
REFLECTIVE REASONING

Waiyian Chong

2006

TABLE OF CONTENTS

I 5

1 Introduction 6

1.1 Overview . 6

1.2 Seven Days in the Life of a Robotic Agent 9

1.3 Reflection . 12

1.4 Continual Computation . 13

1.5 Bootstrapping Intelligence by Continual Reflection 15

1.6 Towards Bounded Optimal Rationality 17

1.7 Goals and Organization . 19

1.8 Thesis Outline . 20

II 22

2 Reflective Model of Agency 23

2.1 Overview . 23

2.2 Premises and Goals . 24

2.3 Notations . 27

2.3.1 Basic syntax . 27

2.3.2 Quote, Quasi-quote and Anti-quote 29

1

2.3.3 Terminology . 30

2.4 Architecture . 32

2.5 Conclusions . 35

3 Conversational Agent for Meta Dialog 36

3.1 Overview . 36

3.2 Background . 37

3.2.1 Dialogue Analysis Survey 38

3.3 Instructible Agent . 42

3.3.1 Design Goals . 42

3.3.2 Methodology . 43

3.3.3 Case Studies in Windows Management 45

3.3.4 Implementation . 45

3.3.5 Example . 46

3.3.6 Future Work . 47

3.4 Related Work . 49

3.4.1 SHRDLU . 49

III 52

4 Reinforcement Learning and Bounded Optimality 53

4.1 Overview . 53

4.2 Toroidal Grid World . 54

4.3 Markov Decision Process . 55

4.4 Knowledge Acquisition Modes . 56

4.5 Reinforcement Learning . 57

2

4.6 Incomplete Information . 60

4.7 Partially Observable Markov Decisions Processes 61

4.8 Bounded Optimal Rationality . 63

4.9 Non-stationary Environment . 65

4.10 Intelligence in General . 65

4.11 Discussion . 68

4.12 Conclusions . 68

5 Reflective Reinforcement Learning 70

5.1 Overview . 70

5.2 Problem Setting . 72

5.3 Reflective Reinforcement . 72

5.3.1 Algorithm . 73

5.3.2 Remarks . 74

5.4 Implementation . 76

5.4.1 Protocol . 76

5.5 Toroidal Grid World . 77

5.5.1 “Physics” of the World . 77

5.5.2 Experiment Settings . 79

5.5.3 Deterministic Stationary Environment (k0) 82

5.5.4 Non-deterministic Stationary Environment (k1) 83

5.5.5 Non-stationary Environment (k2) 93

5.6 Other Experiments . 97

5.6.1 John Muir Trail . 97

5.6.2 Partially Observable Pole Balancing 97

5.7 Summary . 99

3

5.8 Related Work . 100

5.9 Conclusions and Further Work . 101

IV 103

6 Conclusions 104

6.1 Overview . 104

6.2 To the Future . 105

4

Part I

5

Chapter 1

Introduction

1.1 Overview

A unifying theme of AI research is the design of an architecture for allowing an

intelligent agent to operate in a common sense informatic situation [McCarthy,

1989], where the agent’s perception (hence its knowledge about the world) is

incomplete, uncertain and subject to change; and the effects of its actions are

indeterministic and unreliable. There are many reasons (e.g., scientific, philo-

sophical, practical) to study intelligent agent architecture; for our purposes, we

will define our goal as to improve the performance of the agent, where perfor-

mance is in turn defined as resources (time, energy, etc) spent in completing given

tasks. We are interested in the question “What is the best strategy to build an

agent which can perform competently in a common sense informatic situation?”

It is clear that it will be impractical for the designer of the agent to anticipate

everything it may encounter in such a situation; hence, it is essential that some

routes of self-improvement be provided for the agent if it is to attain a reasonable

level of autonomy. What should we provide to the architecture to open these

routes?

6

For an agent to function competently in commonsense world, we can ex-

pect the underlying architecture to be highly complex. Careful attention will

be needed for the design process, as well as the designed artifact, to ensure suc-

cess. We identify the following requirements: (i) In addition to fine-tuning of

specialized modules the agent might have, more fundamental aspects of the ar-

chitecture should be open to self-improvement. For example, an agent designed

to interact with people may have a face recognition module; a learning algorithm

to improve its face recognition accuracy is of course desirable, but it is not likely

to be helpful for the agent to cope with unexpected changes in the world—for

that, the agent may need to reorganize its modules, revise or even completely

replace its decision procedure, etc. (ii) Improvements need to be made reason-

ably efficiently. It’s said that a roomful of monkeys typing away diligently at

their keyboards will eventually produce the complete works of Shakespeare; in

the same vein, we can imagine a genetic algorithm, given enough time and input,

can evolve a sentient being, but the time it takes will likely be too long for us

to withstand. (iii) Somewhat related to the previous two points, it is important

to stress that the improvements made be transparent to us so that we can incre-

mentally provide more detailed knowledge and guidance when necessary to speed

up the improvements.

To build an intelligent agent, lessons learned by builders of other sophisticated

systems might be instructive: in particular, the technique of bootstrapping is of

relevance. The bootstrapping technique has been widely employed in the process

of building highly complex systems, such as microprocessors, language compilers,

and computer operating systems. It could play an even more prominent role

in the creation of computation systems capable of supporting intelligent agent

7

behaviors, because of the even higher level of complexity. Typically in a boot-

strapping process, a lower-level infrastructural system is first built “by hand”;

the complete system is then built, within the system itself, utilizing the more

powerful constructs provided by the infrastructure. Hence, it provides benefits

in the ways of saving effort as well as managing complexity.

Ideally, as designers of the agent, we’d like to push as much work as possible

to be automated and carried out by computer. There is no doubt that the study

of specialized algorithms has been making great contributions to the realization

of intelligent agency; however, we think that the study of bootstrapping behavior

may be a more economical way to achieve that goal. Instead of designing the

specialized modules ourselves, we should instead look for way to provide the

infrastructure on which agents can discover and devise the modules themselves.

A few questions need to be addressed before we can apply a bootstrapping

approach: What constructs are needed in the infrastructure to support the boot-

strapping of intelligence? How should they be combined? How should they

operate? More generally, if we leave alone a robot agent in a reasonably rich

environment for a long period of time, what will enable the robot to evolve it-

self into a more competitive agent? How do we provide a path for the agent to

improve itself? We think an example will help us to answer the questions! In

the next section, we will tell the story of a office robot to show the importance

and desirability of self-improving capability in an artificial agent. In light of the

typical problems that a robot may encounter in the real world, the following two

sections (Sec 1.3 and Sec 1.4) present a more detailed account of two key ideas:

reflection and continual computation, which we think are essential to the success

of the robot, and argue that the uniformity and expressiveness of a logic-based

8

system can facilitate the implementation of complex agency.

1.2 Seven Days in the Life of a Robotic Agent

Let us consider an imaginary “office robot”, who roams the Computer Science

office building delivering documents, coffee, etc. and was endowed at birth with

the desire to make people happy. We will see how it developed into an effective

robot through its first week of work.

1st day: The robot was first given a tour of the building. Among other things,

it was shown the power outlets scattered around the building so that it could

recharge itself.

2nd day: The morning went well: the robot delivered everything on target.

But during the afternoon it ran into a problem: it found itself unable to move!

The problem was soon diagnosed — it was simply a case of low battery. (Since

thinking draws less energy than moving, the robot could still think.) It turned

out that although it knew it needed power to operate and it could recharge itself

to restore its battery, it had never occurred to the robot that, it would need to

reach an outlet before the power went too low for it to move! 1 The movement

failure triggered the robot to derive the above conclusion, but it was too late;

the robot was stuck, and could not deliver coffee on request. Caffeine deprived

computer scientists are not happy human beings; the robot had a bad day.

3rd day: The robot was bailed out of the predicament by its supervisor in the

morning. Having learned its lesson, it decided to find an outlet a few minutes

before the battery got too low. Unfortunately, optimal route planning for robot

1Counter to traditional supposition that all derivable formulas are already present in the

system.

9

navigation is an NP-complete problem. When the robot finally found an optimal

path to the nearest power outlet, its battery level was well below what it needed

to move, and it was stuck again. Since there was nothing else it could do, the

robot decided to surf the web (through the wireless network!), and came upon an

interesting article titled “Deadline-Coupled Real-time Planning” [Nirkhe et al.,

1997].

4th day: After reading the paper, the robot understood that planning takes time,

and that it couldn’t afford to find an optimal plan when its action is time critical.

The robot decided to quickly pick the outlet in sight when its battery was low.

Unfortunately, the outlet happened to be too far away, and the robot ran out of

power again before reaching it. In fact, there was a closer outlet just around the

corner; but since a non-optimal algorithm was used, the robot missed it. Again,

stuck with nothing else to do, the robot kicked into the “meditation” mode where

it called the Automated Discovery (AD) module to draw new conclusions based

on the facts it accumulated these few days. The robot made some interesting

discoveries: upon inspecting the history of its observations and reasonings, the

robot found that there were only a few places it frequented; it could actually

precompute the optimal routes from those places to the nearest outlets. The

robot spent all night computing those routes.

