
 1

University of Maryland College Park

Dept of Computer Science

CMSC106 Fall 2016

Midterm II Key

Last Name (PRINT): ___

First Name (PRINT): ___

University Directory ID (e.g., umcpturtle)_____________________________________

I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Your signature: ___

Instructions

 This exam is a closed-book and closed-notes exam.

 Total point value is 200 points.

 The exam is a 50 minutes exam.

 Please use a pencil to complete the exam.

 WRITE NEATLY.

 Write your name now.

 Your code must be efficient.

 You don’t need to use meaningful variable names; however, we expect good indentation.

Grader Use Only

#1 Problem #1 (Miscellaneous) 40

#2 Problem #2 (Memory Map) 30

#3 Problem #3 (Arrays) 40

#4 Problem #4 (Loops) 90

Total Total 200

 2

Problem #1 (Miscellaneous)

1. (4 pts) The function process has the prototype below.

int process(int data[], int size);

Why does passing an array of a million elements to the process function takes the same amount of time as passing an

array of two elements? Briefly explain.

 Answer: Because we only pass the address of the first element of the array.

2. (4 pts) The following program does not compile. Why?

#include <stdio.h>

int main() {

 double a[3] = {2.0, 3.0, 4.0};

 double b[3];

 a = b;

 printf("%d\n", a[0]);

 return 0;

}

 Answer: Assigning of arrays is not allowed.

3. (4 pts) How can you tell that a character array is a string?

 Answer: If there is null character.

4. (4 pts) Write an equivalent prototype to the prototype below.

int process(int data[], int size);

 Answer: int process(int *data, int size), in process(int *, int), etc.

5. (4 pts) Does the following code compile? If so, what is the output.

#include <stdio.h>

int main() {

 int x;

 int *p = &x;

 printf("%d", *p);

 return 0;

}

 Answer: Yes it compiles. Garbage / trash is the output.

 3

6. (4 pts) What will happen when the following code fragment is executed?

 int *y = NULL;

 *y = 5;

 printf("%d\n", *y);

 Answer: Segmentation fault, core dump.

7. (4 pts) Would the following be considered valid pseudocode? Yes/No answer without explanation will receive no

credit.

a. Read two values

b. Add two values and store result in x

c. printf(“%d”, x);

 Answer: No, it makes reference to printf that is unique to C.

8. (4 pts) When we read a string using scanf:

a. scanf makes sure it can fit the string in the provided string variable.

b. Adds a null character at the end of the string variable.

c. Adds a newline character at the end of the string variable.

d. None of the above.

 Answer: b.

9. (8 pts) What is the output of the following program?

#include <stdio.h>

#include <string.h>

#define MAX 80

int main() {

 char n1[MAX + 1] = "Terps", n2[MAX + 1] = "Terps";

 printf("Val %d\n", strcmp(n1, n2));

 printf("Val2 %d\n", strlen(n1));

 return 0;

}

 Answer:

 Val 0

 Val2 5

 4

Problem #2 (Memory Map)

Draw a memory map to the right of the following program that shows the values of variables when execution has reached

the point indicated by /* HERE */.

#include <stdio.h>

#define MAX 4

void process(int src[], int value, int *par) {

 src[1] = 70;

 value = 311;

 *(par + 1) = 200;

 par = NULL;

 /* HERE */

}

int main() {

 int data[MAX] = { 89, 4, 5 };

 int size = MAX, i;

 process(data, size, data + 1);

 for (i = 0; i < size; i++) {

 printf("%d\n", data[i]);

 }

 return 0;

}

Answer:

89 70 200 0

src

size value

par

311

NULL

4 Trash

i

data

 5

Problem #3 (Arrays)

Implement a function named rotate_right_once that rotates the elements of an array one position to the right moving the

rightmost element to the first array position. For this problem:

 You will lose significant credit if you declare a new array in the function.

 The function will not perform any computation if src is NULL or src_length is less than 1.

 Below we have provided an example of using the function you are expected to implement. Notice we rely on the

function print_array which you do not need to implement.

int main() {

 int src[] = {7, 3, 10, 12, 19}, length = 5;

 print_array(src, length);

 rotate_right_once(src, length);

 print_array(src, length);

 return 0;

}

% a.out

Array: 7 3 10 12 19

Array: 19 7 3 10 12

%

Answer:

void rotate_right_once(int src[], int src_length) {

 if (src != NULL && src_length >= 1) {

 int temp = src[src_length - 1], i;

 for (i = src_length - 1; i >= 1; i--) {

 src[i] = src[i - 1];

 }

 src[0] = temp;

 }

}

 6

Problem #4 (Loops)

Implement a function named draw_diagram (see prototype on the next page) that creates a triangle of a specified size

using two characters. For this problem:

 The triangle to display is left-justified, that is, printing of characters starts on the leftmost column.

 The size parameter represents how many lines will be associated with the rectangle.

 The character to use for a particular line must be randomly selected and must be either first_char or second_char

(those are parameters). Use the rand() function to randomly select a character to use.

 The function will use the count parameter to return the total number of first_char characters that were displayed.

 The function will return 0 and perform no computation if size is less than 1 or if first_char is equal to

second_char; otherwise the function will return 1.

 Below we have provided an example of using the function you are expected to implement.

 int main() {

 int count;

 draw_diagram(5, '*', '%', &count);

 printf("First Count: %d\n", count);

 draw_diagram(6, '@', '9', &count);

 printf("Second Count: %d\n", count);

 return 0;

}

% a.out

*

%%

First Count: 13

@

99

999

@@@@

@@@@@

999999

Second Count: 10

%

Answer:

int draw_diagram(int size, char first_char, char second_char, int *count) {

 int row, col;

 char to_print;

 if (size < 1 || (first_char == second_char)) {

 return 0;

 }

 *count = 0;

 for(row = 1; row <= size; row++) {

 to_print = rand() % 2 ? first_char : second_char;

 for (col = 1; col <= row; col++) {

 printf("%c", to_print);

 if (to_print == first_char) {

 (*count)++;

 }

 }

 printf("\n");

 }

 return 1;

}

