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Abstract 

This paper examines computational relationships between mind and body and 

distinguishes thinking about the world from thinking about thinking. The discussion is 

grounded within the framework of a preliminary computational architecture that 

proposes an integration of action and perception with cognition and metacognition. We 

describe the architectural components and discuss the relationship between the meta-

level, object level, and ground level. To make this concrete we provide an extended 

example along with some implemented details. 

1 Introduction 

Ever since McCarthy originally described the concept of a computer advice taker (McCarthy, 

1958), many research projects have embraced the goal of implementing persistent agents that co-exist 

with people over extended time spans. These agents take various forms including autobiographical 

agents that have a memory of their own experiences (e.g., Dautenhahn, 1998; Derbinsky & Laird, 

2010), social agents that interact and cooperate with humans and other agents (e.g., Breazeal & 

Scassellati, 1999), and developmental cognitive robots that learn over time (e.g., Weng et al., 2001). 

Researchers have approached the goal in various ways resulting in theories of human-level 

intelligence (Cassimatis & Winston, 2004) and artificial general intelligence (Wang & Goertzel, 

2012). But currently no research effort has produced a fully robust solution for open worlds and 

dynamic environments.  

Cox (2007) suggests the reason progress on these fronts is difficult is that, despite advances in 

cognitive systems, few have attempted a full integration of action and perception with both cognition 

and metacognition. We call such reasoning systems perpetual self-aware cognitive agents. Novel 

implementations exist and have made progress including CogAff (Sloman, 2011), Companion 

Cognitive Systems (Forbus, Klenk, & Hinrichs, 2009), DIARC (Krause, Schermerhorn, & Scheutz, 

2012), EM-One (Singh, 2005), EPILOG (Morbini & Schubert, 2011), INTRO (Cox, 2007), and MCL 

(Anderson, Oates, Chong, & Perlis, 2006; Schmill et al, 2011). But for practical reasons, most 

projects emphasize the interaction of at most two of these levels (e.g., the relationship between action 

and cognition) rather than all three.  

This paper examines a cognitive architecture called MIDCA that proposes a computational 

integration of these three levels. In the next section, we describe MIDCA’s basic components 
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followed by a discussion of the relationship between the meta-level and object level. To make this 

concrete we include an example and then provide further implemented details. We conclude with a 

brief summary. 

2 The MIDCA Architecture 

Computational metacognition distinguishes reasoning about reasoning from reasoning about the 

world (Cox, 2005). As such this assumes a functional approach to philosophy of mind (e.g., Fodor, 

1975; Putnam, 1965; Scheutz, 2003). As shown in Figure 1, the Metacognitive, Integrated, Dual-

Cycle Architecture (MIDCA) (Cox, Oates, & Perlis, 2011) consists of “action-perception” cycles at 

both the cognitive (i.e., object) level and the metacognitive (i.e., meta-) level. The output side of each 

cycle consists of intention, planning, and action execution, whereas the input side consists of 

perception, interpretation, and goal evaluation. A cycle selects a goal and commits to achieving it. The 

agent then creates a plan to achieve the goal and subsequently executes the planned actions to make 

the domain match the goal state. The agent perceives changes to the environment resulting from the 

actions, interprets the percepts with respect to the plan, and evaluates the interpretation with respect to 

the goal. At the object level, the cycle achieves goals that change the environment (i.e., ground level). 

At the meta-level, the cycle achieves goals that change the object level. That is, the metacognitive 

“perception” components introspectively monitor the processes and mental state changes at the 

cognitive level. The “action” component consists of a meta-level controller that mediates reasoning 

over an abstract representation of the object level cognition.  

Furthermore, and unlike most cognitive theories, our treatment of goals is dynamic. That is, goals 

are malleable and are subject to transformation and abandonment (Cox & Veloso, 1998; 

Talamadupula, et al., 2010). Figure 1 shows goal change at both the object level and meta-level as the 

reflexive loops from goals to themselves. Goals also arise from sub-goaling on unsatisfied 

preconditions during planning (the thin black back-pointing arrows on the left of both cycles). Finally 

new goals arise as MIDCA detects discrepancies between observations and its expectations. It 

explains what causes the discrepancy, and generates a new goal to remove the cause (Cox, 2007). This 

type of operation is called goal insertion and is a function of interpretation (see the thin, black arrows 

on the right).  