5th day: This morning, The robot AD module derived an interesting theorem:

“if the battery power level is above 97% of capacity when the robot starts (and

nothing bad happened along the way), it can reach an outlet before the power

is exhausted.” It didn’t get stuck that day. But people found the robot to be

not very responsive. Later, it was found that the robot spent most of its time

around the outlets recharging itself — since the robot’s power level dropped 3%

10

for every 10 minutes, the theorem above led it to conclude that it needed to go

to the outlet every 10 minutes.

6th day: After the robot’s routine introspection before work, it was revealed that

the knowledge base was populated with millions of theorems similar to the one it

found the day before, but with the power level at 11%, 12%, ..., and so on. In fact,

the theorem is true when the power level is above 10% of capacity. Luckily, there

was a meta-rule in the robot’s knowledge base saying that “a theorem subsumed

by another is less interesting.” Thus all the theorems with parameter above 10%

were discarded. Equipped with this newer, more accurate information, the robot

concluded that it could get away with recharging itself every 5 hours.

7th day: That happened to be Sunday. Nobody was coming to the office. The

robot spent its day contemplating the meaning of life.

Analyzing the behavior of the robot, we can see a few mechanisms at play:

in addition to the basic deductive reasoning, goal directed behavior, etc., the

robot also demonstrates capabilities such as abductive reasoning (diagnoses of

failures), explanation-based learning (compilation of navigation rules, derivation

of recharging rules), reflection (examining and reasoning about its power reading,

revision of recharging rule), and time-sensitivity (understanding that delibera-

tions take time, people don’t like waiting, etc). Of course, none of these is new

in itself; however, the interactions among them has enabled the robot to demon-

strate remarkable flexibility and adaptivity in a ill-anticipated (by the designer

of the robot) and changing world. Below, we will elaborate on the reflective

capability and the continual aspect of the agent’s operations.

11

1.3 Reflection

As noted earlier, a computational system is said to be reflective when it is itself

part of its own domain (and in a causally connected way). More precisely, this

implies that (i) the system has an internal representation of itself, and (ii) the

system can engage in both “normal” computation about the external domain and

“reflective” computation about itself [Maes, 1988]. Hence, reflection can provide

a principled mechanism for the system to modify itself in a profound way.

We suggest that a useful strategy for a self-improving system is to use re-

flection in the service of self-training. Just as a human agent might deliberately

practice a useful task, increasing her efficiency until (as we say) it can be done

“unconsciously” or “automatically”, without explicit reasoning, we think that

once a reflective system identifies an algorithm or other method for solving a

frequently encountered problem, it should be able to create procedural modules

to implement the chosen strategy, so as to be able in the future to accomplish its

task(s) more efficiently, without fully engaging its (slow and expensive) common-

sense reasoning abilities.

Although reflection sounds attractive, it has largely been ignored by re-

searchers of agent architecture, mainly because of the high computation com-

plexity that can be involved in doing reflective reasoning [Anderson and Perlis,

2005]. However, we think the solution to the problem is not by avoiding reflection,

but looking at the larger picture and considering the environment and extent in

which an agent operates, and finding way to reap the benefits of reflection with-

out being bogged down by its cost. We think the notion of continual computation

is a promising venue for reflection to become useful.

12

1.4 Continual Computation

Any newcomer to the field of Artificial Intelligence (AI) will soon find out that,

almost without exception, all “interesting” problems are NP-hard. When a com-

puter scientist is confronted with a hard problem, there are several options to

deal with it. For example, one can simplify the problem by assuming it occurs

only under certain conditions (which are not always realistic) and hoping bad

cases don’t happen frequently. One can also identify a simpler subproblem so

that it can be solved algorithmically and automated, and leave the hard part for

the human. Another option is for the scientist to study the problem carefully,

derive some heuristics, and hope that they will be adequate most of the time.

But none of these is quite satisfying: ideally, we would like the computer to do as

much work for us as possible, and hopefully, be able to derive the heuristics by

itself. A promising approach toward realizing this ideal is the notion of continual

computation [Horvitz, 1997].

The main motivation behind continual computation is to exploit the idle

time of a computation system. As exemplified by usage patterns of desktop

computers, workstations, web-servers, etc. of today, most computer systems are

under utilized: in typical use of these systems, relatively long spans of inactivity

are interrupted with bursts of computationally intensive tasks, where the systems

are taxed to their limits. How can we make use of idle time to help improve

performance during critical time?

Continual computation generalizes the definition of a problem to encompass

the uncertain stream of challenges faced over time. One way to analyze this prob-

lem is to put it into the framework of probability and utility, or more generally,

rational decision making:

13

Policies for guiding the precomputation and caching of complete

or partial solutions of potential future problems are targeted at en-

hancing the expected value of future behavior. The policies can be

harnessed to allocate periods of time traditionally viewed as idle time

between problems, as well as to consider the value of redirecting re-

sources that might typically be allocated to solving a definite, current

problem to the precomputation of responses to potential future chal-

lenges under uncertainty[Horvitz, 2001].

An implicit assumption of the utility-based work in continual computation is that

the future is somehow predictable. But in many cases, this cannot be expected.

For example, for long term planning, most statistics will probably lose their

significance. Here is a place where logic-based systems with the capability to

derive or discover theorems on its own (e.g., Lenat’s AM system [Lenat, 1982])

can play a complementary role, similar to the way that mathematics plays a

complementary role to engineering. Just as mathematicians usually do not rely

on immediate reward to guide their research (yet discover theorems of utmost

utility), AM can function in a way independent of the immediate utility of its

work.

More precisely, if we adopt logic as our base for computation and look at

problem solving as theorem proving [Bibel, 1997], a system capable of discovering

new theorems can become a very attractive model of a continual computation

system. In such a system, every newly discovered theorem has the potential of

simplifying the proof of a future theorem; so in essence, theorems become our

universal format for caching the results of precomputation and partial solutions

to problems.

14

A simplistic embodiment of the model can just be a forward chaining system

capable of combining facts in its database to produce new theorems using modus

ponens, for instance. Such a system is not likely to be very useful, however,

because it will spend most of its time deriving uninteresting theorems. So the

success of this model of continual computation will hinge on whether we can

find meaningful criteria for the “interestingness” of a theorem. In the classical

AM [Lenat, 1982, 1983, Lenat and Brown, 1984], the system relies largely on

human judgment to determine interestingness. In a survey of several automated

discovery programs, Colton and Bundy [Colton and Bundy, 1999] identify several

properties of concepts which seem to be relevant to their interestingness, such as

novelty, surprisingness, understandability, existence of models and possibly true

conjectures about them. Although these properties seem plausible, it is not

obvious they are precise enough to be operational to guide automated discovery

programs toward significant results.

1.5 Bootstrapping Intelligence by Continual Reflection

Hence, on the one hand, we have these intervals of idleness in a long-running agent

process we don’t quite know how to make use of; on the other hand, we have this

notion of reflective computation which promises radical adaptivity, but has been

hampered by the excessive computation resource requirement. We think it would

be intriguing to combine the two concepts and arrive at an agent architecture

which will continually reflect on its own working and find ways to improve itself

when it is idle, or has nothing better to do.

It probably would not be too challenging a task to design a robot capable

of displaying the self-improving behaviors described above using conventional

15

machine learning methods, provided that the needs for, or directions of, improve-

ments are known at design time. But for truly complex and dynamic environ-

ments, it is seldom possible, nor desirable, to anticipate every need and exception

situation. The complexity of an agent which can perform well in such environ-

ment will be so high that most probably it will exceed the comprehension of

human mind; it will be an impossible task to devise and keep track of each detail

“manually”. To keep this complexity under control, it is critical that we muster

as much help as we can get from the computer, or the agent itself. Thus, we

think the right way to go in agent design is to identify a core infrastructure with

enough foundation mechanisms for seeding a self-bootstrapping process, so that

we can just say, “improve yourself”, and the agent will be able to “derive” a

method of improvement (which might well be one of the known machine learning

paradigms) for any deficiency it detects. We believe only an agent capable of

continual reflection will be able to make the radical adaptations needed for it to

address any unexpected shortcoming of its (original) design, and thus attain true

intelligence.

The so called No Free Lunch Theorem [Wolpert and Macready, 1997] states

that “all algorithms that search for an extremum of a cost function perform

exactly the same, when averaged over all possible cost functions.” In other words,

without domain specific structural assumptions of the problem, no algorithm can

be expected to perform better on average than simple blind search. This result

appears to be a cause for pessimism for researchers hoping to devise domain-

independent methods to improve problem solving performance. But on the other

hand, this theorem also provides a compelling reason for embracing the notion of

continual computation, which can be seen as a way to exploit domain dependent

16

information in a domain independent way.

