANT

• Please complete course evaluations 😊
 • https://courseevalum.umd.edu/
Overview

• Binary trees
 • Balance
 • Rotation
• Multi-way trees
 • Search
 • Insert
• Indexed tries
Tree Balance

- Degenerate
 - Worst case
 - Search in $O(n)$ time

- Balanced
 - Average case
 - Search in $O(\log(n))$ time
Tree Balance

- **Question**
 - Can we keep tree (mostly) balanced?

- **Self-balancing binary search trees**
 - AVL trees
 - Red-black trees

- **Approach**
 - Select invariant (that keeps tree balanced)
 - Fix tree after each insertion / deletion
 - Maintain invariant using **rotations**
 - Provides operations with $O(\log(n))$ worst case
AVL Trees

- **Properties**
 - Binary search tree
 - Heights of children for node differ by at most 1

- **Example**

![AVL Tree Example](image-url)
AVL Trees

• History
 • Discovered in 1962 by two Russian mathematicians, Adelson-Velskii & Landis

• Algorithm
 1. Find / insert / delete as a binary search tree
 2. After each insertion / deletion
 1. If height of children differ by more than 1
 2. Rotate children until subtrees are balanced
 3. Repeat check for parent (until root reached)
Tree Rotations

- Changes shape of tree
 - Rotation moves one node up in the tree and one node down
 - Height is decreased by moving larger sub-trees up and smaller sub-trees down

- Types
 - Single rotation
 - Left
 - Right
 - Double rotation
 - Left-right
 - Right-left
Tree Rotation Example

- Single right rotation
Tree Rotation Example

- Single right rotation

Node 4 attached to new parent
Red-black Trees

- **History**
 - Discovered in 1972 by Rudolf Bayer
- **Algorithm**
 - Insert / delete may require complicated bookkeeping & rotations
- **Java collections**
 - TreeMap and TreeSet use red-black trees
- **Properties**
 - Binary search tree
 - Every node is red or black
 - The root is black
 - Every leaf is black
 - All children of red nodes are black
 - For each leaf, same # of black nodes on path to root
- **Characteristics**
 - Properties ensures no leaf is twice as far from root as another leaf
Red-black Trees

• Example
Multi-way Search Trees

- Properties
 - Generalization of binary search tree
 - Node contains 1…k keys (in sorted order)
 - Node contains 2…k+1 children
 - Keys in j^{th} child < j^{th} key < keys in $(j+1)^{th}$ child

- Examples

```
      5   12
     /   /  \
    2    8   17
```

```
      5   8   15   33
     /     /     /    \
    1     3     7     9
```

```
      5   8   15   33
     /     /     /    \
    18    19    21    44
```
Types of Multi-way Search Trees

- **2-3 Tree**
 - Internal nodes have 2 or 3 children

- **Indexed Search Tree (trie)**
 - Internal nodes have up to 26 children (for strings)

- **B-Tree**
 - $T = \text{minimum degree}$
 - Non-root internal nodes have $T-1$ to $2T-1$ children
 - All leaves have same depth
Multi-way Search Trees

• Search algorithm
 1. Compare key x to 1…k keys in node
 2. If $x = \text{some key}$ then return node
 3. Else if ($x < \text{key } j$) search child j
 4. Else if ($x > \text{all keys}$) search child $k+1$

• Example
 • Search(17)
Multi-way Search Trees

- Insert algorithm
 1. Search key x to find node n
 2. If (n not full) insert x in n
 3. Else if (n is full)
 a) Split n into two nodes
 b) Move middle key from n to n’s parent
 c) Insert x in n
 d) Recursively split n’s parent(s) if necessary
Multi-way Search Trees

• Insert Example (for 2-3 tree)
 • Insert(4)

```
5 12
2 8 17

5 12
2 4 8 17
```
Multi-way Search Trees

- Insert Example (for 2-3 tree)
 - Insert(1)

Split node

Split parent
B-Trees

- Characteristics
 - Height of tree is $O(\log_T(n))$
 - Reduces number of nodes accessed
 - Wasted space for non-full nodes

- Popular for large databases (indices)
 - 1 node = 1 disk block
 - Reduces number of disk blocks read
Indexed Search Tree (Trie)

- Special case of tree
- Applicable when
 - Key C can be decomposed into a sequence of subkeys C_1, C_2, \ldots, C_n
 - Redundancy exists between subkeys
- Approach
 - Store subkey at each node
 - Path through trie yields full key
Standard Trie Example

- For strings
 - \{ bear, bell, bid, bull, buy, sell, stock, stop \}
Word Matching Trie

- Insert words into trie
- Each leaf stores occurrences of word in the text
Compressed Trie

- **Observation**
 - Internal node v of T is redundant if v has one child and is not the root

- **Approach**
 - A chain of redundant nodes can be compressed
 - Replace chain with single node
 - Include concatenation of labels from chain

- **Result**
 - Internal nodes have at least 2 children
 - Some nodes have multiple characters
Compressed Trie

- Example
Tries and Web Search Engines

- Search engine index
 - Collection of all searchable words
 - Stored in compressed trie
- Each leaf of trie
 - Associated with a word
 - List of pages (URLs) containing that word
 - Called occurrence list
- Trie is kept in memory (fast)
- Occurrence lists kept in external memory
 - Ranked by relevance