Goal insertion is a fundamental process in MIDCA and occurs at both the object level and meta-

level. At the object level, perception provides observations, and plans from memory provide the 

expectations. The interpretation process detects discrepancies when observations conflict with 

expectations. The interpretation process will then explain what caused the discrepancy and will 

generate a new goal. At the meta-level, monitoring provides the observation (a trace of processing at 

the object level), and a self-model provides the expectations. Like the object level interpretation 

process, metacognitive interpretation produces an explanation of why the object-level reasoning fails, 

and it uses the explanation to generate a learning goal to change the knowledge or reasoning 

parameters of the object level (Cox & Ram, 1999). 

Memory plays a central function in both cognitive and metacognitive processes. Thus, our model 

includes memory, and all cognitive and metacognitive processes have access to it. Note that although 

memory is shown as separated into two parts, this is an artifact of the split diagram. For example both 

the object level and the meta-level can access episodic memory. Memory has both declarative 

knowledge structures represented with indexed frame-based schemas (see Lee & Cox, 2002) and 

implicit knowledge contained in distributed representations such as GNG nets (see Shamwell, et al., 

2012).  



 

 
Figure 1. Metacognitive, Integrated, Dual-Cycle Architecture 

3 Interaction between Meta and Object Level reasoning 

The meta-level can affect the object level in two ways. First the meta-level can act as an executive 

similar to that of the CLARION cognitive architecture (Sun, Zhang, & Mathews, 2006): deciding 

between object level parameters; allocating resources between competing object level processes; and 

setting priorities on object level goals. A qualitatively different approach is for the meta-level to 

change the structure and content of (object level) reasoning. That is, the meta-level reasoner can 

change the content of goals, processes, input, or knowledge to orchestrate the object level.1  

To appreciate the distinctions in the relationship between levels, consider the finer details of the 

object level as shown in Figure 2. Here the meta-level executive function manages the goal set 𝒢. In 

this capacity, the meta-level can add initial goals (𝑔0), subgoals (𝑔𝑠) or new goals (𝑔𝑛) to the set, can 

change goal priorities, or can change a particular goal (∆𝑔). In problem solving, the Intend 

component commits to a current goal (𝑔𝑐) from those available by creating an intention to perform 

                                                           
1 An existing meta-level implementation we are using in the early stages of development, Meta-AQUA, has performed this 

class of operations. For details concerning representations and algorithms implementing this sequence, see Cox & Ram (1999). 
See Cox (2011) for details of the reasoning-trace representation (i.e., the information passed during metacognitive monitoring). 
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some Task that can achieve the goal (Cohen & Levesque, 1990). The Plan component then generates 

a sequence of Actions (𝑘, e.g., a hierarchical-task-net plan, see Nau, et al., 2001) that instantiates that 

Task given the current model of the world (W*) and its background knowledge (e.g., semantic 

memory and ontologies). The plan is executed by the Act component to change the actual world (W) 

through the effects of the planned Actions (𝑎𝑖). Problem solving stores the goal and plan in memory to 

provide the agent expectations about how the world will change in the future. Then given these 

expectations, the comprehension task is to understand the execution of the plan and its interaction 

with world with respect to the goal so that success occurs.  

 
Figure 2. Object level detail with meta-level goal management shown 

Comprehension starts with perception of the world in the attentional field via the Perceive 

component. The Interpret component takes as input the resulting Percepts (i.e., 𝑝𝑗) and the 

expectations in memory (𝑘 and 𝑔𝑐) to determine whether the agent is making sufficient progress. A 

Note-Assess-Guide (NAG) procedure (Anderson & Perlis, 2005; Perlis, 2011) implements the 

comprehension process. The procedure is to note whether an anomaly has occurred; assess potential 

causes of the anomaly by generating Hypotheses; and guide the system through a response. Responses 

can take various forms, such as (1) test a Hypothesis; (2) ignore and try again; (3) ask for help; or (4) 

insert another goal (𝑔𝑛). Otherwise given no anomaly, the Evaluate component incorporates the 

concepts inferred from the Percepts thereby changing the world model (∆𝑊*), and the cycle 

continues. This cycle of problem-solving and action followed by perception and comprehension 

functions over discrete state and event representations of the environment.  