1.6 Towards Bounded Optimal Rationality

The secret of survival is: Always expect the unexpected.

— Dr. Who

Is it possible to ask an agent, “improve thyself”, without giving it any further

direction on what to improve, what function to optimize, or any specific evalu-

ation function? In other words, can we design an agent that can adapt to new

environments and situations, not anticipated by us, the designers? A key to such

an agent is the identification of a general, abstract performance metric. Some

think “being rational” is such a metric.

An agent is rational if its behavior is consistent with its goal; more precisely,

the actions it takes maximize the probability of its goal being achieved. However,

the notion of rationality doesn’t directly provide guidance to implementation of

a rational agent, since it is computationally unrealizable: finding the best action

is usually very expensive, and in most circumstances, when the agent finally (if

at all) computes the “best” action, the environment will have changed so much

that the action becomes suboptimal.

The notion of bounded optimal rationality overcomes this problem by taking

the finiteness of computational resources (time, memory spaces, etc) into account.

Russell [Russell and Subramanian, 1995] provides the following definition:

Define f = Agent(l, M) to be an agent function implemented by the

program l running on machine M . Then the bounded optimal pro-

17

gram lopt is defined by

lopt = argmaxl∈LM
V (Agent(l, M),E, U)

where LM is the finite set of all programs that can be run on M ;

E is the environment in which the agent is to operate, and U is the

performance measure which evaluates the sequence of states through

which the agent drives the actual environment; V (f,E, U) denotes

the expected value according to U obtained by agent function f in

environment class E, which is assumed to be a probability distribution

over elements of E.

As we can see, the bounded optimal agent is dependent on the machine,

the environment and the utility function. This is perhaps not surprising, since

intuitively, an agent specially trained to a specific environment will perform better

than others.

Consider the function

g(M, E, U) = argmaxl∈LM
V (Agent(l, M),E, U)

This function, when given specifications of a machine, an environment and a

utility function, produces a program for the machine that is bounded optimal in

the environment. It is obvious this function will be very expensive to compute:

actually, the function can be considered the holy-grail of Artificial Intelligence,

or the ultimate programmer. An agent with access to this function will be able

to adapt to every environment — provided the adaptation can be made in time.

Our hypothesis is, the equivalence of telling an agent to improve itself will be

the encoding of some relaxation of this function into the belief-base of the agent.

18

The agent model developed in Chapter 2 was partly motivated by attempt at

this.

1.7 Goals and Organization

Two principal goals motivated this work when it was initiated several years ago: I

had the hope that a single reflection model of agency could be designed to serve as

foundation for (1) practical applications, e.g., in modeling a conversational agent,

and (2) theoretical investigation of methods to approximate bounded optimal

rationality [Russell, 1997].

In particular, I began this research in the hopes of proving a general conver-

gence theorem, along the lines of the convergence theorem for Q-learning, but for

a more ambitious Russellian-style bounded optimal rationality. The idea was to

show that an iterative process of fairly blind (ie, not based on a model of belief

and inference) bootstrapped self-improvement could, in the limit achieve a kind

of maximum possible degree of performance.

However, this theoretical attempt proved elusive, and so for a time I turned

to a more BDI-oriented approach, namely that of an intelligent agent reasoning

its way to improved behavior. This approach is outlined in Part II (Chapter 2

and 3).

Indeed, such an approach does seem to have some definite power, as evidenced

in related work [Joysula, 2005]; but it is difficult to assess the generality of that

approach with respect to the limits of learning, since it has a strong empirical

and domain-specific character.

Thus as a compromise between these two directions, I focussed most of my ef-

forts on an empirically-informed treatment of a very general (non-domain-specific,

19

model-free and non-BDI) incremental learning policy; instead of proving a con-

vergence theorem, I performed many experiments in order to better assess such

possible convergence. These methods and results are reported in Part III (Chap-

ter 4 and 5).

1.8 Thesis Outline

In this chapter2, we described a series of improvements a hypothetical office

robot had undergone, and speculated on possible mechanisms which can explain

these self-improving behaviors. We think these behaviors can serve as a useful

benchmark for agent architecture designers: can a proposed agent design display

these behaviors? What will be needed for an agent to do so? We also argued that

effective exploitation of two key concepts — reflective and continual computation

— will be essential to achieving these behaviors.

In Chapter 2, a reflective model of agency is presented as a foundation to a

theory that can explain, predict, and subsequently, be applied to generate the

behaviors depicted in the seven-days scenario in Section 1.2. The model, based

on the BDI architecture [Bratman, 1987] and formalized in a first order language

augmented with the meta-theoretic device of quotation, is constructed in such a

way that the theory describing it is also a component (as the belief subsystem) of

the agent embodying this model. We think this construction is essential for the

agent to acquire the abilities for introspection, self-evaluation, and ultimately,

self-improvement.

In Chapter 3, the model developed in Chapter 2 is applied to the domain of

natural language conversation. The model is extended with linguistic concepts

2Parts of this chapter appear in Chong et al. [2003].

20

such as communication acts to explain how a conversational agent can inspect

the ongoing conversation it is participating in, and engage in meta-conversation

when needed to correct misunderstanding and establish common ground. We

argue that for any conversational agent purporting to display any understanding

of the conversation it is engaging in, it will need to be an expert “specialized” in

the domain of linguistics, in addition to the domain that it is originally designed to

handle. We have a preliminary implementation illustrating how new terminology

can be acquired by the agent through conversation.

In Chapter 4, we introduce a series of increasingly general models of envi-

ronment where fewer and fewer assumptions are made, from Markov decision

processes (MDPs), partially observable Markov decision processes (POMDPs),

to non-stationary environments where it is no longer assumed that the environ-

ments are generated by fixed finite state machines, and the universal environment,

where no physical law is assumed. We discuss possible performance measures and

algorithms for solving them. We put forward a few conjectures about general in-

telligence.

In Chapter 5, we propose an algorithm (RQL) for a prototypical agent in uni-

versal environment, report on various empirical studies using RQL, and provide

comparisons with other approaches.

Finally, In Chapter 6, we offer some brief remarks on where this may lead.

21

Part II

22

Chapter 2

Reflective Model of Agency

2.1 Overview

There are two aspects to a theory of intelligent agency: from within, it can be a

prescriptive model of an agent serving as a blueprint for actual implementation

of the agent, engendering its behaviors; from without, it can be a descriptive

model of an agent for understanding, explaining, and predicting the behaviors

of other agents. Respective works have been done for the former (e.g., [Myers,

1997]) as well as the latter (e.g.,[Bratman et al., 1988, Rao and Georgeff, 1991]).

However, there is no reason we cannot develop a theory which can serve both

purposes. Actually, it is highly desirable, or even imperative, that this unified

theory be developed when the agent has to deal with other intelligent agents in

its environment — such as a conversational agent.

Below we propose a reflective model of agency, RMA, that views agents not

only as attempting to make sense of inanimate elements in their environment,

but also striving to understand themselves and other “cognitive” agents that

can be as complicated as themselves. RMA is based on the BDI architecture

[Bratman, 1987], which recognizes the primacy of the mental attitudes of belief,

23

desire and intention. Underlying this BDI model is a formal language L, a first

order language augmented with a quotation mechanism. The language L, in

addition to being language used to formalize our model of agency, is also the

language of knowledge representation for agents based on this model of agency.

The formal description of agents developed here will also become part of beliefs of

these agents, allowing them to reason about behaviors of other agents. Moreover,

since an agent embodying this theory of agency has the theory at its disposal,

open-ended introspection and enhancements to itself become possible, making

the agent “reflective”.

2.2 Premises and Goals

Background

Daniel Dennett [Dennett, 1987] coined the term intentional system to describe

entities “whose behaviour can be predicted by the method of attributing belief,

desires, and rational acumen”. Dennett identifies different ‘grades’ of intentional

system:

A first order intentional system has beliefs and desires (etc.) but

no beliefs and desires about beliefs and desires. [...] A second order

intentional system is more sophisticated; it has beliefs and desires

(and no doubt other intentional states) about beliefs and desires (and

other intentional states) — both those of others and its own.

Doyle [Doyle, 1983] was perhaps the first to proposed the design of rational

agents as the core of AI. Horvitz et al. [Horvitz et al., 1988] proposed the max-

imization of utility, in the sense established in [von Neumann and Morgenstern,

24

1944], as the interpretation of rationality.

Truth and Utility

According to this tradition, the ultimate criterion of success of an agent is its

performance, i.e., whether it is effective in achieving its goals. Most of the time,

agents that know the truth will outperform agents that do not, since they will

be able to predict the world more accurately and choose actions that are more

effective in affecting the world towards more desirable direction. However, ob-

session with truth could sometimes be detrimental to the effectiveness of agents.

