
 1

University of Maryland College Park
Dept of Computer Science

CMSC106 Fall 2013
Midterm III Key

Last Name (PRINT): ___

First Name (PRINT): ___

University Directory ID (e.g., umcpturtle)_____________________________________

I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Your signature: ___

Instructions

Ø Make sure you write your name now (we will not wait for you at the end).
Ø This exam is a closed-book and closed-notes exam.
Ø Total point value is 100 points.
Ø The exam is a 50 minutes exam.
Ø Please use a pencil to complete the exam.
Ø WRITE NEATLY.
Ø You don’t need to use meaningful variable names; however, we expect good indentation.

Grader Use Only

#1 Problem 1 (Miscellaneous) (14)

#2 Problem 2 (Memory Map) (16)

#3 Problem 3 (Arrays) (45)

#4 Problem 4 (Strings) (25)

Total Total (100) (100)

 2

Problem #1 (14 pts)

1. (2 pts) The function process has the prototype below.

int process(int data[], int size);

Does passing an array of a million elements to the process function take longer time than passing an array of
two elements? Briefly explain. Answers without explanation receive no credit.

Answer: No. When you pass an array you pass a pointer to the first element of the array so the array length
does not matter.

 Grading: Any reasonable answer receives full credit. Yes/No answer without explanation receive no credit.

2. (3 pts) Write the output generated by the following C program (the program compiles). If there is access to

a region of memory that is invalid or should not be accessed, write down INVALID.

#include <stdio.h>

#define MAX 3

int main() {
 int a[2 * MAX] = {5, 8, 14};

 printf("A: %d\n", a[2]);
 printf("C: %d\n", a[6]);
 printf("A: %d\n", *a);

 return 0;
}

 Answer:

A: 14
C: INVALID
A: 5

3. (2 pts) Suppose you have an array with 10 characters. How can you tell whether the array is a string?

Notice you don’t need to write code; just describe what you need to do.

 Answer: Find out whether it has the null character (‘\0’).

 3

4. (2 pts) Would the following program compile? If it does not compile, indicate why. It is compiles provide
the output.

#include <stdio.h>

int main() {
 double a[3] = {2.0, 3.0, 4.0};
 double b[3];

 a = b;
 printf("%d\n", a[0]);

 return 0;
}

 Answer: No, it will not compile. You may not assign one array to another.

5. (3 pts) There are several ways to initialize a string variable without using a loop. One is provided below

(“Cat” is used to initialize choice). Provide another alternative (i.e., rewrite the right side of the =).

char choice[5] = "Cat";

 One possible answer: char choice[5] = {'C','a','t','\0'};

6. (2 pts) Which of the following prototype declarations are equivalent? Circle those that are equivalent.

void manage_storage(double data[], int size)

void manage_storage(double *data, int size)

void manage_storage(double data[1234], int size)

int manage_storage(double data[], int size)

int manage_storage(double data[], int *size)

 Answer: First three

 4

Problem #2 (16 pts)

Draw a memory map to the right of the following program that shows the values of variables when execution
has reached the point indicated by /* HERE */.

#include <stdio.h>

#define MAX 3

void manage_data(int src[], int range, int *par) {
 src[1] = 10;
 range = -2;
 *(par + 1) = 200;
 par = NULL;
 /* HERE */
}

int main() {
 int orig[MAX] = {89, 4, 7};
 int size = MAX, i;

 manage_data(orig, size, orig + 1);
 for (i = 0; i < size; i++) {
 printf("%d\n", orig[i]);
 }

 return 0;
}

89
4

10
4

200
4

	34

 -24 NULL
4

orig

src

size

range par

 5

Problem #3 (45 pts)

1. Implement a function called find that has the prototype below. The function returns true if the value
parameter exists in the array and false otherwise.

int find(int data[], int size, int value)

 Answer:

int find(int data[], int size, int value) {
 int idx;

 for (idx = 0; idx < size; idx++) {
 if (data[idx] == value) {
 return 1;
 }
 }

 return 0;
}

2. Implement a function called common that has the prototype below. The function determines how many

elements two arrays have in common. For this function, you need to use the find function you defined
above. Feel free to use the find function even if you did not implement it. The following is an example
of the function you are expected to implement:

int main() {
 int a[3] = {10, 70, 8}, b[3] = {10, 70, 8}, c[4] = {3, 8, 6, 70};
 int d[3] = {4, 10, 20}, e[3] = {1000, 2000, 300};

 printf("First: %d, ", common(a, b, 3, 3));
 printf("Second: %d, ", common(b, c, 3, 4));
 printf("Third: %d, ", common(a, d, 3, 3));
 printf("Fourth: %d\n", common(a, e, 3, 3));

 return 0;
}

Output:

First: 3, Second: 2, Third: 1, Fourth: 0

int common(int a[], int b[], int a_size, int b_size)

 Answer:

int common(int a[], int b[], int a_size, int b_size) {
 int idx, count = 0;

 for (idx = 0; idx < a_size; idx++) {
 if (find(b, b_size, a[idx])) {
 count++;
 }
 }

 6

 return count;
}

Problem #4 (25 pts)

Implement a function called verify_password_choice that has the prototype below. The function verifies
whether a string provided by the user represents a valid password choice. A string is valid if it has at least 8
characters and it is not the word “password”. Notice that the function will keep asking the user for a string value
as long as an invalid one is provided. The message “Invalid password choice” will be printed each time the
user provides an invalid string. The message “Correct password choice” will be printed once a correct value is
provided (at this point the function will end).

 Answer:

void verify_password_choice() {
 char entered[MAX + 1];
 int invalid = 1;

 do {
 scanf("%s", entered);
 invalid = ((strlen(entered) < 8) || (strcmp(entered, "password") == 0));
 if (invalid) {
 printf("Invalid password choice\n");
 }
 } while(invalid);
 printf("Correct password choice\n");
}