The meta-level performs similar computations. However instead of manipulating declarative 

representations of ground level states and events, it reasons over traces of object level mental states 

and mental processes. The trace is provided to an introspective monitoring process, and a meta-level 

control process manages the goal set 𝒢. To make this more concrete, we will examine a simple 

notional example.  
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4 Motivational Example: Lost in the jungle 

Consider a delivery task carried out in unfamiliar jungle terrain (see Figure 3). Among its daily 

goals, 𝒢, an agent has the objective to take supplies to a training base from a forward depot using an 

unreliable terrain map. The Intend process chooses from 𝒢 the deliver-supply goal to serve as the 

current goal, 𝑔𝑐, and it selects a Task that achieves the goal and passes it to the Plan component. The 

planner refines the Task and generates a sequence of Actions that constitute the plan 𝑘 consisting of 

loading the supplies, departing the depot, finding the destination, and unloading the supplies when 

there. Now the specific actions in the plan, 𝑎𝑖, are incrementally executed until the agent reaches the 

goal or detects a problem. Actions such as leaving the depot have associated expectations such as 

being out of sight of the depot within fifteen minutes. When the comprehension process detects the 

condition given percepts, 𝑝𝑗, the action is considered completed.  

 
(a)    (b) 

 
(c)    (d) 

Figure 3. Behavioral, cognitive and metacognitive examples: (a) example illustration; (b) 

ground-level success; (c) object level expectation failure; and (d) meta-level expectation failure. 

In a successful plan, the actions achieve conditions in the world necessary for goal achievement. 

As shown in panel (b) of Figure 3, the map showed jungle conditions that set up expectations that 

were confirmed as the plan was executed. When the robot reached the location shown in the red “X,” 

the agent expected jungle and encountered jungle. The Interpret process confirmed these 

expectations, and the agent reached the destination whereby it unloaded the supplies. At this point the 

Evaluate process determines that the goal was achieved and the intention is released. 

Now in panel (c), we see the condition graphically illustrated in panel (a). The robot expects 

jungle and instead observes an open field of grass. This is inconsistent with information on the map, 

and thus constitutes a contradiction anomaly at the object level of reasoning.2 Using the anomaly as a 

cue, the agent retrieves an explanation from memory and applies it to the situation. The agent thereby 

assesses the situation by concluding that it took a wrong turn at the previous intersection. The 

mechanics of this involves reasoning about the action alternatives at the ground level. The planning 

search tree represents various branches of action choices in the path to the destination. The 

                                                           
2 Anomaly types also include impasse, unexpected success, false expectation, and surprise (Cox & Ram, 1999). 
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intersection labeled “Choice Pt” is such a branch point in the search tree. The response is to return to 

the intersection and take the alternative choice of going forward from there to the destination. This 

response is a plan change rather than a goal change.3  

The panel (c) version of the example illustrates the NAG procedure at the object level. Panel (d) is 

a case of a meta-level invocation of the procedure. Here the expectation is that the explanation from 

(c) is correct. However if that was so, then the agent would have been at the destination by now. The 

agent thus concludes that the explanation from (c) is incorrect, and instead the explanation is that the 

expectation from the map (i.e., that the grassy location should be jungle) was incorrect. This conflict 

poses a new contradiction (between explanations) and thus an anomaly in the object level as opposed 

to the ground level. Assessment here involves reasoning about explanation failure. The failure might 

have occurred due to the agent focusing on the wrong aspects of the input and hence a poor focus of 

attention. The response is to alter the agent’s model of itself, concluding that it is not expert enough 

for such tasks and possibly refusing such missions in the future until it possess further experience.  

Currently MIDCA is in a preliminary stage of development, and only parts of this scenario are 

now possible. However many components function as described although not as of yet within an 

integrated whole. The following section identifies some of the implemented parts during a discussion 

of bottom-up and top-down aspects of the architecture.  

5 D-track and K-track Processes in Comprehension 

The NAG procedure at both meta- and object levels has two variations that represent a bottom-up, 

data-driven track and a top-down, knowledge rich, goal-driven track (c.f., CLARION). The data-

driven track we call the D-track; whereas the knowledge rich track we call the K-track. The D-track is 

partially implemented as a Bayesian network of ontologies (Schmill, et al., 2011) and partially by a 

GNG (growing neural gas) network of proto-concepts. The K-track as it currently exists is 

implemented as a case-based explanation process (Cox & Burstein, 2008).  