For example, knowing the truth value of the liar sentence (e.g., “this sentence

is false”) may not be consequential to the agent, while insisting on pursuing it

might very well interfere with the immediate performance of the agents; hence

perhaps the pursuit of such truth can be deferred (until, for example, the agent

needs to take a philosophy exam).

As a consequence of this premise, we question the assumption that the value

of consistency always outweights the cost of maintaining it. In other words,

we believe it should be permissible for the agent to believe in falsehood, and

contradictive information to exist in agent’s beliefs when the cost incurred by the

maintainence of consistency is too high. An agent should be allowed to make the

tradeoff between expediency and consistency.

In particular, we are more liberal in adopting notions which might seem du-

bious to logicists. For example, our conceptualization will make extensive use of

reificiation — basically, we think everything that can be named (or described) can

be treated as an object in the world. Although reification simplifies the treatment

of mental attitudes such as beliefs, desire and intentions, it is typically shunned

25

because it can lead to the construction of the liar sentence, which nobody quite

knows how to deal with [Montague, 1963, Thomason, 1980]. However, since it

is, in most circumstances, inconsequential to the effectiveness of the agent in real

world, a utility based agent would not be paralyzed by it.

Ontological Assumptions

We assume the world can be understood as being comprised of entities and

relationships among entities. Unary relationships are usually called the properties

of entities. The set of all entities in the world we are modeling is called the

universe of discourse, or simply the universe. The universe can contain concrete

objects such as books, tables, people, etc, as well as abstract objects such as

numbers, sets, relationships, and things that designate the above entities, such

as names, pronouns, etc. In particular, we assume linguistic constructs of the

formal language we use to describe the world, L, such as sentences, variables,

constants, functions, terms, etc, can also be “reified” and become part of the

universe. Basically, we assume everything that can be names are objects in the

universe.

We subscribe to Smith’s knowledge representation hypothesis [Smith, 1982]:

Any mechanically embodied intelligent process will be comprised

of structural ingredients that (a) we as external observers naturally

take to represent a propositional account of the knowledge that the

overall process exhibits, and (b) independent of such external seman-

tical attribution, play a formal but causal and essential role in engen-

dering the behavior that manifests that knowledge.

as well as his reflection hypothesis [Smith, 1982]:

26

In as much as a computational process can be constructed to rea-

son about an external world in virtue of comprising an ingredient pro-

cess (interpreter) formally manipulating representations of that world,

so too a computational process could be made to reason about itself

in virtue of comprising an ingredient process (interpreter) formally

manipulating representations of its own operations and structures.

2.3 Notations

The language L used to formalize RMA is an instance of the first order predi-

cate calculus with equality, augmented with a quotation mechanism that will be

explained below.

2.3.1 Basic syntax

The language L is defined over a set of symbols, the alphabet. The alphabet is

divided into two disjoint subsets: logical symbols and non-logical symbols.

The set of logical symbols is a finite set

Σl
L = {=,¬,∨, ∀}

However, we use an extended set of logical symbols to allow shorter expression,

Σel
L = {=,¬,∨, ∀, ∃,∧,⇒,⇐,⇔}

It can be easily established that anything which can be expressed using the ex-

tended set can be rewritten into formula using the original set only.

The set of nonlogical symbols consists of two subclasses: constant symbols

and variable symbols. We will adopt the convention of using words starting with

27

capital letters to denote constant symbols (e.g, Alice, Square, Member), and

lowercase words to denote variable symbols (e.g., x, y, z, v0, v1, ...).

The syntax of L can be described using the following BNF rules:

<wff> := (∀[<variable>+] <wff>)

| (∨ <wff>*)

| <literal>

| (∃[<variable>+] <wff>)

| (∧ <wff>*)

| (⇔ <wff>*)

| (⇒ <wff>*)

| (⇐ <wff>*)

<literal> := <atom>

| (¬ <atom>)

<atom> := (<relconst> <term>*)

| (= <term>+)

<term> := <constant>

| <variable>

| <funexpr>

<funexpr> := (<funconst> <term>*)

With these established, we have enough to bootstrap a more formal defini-

tion of L, which is the set of all databases according to the following definitions

(adopted from [Genesereth and Nilsson, 1988]):

∀[x] (⇔ (Constant x)

(∨ (Objconst x) (Funconst x) (Relconst x)))

∀[x] (⇔ (Term x)

(∨ (Objconst x) (Variable x) (Funexpr x)))

∀[x l](⇔ (Termlist x)

(∀[x] (⇒ (Member x l) (Term x))))

∀[f l](⇔ (Funexpr (Concat f l))

(∧ (Funconst f) (Termlist l)))

∀[r l](⇔ (Atom (Concat r l))

(∧ (Relconst r) (Termlist l)))

∀[x] (⇔ (Literal x)

(∨ (Atom x)

(∃[z] (∧ (Atom z)

(= x (quote (¬ z)))))))

∀[c] (⇔ (Clause c)

(∀[x] (⇒ (Member x c) (Literal x))))

∀[d] (⇔ (Database d)

(∀[x] (⇒ (Member x d) (Clause x))))

28

2.3.2 Quote, Quasi-quote and Anti-quote

When discussing things that can refer to other things, care must be taken about

the use and mention distinction. For example, we use the name “Alice” to refer

to Alice, a person, in most usual circumstances. But sometimes we need to

refer to the name itself, rather than to Alice the person — for instance, the first

mention of “Alice” in the previous sentence. The usual convention in natural

language (such as English) is to use a quotation device to stop the “evaluation”

of a referring expression at itself, rather than to the referred object.

As the formal language L will be used to express facts about formal linguis-

tic constructs such as constants, variables and other terms which refer to other

objects in the world, it needs a similar quotation mechanism. For example, the

expression

(Pretty Alice)

states the fact that Alice the person is pretty, and

(Has-five-letters ’Alice)

states the fact that “Alice” the name has five letters.

We assume the existence of a function1,

Quote : ΣL∗ 7→ Objconst

which maps arbitrary expressions of L to unique names of the expressions. These

names are also objects in our universe of discourse, which have representations as

object constants in L. We can then see the expression ’Alice as an abbreviation

for (Quote Alice).

1Mathematically inclined people can think of it as Gödel’s numbering, which he showed how

to effectively compute in the proof of the incompleteness theorem.

29

Quote also provides a way to represent facts which involve some other facts,

such as the mental attitudes of belief, knowledge, etc in first order language. We

can represent the fact that Alice believes that Bob is happy, using the following

expression in L:

(Belief Alice ’(Happy Bob))

Since ’(Happy Bob) (instead of (Happy Bob), which is a sentence) is just an

ordinary term in L, the above is a perfectly legal first order sentence.

Note that Quote is a meta-theoretic function2 w.r.t L. In our usage so far, it

can be seen simply as a convention for writing constant terms in L. The meanings

of terms involving Quote are “opaque” to L — as far as L is concerned, the only

relation between two terms it understands is whether they are equal to each other;

the term ’(Happy Bob) can just as well be represented as C17, and, for instance,

that the symbol Bob occurs in it is irrelevant to L.

Sometimes “finer grained” control over the substructures of expressions is

needed. For instance, when expressing the fact that Alice knows that Bob knows

the phone number of Charlie (without her knowing what the phone number itself

is). The following would not work:

(Belief Alice ’(∃[n] (Belief Bob ’(= n (Phone Charlie)))))

2.3.3 Terminology

The world changes. A state of the world is a discrete slice of the world, where the

aspects of interest of the world do not change. Note that this doesn’t mean the

world itself doesn’t change. For example, imagine a slice of the world (of nonzero

2However, if the needs arise (e.g., when we use L to describe other formal languages), it is

definable in first order language such as L.

30

duration) where an object is moving at constant speed. Although the position of

the object does change, the speed doesn’t; so when we are only interested in the

speed, we consider this slice a discrete state.

Fluents are atomic properties of states of the world, which may (or may not)

hold for particular states. Formally, fluents are reified and represented as terms.

We write (Holds f s) to denote the fact that fluent f holds in state s. For

example, (Holds (On Blue-box Red-box) S) can mean a blue box is on top of

a red box in state S.

Actions are what cause changes in the world. An action can be characterized

by the preconditions which must be satisfied to make the action possible, and

its effects on the world. For instance, the action of picking up a book from the

table by an agent is only possible if it has a picking device, which is not holding

anything at the moment; and there is nothing too heavy on top of the book,

etc; and will result in a state where the agent is holding the book. Formally,

actions are reified and represented as function terms whose arguments denote

parameters and objects participating the actions. We can relate an action with its

preconditions and effects using, for example, situation calculus or fluent calculus

[Thielscher, 1998].

