
 1

University of Maryland College Park
Dept of Computer Science

CMSC106 Fall 2012
Midterm III Key

Last Name (PRINT): ___

First Name (PRINT): ___

University Directory ID (e.g., umcpturtle)_____________________________________

I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Your signature: ___

Instructions

Ø Make sure you write your name now (we will not wait for you at the end).
Ø This exam is a closed-book and closed-notes exam.
Ø Total point value is 100 points.
Ø The exam is a 50 minutes exam.
Ø Please use a pencil to complete the exam.
Ø WRITE NEATLY.
Ø You don’t need to use meaningful variable names; however, we expect good indentation.

Grader Use Only

#1 Problem 1 (Miscellaneous) (14)

#2 Problem 2 (Memory Map) (16)

#3 Problem 3 (Arrays) (30)

#4 Problem 4 (Strings) (20)

#5 Problem 5 (Arrays) (20)

Total Total (100) (100)

 2

Problem #1 (14 pts)

1. (2 pts) Is the following assignment valid? Briefly explain.

int b[3];
b = NULL;

Answer: Invalid. You cannot change a constant pointer.

2. (2 pts) Would the following code compile? If not, indicate why.

int main() {
 int a[] = {10, 20, 40};
 int *p;

 p = a + a;
 printf("%d\n", *p);

 return 0;
}

Answer: It will not compile. Addition of pointers is not valid.

3. (2 pts) Is every character array a string? Briefly explain.

Answer: No. If there is no \0 marking the end it is not a string.

4. (2 pts) Does a “b” (double quotes) occupy more space in memory than ‘b’ (single quotes)? Briefly explain.

Answer: Yes, it occupies more (1 byte for b, 1 byte for \0)

5. (2 pts) Is every string a character array? Briefly explain.

Answer: Yes. A string is defined as a character array ended with \0.

6. (2 pts) Complete the following directive so we can use the string library.

#include <

Answer: string.h

7. (2 pts) Which values are returned by the strcmp function?

Answer: 0 if the two strings are the same, negative value if first string precedes the second, and positive
otherwise.

 3

Problem #2 (16 pts)

Draw a memory map to the right of the following program that shows the values of variables when execution
has reached the point indicated by /* HERE */.

#define LENGTH 4
void process(int m[]) {
 int *k = m;
 int w;

 m += 2;
 *m += 1000;
 m++;
 *m += 3000;
 w = m - k;
 m = NULL;
 /* HERE */
}

int main() {
 int c[LENGTH] = {2, 6, 7, 10};
 int d[LENGTH] = {0};
 int *q, idx = 0;

 q = c;
 while (*q != 10) {
 d[idx] = *q;
 idx++;
 q = q + 1;
 }

 process(d);

 return 0;
}

NULL

q

c

d

m

k

3

idx

3

w

2 6 1007 3000

2 6 7 10

 4

Problem #3 (30 pts)

Implement a function called rotate_left that rotates an array n times to the left. Elements will appear on the
right side of the array as they are rotated. For example, rotating [10, 3, 7] 2 times generates [7, 10, 3].

Answer:

void rotate_left(int *array, int n, int array_length) {
 int rotation, saved, i;

 for (rotation = 1; rotation <= n; rotation++) {
 saved = array[0];
 for (i = 1; i < array_length; i++) {
 array[i - 1] = array[i];
 }
 array[array_length - 1] = saved;
 }
}

 5

Problem #4 (20 pts)

Implement a function called create_official_name that takes a first name and a last name, and generates an
official name by creating a string with the last name, a comma, and the first name. The function will return -1
if either the first or last name (or both) are NULL, and 1 otherwise. You may not use loops in order to
implement this function. If you use loops you will lose significant credit. Below we have provided an example
that relies on this function.

 char official[81];
 printf("%d\n", create_official_name("Tom", "Smith", official));
 printf("%s\n", official);

Output

1
Smith,Tom

Answer:

int create_official_name(const char *first_name, const char *last_name,
 char *official_name) {
 if (first_name == NULL || last_name == NULL) {
 return -1;
 } else {
 strcpy(official_name, last_name);
 official_name[strlen(last_name)] = ',';
 strcpy(official_name + strlen(last_name) + 1, first_name);
 return 1;
 }

}

 6

Problem #5 (20 pts)

Implement a function called same_elements that returns 1 if two arrays have the same number of elements and
the same elements (no matter the order) and 0 otherwise. Below we present examples of the results we expect
for different arrays.

[10, 3, 7] and [3, 7, 10] à 1 [10, 3, 7] and [3, 7] à 0
[10, 3, 7] and [10, 3] à 0 [10, 3, 7] and [7, 3, 10] à 1

Answer:

int same_elements(int *a, int a_length, int *b, int b_length) {
 int outer, inner;
 if (a_length != b_length) {
 return -1;
 }
 for (outer = 0; outer < a_length; outer++) {
 for (inner = 0; inner < b_length; inner++) {
 if (a[outer] == b[inner]) {
 break;
 }
 }
 if (inner == b_length) {
 return 0;
 }
 }
 return 1;
}