The representations for expectations significantly differ between the two tracks. K-track 

expectations come from explicit knowledge structures such as action models used for planning and 

ontological conceptual categories used for interpretation. Predicted effects form the expectations in 

the former and attribute constraints constitute expectation in the latter. D-track expectations are 

implicit by contrast. Here the implied expectation is that the probabilistic distribution of observations 

will remain the same. When statistical change occurs instead, an expectation violation is raised.  

The D-track NAG procedure uses a novel approach for noting anomalies. We apply a statistical 

metric called the A-distance to streams of predicate counts in the perceptual input. This enables 

MIDCA to detect regions whose statistical distributions of predicates differ from previously observed 

input (Cox, Oates, Paisner, & Perlis, 2012). These regions are those where change occurs and 

potential problems exist.  

When a change is detected, its severity and type can be determined by reference to a neural 

network in which nodes represent categories of normal and anomalous states. This network is 

generated dynamically with the growing neural gas algorithm (Fritzke, 1995) as the D-track processes 

perceptual input. This process leverages the results of analysis with A-distance to generate anomaly 

archetypes, each of which represents the typical member of a set of similar anomalies the system has 

encountered. When a new state is tagged as anomalous by A-distance, it is associated with one of 

these groups, allowing MIDCA to prioritize explanations and responses that have proven effective 

with past anomalies in the same category. 

                                                           
3 This example does not address goal insertion. This would occur if the agent for example discovered an opponent while 

travelling to the destination. The decision then would be between treating the opponent as a problem or threat to be solved 
(hence goal insertion might generate a goal to counter the opponent) or as an obstacle to avoid.  



 

Response guiding (in terms of goal insertion) is done through a conjunction of two algorithms 

both of which work over predicate representations of the world. Tilde (Blockeel, & De Raedt, 1997) is 

an extension of C4.5, the standard decision tree algorithm, and FOIL (Quinlan, 1990) is a rule 

generation algorithm producing conjunctions of predicates to match a concept reflected in a training 

set. Given a world state interpretation, the state is first classified using Tilde into one of multiple 

scenario classes, where each class has an associated goal generation rule generated by FOIL. Given an 

interpretation and a class, different groundings of the variables of the FOIL rule are permuted through 

until either one is found which satisfies that rule (in which case a goal can be generated) or until all 

permutations of groundings have been attempted (in which case no goal can be generated). This 

approach to goal insertion is naïve in the sense that it constitutes a mapping between world states and 

goals which is static with respect to any context; there is no reasoning in this D-track goal generation 

scheme. 

The K-track NAG procedure is presently under development, and we plan to implement a process 

similar to that used by the Meta-AQUA system (Cox & Ram, 1999) and other case-based 

interpretation systems. In Meta-AQUA frame-based concepts in the semantic ontology provide 

constraints on expected attributes of observed input and on expected results of planned actions. When 

the system encounters states or actions that diverge from these expectations, an anomaly occurs. 

Meta-AQUA then retrieves an explanation-pattern that links the observed anomaly to the reasons and 

causal relationships associated with anomaly. A response is then generated from salient antecedents of 

the instantiated explanation pattern (see Cox, 2007 for details).  

One obvious approach to the interaction between the D-track and K-track would be simply to call 

K-track algorithms only on regions detected by D-track anomaly detection. This would be more 

efficient because the overhead for the K-track method is greater than that of the A-distance method. 

But more nuanced approaches exist. For instance the weight of one procedure over the other may be a 

function of features including resources available and factors such as urgency. Many other issues 

remain to be examined in detail. These include the decision between plan change (as in the jungle 

example) and goal change and the allocation of responsibility for this decision between meta-level 

goal management and the Intend component.  

6 Conclusion 

This paper introduced the MIDCA architecture as a candidate framework for future perpetual self-

aware cognitive agents. Dual cognitive and metacognitive action-perception cycles were described 

and related to an extended notional example. Implementation was distinguished from design goals. 

This work represents a unique effort to implement a full integration of action, perception, cognition, 

and metacognition. 
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