(def (Do a s s’)

(∧ (Poss a s s)

(= s’ (do a s s))))

Actions are divided into two subclasses: primitive actions and compound ac-

tions. Primitive actions of an agent are actions which can be directly executed

by the agent. They have fixed, known runtime. One or more actions can be com-

bined to form compound actions using one of these operations: (1) sequencing;

(2) conditional; (3) looping.

31

2.4 Architecture

An agent P can be characterized by 〈B,D, I,M〉, a quadruple of belief-base,

desires, intentions and inference mechanism; where belief-base B ⊂ L is set of

sentences, desire D ∈ S × S is a partial order on possible states of the world,

intentions I ∈ P are partial plan of future actions, and the inference machine

M : 2L × L × R → {T, F, U} is a function from a set of premises sentences, a

query sentence, and amount of resource, and return a status indicating whether

the query sentence can be proved from the premises, or undecided given the

amount of resource.

The agent attains reflective capability when all the facts described in this

section are axiomatized and form part of the belief-base B.

Inference Machine

An inference machine is an abstraction of the underlying computation device of

the agent. It can be modeled as a function, M : 2L × L ×R → {T, F, U}. The

resource R reflects the reality that only finite amount of computational resource

is available to any agent. There are many options for instantiating a resource;

for example, we may choose to represent a resource as a realtime clock interval

that the inference machine is allowed to run.

As an abstraction of computational device, the instantiations of an inference

machine will have different characteristics depending on the actual computational

devices. For example, the inference machine of an instantiation of the agent on

a slow machine will return U most of the time, indicating it cannot decide the

provability of the query from the premise given the amount of resource.

32

Beliefs and Belief-base

Beliefs express an agent’s expectations of its environment. The beliefs of an

agent can be characterized by two components: the belief-base and the inference

machine. The belief-base is a set of sentences in L. Intuitively, these are beliefs

that the agent can decide immediately (or in constant time) since the decision

can be realized by simple table lookup.

However, statements in the belief-base are not the agent’s only beliefs. We

define the beliefs of the agent to be a function of resource:

B∗(B,M,R) = {σ|M(B, σ,R) = T}

Intuitively, what the agent believes are the set of sentences that its inference

machine M is able to prove given a fixed amount of resource R and the ini-

tial belief-base B. The resource consideration lets the agent avoid the logical

omniscience problem.

Desire and Preference

Desires express preference over future states of the environment. Formally, desires

can be formalized in terms of a partial order on the set of possible states of the

environment, or in terms of utilities.

Intention and Agenda

Intuitively, the intention of an agent is the set of actions that have been chosen

by the agent to achieve its goals, as determined by its preferences.

Formally, the intention of an agent is a partial plan, i.e., a set of actions with

ordering constraints among them.

33

Top Level Loop

So far, we have given the static characterization of an agent; at any time in-

stant, the state of an agent P is completely determined by the quadruple of

〈B,D, I,M〉. However, an agent needs to change in responding to changes in its

environment. Below we discuss the dynamic of the agent.

The operation of the agent can be understood as a loop: in each cycle of the

loop, the agent makes an observation (in the form of a factual statement about

the environment), does some calculation (a sequence of actions performed on the

internal structures of the agent), and generates an action description.

The behavior of an agent is decided by the actions it generates. Internally,

the actions are selected (using some rules which might be changeable) from the

intention structure I. The formation and update of the intention structure are

dependent on the desire D and belief base B of the agent; intuitively, actions are

selected to be added to the intention structure if they are decided to likely to

contribute to the achievement of the desires of the agent; the assessment of the

likelihood is based on the information contained in the belief base. In principle,

the rules used to select action, assess likelihood, etc. are part of the belief base

and subject to changes to adapt to different environments.

Formally, the operation of an agent can be described as a function

C : P ×F → P ×A

where P = 〈B,D, I,R〉 is the set of agent states; F is a new observation (of the

environment), and A is an action produced by the agent.

From the point of view of the agent, this operation described by C needs to

be implemented somehow, so that the agent actually behaves as described. The

34

computation involved in generating this behavior of the agent can be analysed

and understood as comprising of actions, and the “implementation” is nothing

but choices and sequencings of actions.

The function C is fixed and quite simple; the behavior of an agent is completely

specified by agent state quadruples.

2.5 Conclusions

In this chapter, we put forward a formal reflective model of agency. As a sci-

entific model, we can use it as a basis to analyze, predict, and affect (through

communication) the mental attitudes of other agents. As a mathematical model,

we use it as a guide to implement a reflective agent as a computer program who

can reason about its own behavior so that it can find ways to improve itself. The

next chapter will explore this possibility, in exploiting an inference machine and

a belief base, together with a natural language parser, toward the creation of a

conversational agent.

35

Chapter 3

Conversational Agent for Meta Dialog

3.1 Overview

In a typical conversational system, linguistic knowledge is a static and implicit

part of the implementation of the system. It does not have the facility to reflect

on, and revise this knowledge. When the anticipated mode of communication

breaks down, and mis-communications or other mistakes arise, it has limited op-

tions to deal with the problems, because of the lack of explicit linguistic knowledge

to help in analyzing the problems. An agent cannot receive help from its con-

versational partner if it does not have the necessary mechanism to interpret the

help.

To go beyond this limitation, an agent needs to reflect on what is going on

in the conversation, be aware of the words uttered, the sense they denote and

connote, the multitude of meanings of the sentences they composed, as well as the

changing context as the conversation is proceeding. In other words, linguistics is

not only a tool we use to analyze and construct a conversational agent; it also

needs to become part of the domain the agent can explicitly reason about and

dynamically change. When mistakes arise, the agent needs to be able to make

36

the conversation the very topic of discussion — to engage in meta-conversation.

One might argue that an agent needs not be an expert in linguistics to become

an effective user of a language, and it is possible to hard-code the necessary

error recovery mechanisms into the implementation of the agent. However, we

believe the ability for an agent to engage in meta-conversation is not just an

intellectual curiosity, but essential to any meaningful conversation (instead of

quasi-meaningful conversation exemplified by Eliza, which only dealt with very

superficial aspects of conversation). It provides a general framework for the agent

to detect and repair mistakes, establish common ground, learn to understand new

meanings of words and incorporate new knowledge acquired through the ongoing

conversation. It is conjectured that this is what is needed, and perhaps all it

needs, for an agent to converse meaningfully [Perlis et al., 1998].

In this chapter, we extend the model of agency we developed in Chapter 2

to incorporate speech acts, so that it can analyze and generate communicative

actions — in other words, engage in conversation. Conditions for successful

performance of speech acts, as well as other linguistic knowledge such as syntactic

and lexical rules, will be codified and added to the belief base. The goal is to

create a conversational agent capable of “meta-conversation”, where the topic of

discussion is the conversation itself. We will explain our theory in an example

setting where the agent needs to act as an intermediary between a human and a

computer, so that the human can communicate with the computer using natural

language conversation.

3.2 Background

Austin [1962] noted that natural language utterances could be understood as

37

actions that change the mental states of cognitive agents in the same way they

change other physical states. Searle [Searle, 1969] derived necessary and sufficient

conditions for the successful performance of speech acts, which distinguished five

types of speech acts. Cohen and Perrault [1979] analyze speech acts in terms of

AI planning problems. Cohen and Levesque [1995] developed a theory in which

rational agents perform speech acts to achieve their desires.

3.2.1 Dialogue Analysis Survey

One main strand of approaches to dialogue management builds on the view of

dialogue as a rational, cooperative form of interaction among agents.1 It is as-

sumed that the maintenance of correct interpretation context is a mutual goal of

the participants [Cohen and Levesque, 1991]. Building on this basic assumption,

some notion of coherence is defined to identify and explain misunderstanding

between the participants of a dialogue. Intention usually plays a major role in

reasoning about the expectations, as well as formulating repairs in the face of

misunderstandings.

Coherence

Central to the analysis of dialogue is the notion of coherence. Miscommunica-

tion is assumed when this notion of coherence is violated. Most people would

agree that coherence means the lack of contradiction. However, some more ag-

gressive models of dialogue have based their notion of coherence on the expected

behavior of agents in conversation. An action is explained as a manifestation

1See [Cohen, 1996, Sadek and De Mori, 1998] for comparisons between this and other ap-

proaches.

38

of misunderstanding if it is not “expected”, given the prior interaction [McRoy,

1998].

Sacks et al. [Sacks et al., 1974] introduce adjacency pairs to model the ex-

pected continuations of an interaction: adjacency pairs are sequences of speech

acts (e.g., question-answer pairs) such that, after the first element occurs, the

second one is expected. However, agent behavior cannot directly be explained by

means of such strict interactional rules [Levinson, 1981].

To relax such rigid restriction, more sophisticated models have been intro-

duced. In McRoy and Hirst [1995], Traum and Hinkelman [1992], Traum and

Allen [1994] the speech acts occurring in the last conversational turn, together

with the existing dialogue context, are used to predict which speech acts the

interlocutor should perform if the interaction goes well; a deviance from the ex-

pected behavior is taken as a sign that some interaction problem is occurring and

the presence of a misunderstanding is hypothesized.

