
 1

University of Maryland College Park
Dept of Computer Science

CMSC106 Fall 2012
Midterm IIKey

Last Name (PRINT): ___

First Name (PRINT): ___

University Directory ID (e.g., umcpturtle)_____________________________________

I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Your signature: ___

Instructions

Ø Make sure you write your name now (we will not wait for you at the end).
Ø This exam is a closed-book and closed-notes exam.
Ø Total point value is 200 points.
Ø The exam is a 50 minutes exam.
Ø Please use a pencil to complete the exam.
Ø WRITE NEATLY.
Ø You don’t need to use meaningful variable names; however, we expect good indentation.

Grader Use Only

#1 Problem 1 (Memory Maps) (20)

#2 Problem 2 (Random Values) (15)

#3 Problem 3 (Function and Characters) (15)

#4 Problem 4 (Function andNested Loops) (25)

#5 Problem 5 (Function Pointer Parameters) (25)

Total Total (200) (200)

 2

Problem #1 (20 pts)

1. (4 pts) Draw the memory organization map discussed in lecture. Hint: it has two main components.

Answer:

Grading:

The drawing must have a stack (left) and heap section (right) ((2 pts) each)

2. (16 pts) To the right of the code, draw a memory map that shows the values that variables have when

execution reaches the point indicated by /* HERE */.

#include <stdio.h>

void f(int a, int b, int *c) {
 int *m = &b;
 a += 3;
 b -= 7;
 *m += 2;
 printf("%d %d %d\n", a, b, *m);
 *c += 1000;
 c = NULL;
 /* HERE */
}

int main() {
 int x = 5, y = 20, d = 70;
 int *p = &d;

 f(x, y, p);
 printf("%d %d %d\n", x, y, *p);

 return 0;
}

heap

stack
k

 5

x y d p

 20 1070

 8

a

 15

b

 NULL

c

m

 3

Problem #2 (15 pts)

Implement a function call random_value that returns a random value between lower_limit(inclusive) and
upper_limit(inclusive). Remember you can get random numbers using the function rand().

Answer:

int random_value(int lower_limit, int upper_limit) {
 int range_size = (upper_limit - lower_limit) + 1;
 int value = (rand() % range_size) + lower_limit;
 return value;
}

Problem #3 (15 pts)

Implement a function call find_type that returns 1 if the parameter is an uppercase character; 2, if it is a
lowercase character; and 3 for any other kind of character. Remember that uppercase characters are in the range
65 to 90, and lowercase characters are in the range 97 to 122. You may NOT use functions islower nor
isupper to implement this function.

Answer:

int find_type(char ch) {
 if (ch >= 65 && ch <= 90)
 return 1;
 else if (ch >= 97 && ch <= 122)
 return 2;
 else
 return 3;

Problem #4 (25 pts)

Implement a function called draw_rectangle that generates a rectangle with the specified width and height and
using the character ch. For example, calling draw_rectangle(4, 9, '*') will generate:

Remember, your function must work for any dimensions and for any character.

Answer:

void draw_rectangle(int width, int length, char ch) {
 int row, col;
 for (row = 0; row < width; row++) {
 for (col = 0; col < length; col++) {
 printf("%c", ch);
 }
 printf("\n");
 }
}

 4

Problem #5 (25 pts)

Implement a function called sum_and_product that computes the sum and product of values between 1 and the
limit value provided. The sum and product will be returned using the pointer parameters. For example:

 int limit = 4, sum, prod;
 sum_and_product(&sum, &prod, limit);
 printf("sum: %d, prod: %d\n", sum, prod);

will generate the output:

 sum: 10, prod: 24

Answer:

void sum_and_product(int *sum, int *prod, int limit) {
 int i;

 *sum = 0;
 *prod = 1;
 for (i = 1; i <= limit; i++) {
 *sum += i;
 *prod *= i;
 }
}