Intention

Another powerful instrument in the analysis of dialogue is intention. Dialogue

can be analyzed from the intention recognition point of view [Cohen et al., 1981]:

when an agent acts, a relation of his action with the interaction context is con-

sulted to see whether the action represents an attempt to satisfy any intention

expressed by the partner, or can be inferred from the partner’s plans, or is a

further step in a plan that has already started.

The intention approach to dialogue interpretation enables a more flexible no-

tion of coherence: an utterance is considered coherent as long as certain relations

can be identified among its underlying intentions and those of the dialogue par-

39

ticipants. For instance, Ardissono et al. [Ardissono et al., 1998] consider an

utterance coherent with the previous context if and only if it can be interpreted

as a means for the speaker to achieve an unsatisfied goal which realizes one of

the pre-defined coherence relations.

Detection and Repair

Much work on analysis of dialogue is predominantly plan-based [Allen, 1983, Lit-

man and Allen, 1987, Carberry, 1990, Grosz and Sidner, 1990, Lochbaum, 1994].

Under the cooperative assumption, every turn in a dialogue is seen as an act

to jointly carry on some mutual goals of the participants. Interpretations are

recognized by identifying a plan-based relation (such as subgoal, precondition)

linking the utterance and the previous context. The absence of this relation is

taken as a sign of lack of coherence. In some cases, the notion of coherence is

based on the expectation formed by using the dialogue context and other infor-

mation such as the speech acts in the last utterance. McRoy and Hirst [McRoy

and Hirst, 1995] build on this approach and introduce metaplans to diagnose

misunderstandings and formulate repairs when the expected behavior is violated.

However, their metaplans only analyze the surface expectations introduced by

performing a speech act; the absence of a deeper intentional analysis limits their

approach to the treatment of misunderstandings on speech acts. Ardissono et

al.[Ardissono et al., 1998] extend the plan-recognition algorithm to deal with

misunderstandings on domain level actions also. In their model, when misunder-

standings are recognized, a meta-level action results in a subgoal being posted to

resolve the misunderstanding; repairs are actions that are performed to satisfy

these goals.

40

McRoy and Hirst [McRoy and Hirst, 1995] also provide a computational the-

ory of coherence in dialog that accounts for factors such as social expectations,

linguistic information and mental attitudes such as belief, desire, or intention.

According to this theory, an action is consistent with a discourse only if the be-

liefs that it expresses are consistent with the beliefs expressed by prior actions.

Together, these different factors enable a system to distinguish between actions

that are reasonable, although not fully expected (such as an incorrect answer or

a clarification question) from actions that are indications of misunderstanding.

In all the models described above, the more aggressive notion of coherence

based on expectation is adopted. Not coincidentally, these models usually break

down in the face of topic shift or change of subject. The existence of expectation

presupposes, explicitly or implicitly, some sort of schema on how the dialogue

would progress. For instance, in plan-based approaches, these schema are em-

bodied in the pre- and post- conditions of the action schema, while McRoy and

Hirst’s [McRoy and Hirst, 1995] model includes explicit schema to help the in-

terpretation of dialogue exchanges. Such knowledge is domain dependent, and it

poses a limit to the applicability of the model to general domains. Ardissono et al.

[Ardissono et al., 1998] argue that it is a basic component of any system aiming

at deep interpretation of dialogue, but the point is whether this information can

be incorporated conveniently and dynamically. With an eye to conversational

adequacy [Perlis et al., 1998], we need to let open the possibility of adding this

information dynamically during the conversation, with perhaps help from the

user. By adopting a logical framework and using metareasoning to perform the

recognition and repair dynamically, we keep hard-coded knowledge in our system

to a minimum, thus retaining maximal flexibility, while also allowing both real

41

corrections of intention, and incoherence-based system-initiated repair.

3.3 Instructible Agent

Robots or computer systems capable of communicating with humans in (seem-

ingly) natural language such as English are creeping into our everyday lives. For

instance, map navigation system that helps drivers find routes through speech

communication has become a consumer product. However, one major weakness

of these systems is their inflexibility. Once deployed, it is hard to change the

way they are working. As a consequence, the users have to adapt and learn the

quirks of these systems, while ideally, it should be the other way around. This

inflexibility sometimes leads to great frustration, and even fatal error, epitomized

by the tragic decision made by HAL in Arthur C. Clarke’s famous novel 2001: A

Space Odyssey.

In this section, we explore the issues of constructing an instructible agent:

What does it mean to be instructible? How can we make an agent instructible?

What kinds of changes are possible for an agent to make when instructed? More

precisely, to what extent can an agent be instructed given the current state of

the art of computational linguistics?

3.3.1 Design Goals

First, we need to make clear what exactly being instructible entails. In theory,

most if not all computational systems are “instructible”; we can simply shut down

the system, and “instruct” it by reprogramming and reconstructing the system

to make whatever changes are desired. To make the idea more interesting and

exclude such trivial cases, we think an instructible agent must meet at least two

42

criteria: the agent should be able to (1) receive instructions in natural language;

(2) make the change dynamically as instructed (i.e., without being shut down

and reprogrammed).

Given these requirements, the objective becomes quite clear: a system such

that the user who interacts with this system can affect its behavior with no more

effort than required for communicating with another human being — in other

words, without the need of long training, learning of a programming language

and all the internal details of the system.

3.3.2 Methodology

At first sight, constructing a natural language instructible agent may sound like

an unrealistically difficult problem, given that natural language understanding

(NLP) is an unsolved problem. However, the interactive nature of the problem

simplifies the task; for instance, in the face of ambiguity — one of the major

obstacles to NLP — the agent can simply resort to directly asking for clarification.

Hence, we think an instructible agent is an ideal midway point to the conquest

of NLP, while offering a lot of practical usefulness.

Using the model we built in Chapter 2 as reference, we see there are several

ways an agent can be changed, namely the changes of each of the component

structures of beliefs, desires and intentions. In this section, we will mainly focus

on the changes on the beliefs, and the consequent changes in behavior. In par-

ticular, we will see how we can extend the range of things the agent knows how

to perform.

One of the most basic extensions is to give a new name to or rename primi-

tive actions the agent knows how to perform, hence enhancing its “vocabulary”.

43

However, the increase in expressiveness and convenience offered by this kind of

extension is quite limited.

Analogous to a programming language, we think one of the key steps in in-

creasing the expressive power of the language the agent can understand is by

providing ways to compose multiple primitive actions into a single complex ac-

tion, that can later be referred to as a unit, possibly by an assigned name — in

other words, an abstraction mechanism. However, there are several challenges:

(1) The concatenation of two primitive actions may not always make sense, and

they may be conflicting with each other. (2) Although it is possible for the user

to instruct in step-by-step detailed instructions to form a complex action, this is

not much better off than programming; to approach naturalness, the user should

be allowed to talk in terms of goals and desired results, and the system should

figure out the necessary actions to fulfill the goals. Essentially, this involves a

planning problem, which can be solved using situation calculus provided we have

knowledge about the primitive actions available to the agent.

Usually, artificial agents are designed to work in a certain domain; and the

primitive actions are “commands” that can be performed on this domain. For

example, suppose we have an agent acting as a natural language capable inter-

mediary between a human and a desktop computer, the commands may include

“deletion of a file”, “closing a window on the computer screen”, etc. However,

by our construction of the reflective agent, the actions that can be performed to

manipulate the internal structures of the agent are available to the agent too;

thus, in principle, once we provide a way to accomplish the abstraction, we will

then be able to modify the agent in arbitrary (or Turing-complete) way.

Before we explore this possibility, we will first look at the more mundane task

44

of windows management.

3.3.3 Case Studies in Windows Management

The domain of windows management has many interesting characteristics that

we think make it ideal for exploring communication in natural language.

First of all, it is a real domain: instead of simulating, we will work directly with

“concrete” objects: data-structures reside in the computer operating system, such

as files, various kinds of computer resources—peripheral devices, allocated cpu

time, memory, etc. which we can manipulate directly. This allows us to bypass

the thorny symbol grounding issues faced by other embodied agent efforts. It

also provides a sanity check to prevent us from getting lost in abstraction; since

we deal with computers daily, we can get a lot of feedback from ourselves.

At the base line, we already know we can communicate with the computer,

albeit tediously—we give very specific, unambiguous commands, step by step,

to tell the computer what to do. The use of intelligent reasoning will enable a

computer to understand more and more with us telling it less and less.

There are already some projects and commercial products targeting hand-

free HCI, either to help the handicapped, or to make using a computer more

convenient and enjoyable; our error handling framework can be used to improve

such an interface.

3.3.4 Implementation

A proof-of-concept prototype consisting of individual stages has been imple-

mented. Here is a summary of the stages:

45

1. Definite Clause Grammar (DCG) to parse natural language input into log-

ical form based on thematic roles.

2. Implementation of a theorem prover in Common Lisp.

3. Commands in domain are represented as action objects in the domain the-

ory, and related with its preconditions and effects by axioms following sit-

uation calculus utilizing the theorem prover.

4. Novel, complex actions are formed by analyzing the desired effects expressed

by the user and knowledge about primitive actions available to the systems.

5. Part of the commands used in the implementation of the agent can also

be made available as actions and formalized in similar fashion as domain

actions, allowing the agent to program itself by following instructions from

a human.

Work remains to be done to combine the stages into a fully integrated system.

However, the above (implemented) stage already produced behavior indicated

below in Section 3.3.5.

3.3.5 Example

This section gives an example of how reflection can be used in the window-

management domain.

Composition

Illustration of the acquisition of the concept of “fullscreening a window”:

46

• “A window is fullscreened iff it’s located at the origin and its dimensions

equal those of the physical screen.”

∀(w s) (⇔ (Fullscreen w s)

(∧ (Pos w 0 0 s) (Dim w W H s)))

• Frame axioms: moving a window doesn’t affect its dimensions:

∀(w x y s u v) (⇒ (Dim w x y s)

(Dim w x y (Do (Move w u v) s)))

and similarly for resizing a window regarding its position.

• Effects axioms: moving a window to (x, y) will cause the window to be

located at (x, y):

∀ (w x y x) (Pos w x y (Do (Move w x y) s))

similarly for resizing a window.

With these axioms, we can derived how to perform a complex action by post-

ing the following goal:

∃ (s) (Fullscreen C s)

3.3.6 Future Work

Benchmarks

1. Contradiction handling: the user might instruct, “Don’t ever delete

file X;” and later, “Delete all the files with size larger than ten megabytes,”

where X is actually larger than ten mega bytes. How can these contradictory

instructions be detected and resolved in general? Satisfactory handling of

47

contradiction consists of two parts: first, the agent needs to be able to detect

the contradiction without being swamped by it (especially if the system

uses monotonic logical reasoning); and second, the contradiction needs to be

resolved intelligently—for example, a reasonable choice should be presented

as a default to the user, or even taken directly without bothering the user

if sufficient evidence exists (e.g., by looking for a pattern in the history of

interaction.)

2. reference resolution: since some operations (such as the deletion of files)

are irrevocable, a more cautious user might want to do it in several stages:

First the user might tell the computer, “list all the files with size larger

than ten mega bytes.” After inspecting the output of the computer, the

user issues the command: “delete all the files just listed.” The user also

might say, “retrieve the file which I changed five minutes ago.” A reference

resolution framework would be needed for accurate tracking of the indexical

or anaphoric expressions.

3. advice taking: the user might say, “read X,” while the system doesn’t

know what “read” means; so it responds, “what do you mean by ’read’?”

The user instructs, “‘Read’ means ‘open’.” As a first approximation, the

system might use some simple mechanism like alias to relate the two com-

mands. But more interesting adaptations such as aquisition of new concepts

will require modification to the grammar and semantic rules used by the

agent.

4. meta linguistics: consider the case of text-editing by voice. The computer

has to distinguish which part of the speech is to be taken as the text to

48

be entered, and which part is the command for manipulating the text. For

example, while dictating the user might say, “Delete the last sentence.”

The agent needs to figure out this is supposed to be a command, and won’t

enter the literal sentence into the editor.

3.4 Related Work

3.4.1 SHRDLU

SHRDLU[Winograd, 1973] was an early natural language understanding com-

puter program, developed by Terry Winograd at MIT. It allowed user interaction

using English terms. The user instructed SHRDLU to move various objects

around in a small “blocks world” containing various basic objects: blocks, cones,

balls, etc. What made SHRDLU unique was the combination of four simple ideas

that added up to make the simulation of “understanding” far more convincing.

1. One was that SHRDLU’s world was so simple that the entire set of objects

and locations could be described by including as few as perhaps 50 words,

nouns like “block” and “cone”, verbs like “place on” and “move to”, and

adjectives like “big” and “blue”. The possible combinations of these basic

language building blocks were quite simple, and the program was fairly

adept at figuring out what the user meant.

2. SHRDLU also included a basic memory to supply context. One could ask

SHRDLU to “put the green cone on the red block” and then “take the

cone off”; “the cone” would be taken to mean the cone one had just talked

about. SHRDLU could search back further to find the proper context in

most cases when additional adjectives were supplied. One could also ask

49

questions about the history, for instance one could ask “did you pick up

anything before the cone?”

3. A side effect of this memory, and the original rules SHRDLU was supplied

with, is that the program could answer questions about what was possible

in the world and what was not. For instance, SHRDLU would deduce that

blocks could be stacked by looking for examples, but would realize that

triangles couldn’t be stacked, after having tried it. The “world” contained

basic physics to make blocks fall over, independent of the language parser.

4. Finally, SHRDLU could also remember names given to objects, or arrange-

ments of them. For instance, one could say “a steeple is a small triangle

on top of a tall rectangle”; SHRDLU could then answer questions about

steeples in the blocks world, and build new ones.

Here is an extract from a famous demonstration of SHRDLU:

Person: PICK UP A BIG RED BLOCK.

Computer: OK.

Person: GRASP THE PYRAMID.

Computer: I DON’T UNDERSTAND WHICH PYRAMID YOU MEAN.

Person (changing their mind): FIND A BLOCK WHICH IS TALLER

THAN THE ONE YOU ARE HOLDING AND PUT IT INTO THE BOX.

Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS

TALLER THAN THE ONE I AM HOLDING.

Computer: OK.

Person: WHAT DOES THE BOX CONTAIN?

Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.

Person: WHAT IS THE PYRAMID SUPPORTED BY?

Computer: THE BOX.

Person: HOW MANY BLOCKS ARE NOT IN THE BOX?

Computer: FOUR OF THEM.

Person: IS AT LEAST ONE OF THEM NARROWER THAN THE ONE

WHICH I TOLD YOU TO PICK UP?

Computer: YES, THE RED CUBE.

etc.

The result was a tremendously successful demonstration of AI. This led other

AI researchers to excessive optimism which was soon lost when later systems

50

attempted to deal with more realistic situations with real-world ambiguity and

complexity. Continuing efforts in the original SHRDLU stream have tended to

focus on providing the program with considerably more information from which

it can draw conclusions, leading to efforts like Cyc [Guha and Lenat, 1990]. How-

ever, Winograd has since distanced himself from SHRDLU and the field of AI,

believing SHRDLU a research dead end.

51

Part III

52

Chapter 4

Reinforcement Learning and Bounded

Optimality

4.1 Overview

In its most general form, AI is concerned with designing an agent that performs

well in an environment. The degree of difficulty of the design task is dependent

on the complexity of the environment itself (how many states can it assume, or

even whether the number of states is finite; whether it is deterministic, stationary,

etc), as well as the accessibility of the environment to the agent (how fully can the

agent observe what is going on in the environment). Those are two separate, but

related issues: for example, a stationary, deterministic environment will appear

indeterministic when not fully observable by the agent. To avoid confusion, care

needs to be taken to distinguish between the perspective of the environments as

seen by the modeled agent and the modeler.

Below we will look at a series, from the simplest to increasingly more com-

plicated and realistic models of environments and possible algorithms for solving

them, using the grid-world for illustration. From this series of models, it will

53

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

v

v

j

Figure 4.1: A 12× 12 toroidal grid world, where

there are two kinds of points, either white or

black; the double circle indicates the location of

the agent.

become evident that in some especially complex and more realistic environments,

being rational necessitates adaptation. We will also look at the requirements for

algorithms that can be adopted by agent functioning in these environments; e.g.,

they will need to be closed-loop, taking raw data as input and choosing rational

actions, and capable of adaptation.

4.2 Toroidal Grid World

A toroidal grid world is a 2-dimensional discrete world consisting of m × n grid

points, where each point is connected to its four neighbors (points on the edges

are connected to corresponding points on the opposite edges, making the world

assume the topology of a torus, hence the name). A point can have a discrete

number of attributes. At each time step, an agent in this world may choose one

of five possible actions: it can either move in one of the four directions to reach

a neighboring point, or do nothing to stay at the same spot. For each action

taken, the agent will receive a reward, the amount of which depends on the state

of the world. For example, in the world depicted in Figure 4.1, the reward may

be 1000 (e.g., for a food item, energy source, etc, found) when the agent visits a

black point, and -1 (e.g., for energy spent) otherwise. The objective is to find a

54

policy for the agent to choose its action so that the long term expected cumulative

reward is maximized.

Suppose the attributes of all the points in the grid do not change with time,

then the state of the world is completely characterized by the location of the

agent. Since in the example above there are 12×12 = 144 possible locations, the

size of the state space would be 144.

Further suppose the agent can determine where it is exactly in the world, then

the world will be a Markov Decision Process (see Section 4.3) to the agent.

4.3 Markov Decision Process

In general, a fully observable environment with a Markovian transition model

and additive rewards can be modeled with a Markov decision process (MDP).

Formally, an MDP is defined by three components 〈S, τ,R〉, where

• S is the set of possible states of the environment,

• τ : S × C × S → [0, 1] is the transitional probabilistic distribution model,
and

• R : S → ℜ is the reward function.

A solution of an MDP can take the form of a policy, formally a function

π : S → C, that specifies which action to perform for each state that the agent

might reach.

The performance of a policy π is measured by the expected sum of discounted

rewards:

Uπ(s) = E

[

∞
∑

t=0

γtR(st)|π, s0 = s

]

(4.1)

When the underlying transition model τ that generates the environment is

known, the expected utility of all states can be obtained by solving the Bellman

55

equation [Bellman, 1957] (e.g., using dynamic programming):

U(s) = R(s) + γ max
a

∑

s′

τ(s, a, s′)U(s′) (4.2)

An optimal policy can then be constructed by choosing the action that max-

imizes the expected utility of the subsequent state:

π(s) = argmaxa

∑

s′

τ(s, a, s′)U(s′) (4.3)

4.4 Knowledge Acquisition Modes

When faced with the task of designing an agent, two approaches may be taken

by the designers: they can either learn the “physics” (i.e., the transition model)

of the world themselves, and use the knowledge to synthesize a fixed policy for

the agent to exploit the world; or they can synthesize an adaptive policy for the

agent that can then learn the physics of the world while exploiting the world.

The first approach is addressed by “classical AI” research such as planning and

automated theorem proving. Given that we have billions of years to acquire

knowledge about this world 1, through evolution, purposeful learning and other

means, it would seem unwise not to take as much advantage as we could of

this knowledge. However, the two approaches are not mutually exclusive, and

knowledge integration and transfer for learning in different domains has been

identified as one of the most important issues in future AI research [Russell and

Norvig, 2003, Solomonoff, 2003]. Moreover, as we shall see, as the worlds we study

become more complex, the emphasis on automatic acquisition of knowledge will

make increasing sense.

1According to current estimate, life began on earth 4.5 billion years ago.

56

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

v

v

v

v

v

v

j

Figure 4.2: A 12× 12 toroidal grid world, where

the black points are distributed on the diagonal

line.

As an illustration, consider the grid world depicted in Figure 4.2, where the

black points are distributed on the diagonal line. This world has the property

that, “when the agent is at a black point, it can reach the next black point by

executing the action sequence move-right, move-right, move-up, move-up.”

An agent designed with the knowledge of that property will perform much better

than one without and needs to learn it through exploration. However, when

the world changes and the black points assume another distribution, the agent

who relies on the special property will fail with little hope of recovery, while the

learning agent will regain its performance with time.

Below we will mostly concern ourselves with the case where the underlying

transition model is unavailable. The algorithms for solving tasks under such

conditions are the subject of reinforcement learning.

4.5 Reinforcement Learning

There are three key elements to a reinforcement learning agent: action, percep-

tion, and reward. The objective of the agent is to learn what to do: i.e., given

a sequence of perceptions, how to choose its actions to maximize its cumulative

rewards.

57

There are many reasons that the task is hard: (1) The agent may have no

knowledge at all about the world, or the effect of its actions; so the only way

it can learn is to try them and see what happens by analyzing the subsequent

perceptions. (2) In most more realistic and challenging cases, to attain a good

level of performance, it would be insufficient for the agent to look at the im-

mediate reward, for the action that brings the most immediate reward may not

be the one that best improves the prospect of future rewards. These two char-

acteristics, trial-and-error and delayed reward, are also the two most important

distinguishing features of reinforcement learning [Sutton and Barto, 1998].

It has been noted [Russell and Norvig, 2003] that reinforcement learning might

be considered to encompass all of AI, where an agent is placed in an environment

and must learn to behave successfully therein, with no guidance other than a

reward or punishment once in a while. Hence, reinforcement learning is more

a characterization of the problem setting, than any class of learning algorithms;

most algorithms that have been studied in AI and other areas would be useful in

some reinforcement learning settings, so they can be considered as reinforcement

learning algorithms. Conversely, most problems solved by these algorithms are

special cases of reinforcement learning. For example, typical supervised learning

problems that may be solved by pattern-recognition, neural networks, etc, can

be seen as reinforcement learning problems where the feedbacks the agent get are

“friendlier” and have more structure in them to facilitate learning.

It may be noted that, because of its generality, reinforcement learning is

closely related to rationality: a reinforcement learning agent that has found the

optimal policy for an environment would behave rationally in that environment;

so if we can find an algorithm for reinforcement learning that converges to the

58

optimal policy in an unrestricted environment, that algorithm may be considered,

in a certain sense, to be a solution to AI in general.

function Q-LEARNING-AGENT(percept , astate)
s′, r′ ← percept
s, a, r, Q← astate
Q[s, a]← Q[s, a] + α(r + γ maxa′ Q[s′, a′]−Q[s, a])
s, a, r ← s′, argmaxa′(Q[s′, a′]), r′

astate ← s, a, r, Q
return a, astate

Table 4.1: Q-Learning Algorithm

A representative example of reinforcement learning algorithms is the Q-

Learning algorithm [Watkins, 1989] (Table 4.5). The algorithm is built around

the concept of Q-value of state-action pairs, Q(s, a), which can be interpreted as

the expected discounted sum of rewards for taking action a in state s:

Q(s, a) = R(s, a) + γ
∑

s′

τ(s, a, s′) max
a′

Q(s′, a′) (4.4)

It has been proven that Q-Learning will converge to optimal policy under

certain conditions [Watkins and Dayan, 1992]:

Theorem 1 (Convergence of Q-learning for deterministic MDP)
Consider a Q-learning agent in a deterministic MDP with bounded rewards, i.e.,
∀s, a |r(s, a)| ≤ c. Let Q̂n(s, a) denote the hypothesis Q̂(s, a) following the nth
update of a Q learning agent that uses a discount factor γ such that 0 ≤ γ ≤ 1.
If each state-action pair is visited infinitely often, then Q̂n(s, a) converges to
Q(s, a) as n→∞, for all s, a:

∀s, a lim
n→∞

Q̂n(s, a) = Q(s, a)

There are two major weaknesses to Q-Learning algorithm: (1) it needs to

keep in memory a table whose size is proportional to the size of the state space,

preventing its applicability to sufficiently large environments; (2) it will converge

59

only for an environment that is fully observable, i.e., when it has complete in-

formation about the environment. Obviously, in the real world, these conditions

are rarely met.

4.6 Incomplete Information

There are compelling reasons that agents may not have complete information

about the environments:

1. The environments of interest are usually much larger, more complex than
the agents in them, so it is not always possible to store all the information.

2. The environment may contain several agents, each of whose internal states
are not accessible by other agents.

3. Even in the cases where it is possible, it may not be desirable; e.g., storing
information that is not critical to decision making may slow down access
to important information because of indexing overhead, resulting in lower
performance.

4. In the physical world, information about the world can only be acquired
through sensors; and there are physical limits to how much information the
sensors can sense.

5. The physical laws may be subtle or even intrinsically non-deterministic.

As a result, dealing with incomplete information is an issue inevitable to intelli-

gent agents.

Consider the grid world depicted in Figure 4.3, where, for the purpose of viv-

ifying the difficulties caused by incomplete information, we limit the perception

of the agent to its immediate surrounding. An optimal policy would follow the

diagonal line to visit the black dots. However, a Q-Learning algorithm will not

be able to learn the policy: to go from one black dot to another, the agent will

need go through a sequence of locations which are indistinguishable to its limited

60

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

v

v

v

v

j�
�

@
@

@
@

�
�

Figure 4.3: A 12× 12 toroidal grid world, where
the world is not fully observable by the agent:
the perception of the agent is limited to its own
location and the four immediate neighbors (in-
dicated in the figure by points bounded by the
box around the agent). The black points are
distributed according to the equations y = x, y
mod 3 = 0, where x, y ∈ Z.

perception, yet to implement the diagonal policy, it will need to perform different

actions in some of these indistinguishable states.

For example, let’s suppose the agent is moving from the second black dot to

the next one in the upper-right direction. One optimal policy is for it to move

three times to the right, and then three times up. When the agent is in the

location indicated in Figure 4.3, the policy dictates that it should move right;

after that, it should move up; but that is impossible for the Q-learning agent

since its percept is the only thing it uses to decide the next action, and the

percepts in those two location are the same.

4.7 Partially Observable Markov Decisions Processes

When the environment is only partially observable, the agent would not be able

to determine with certainty which state it is in; a policy that decides the next

action purely by looking at the current percept would clearly be inadequate.

When the designer of an agent can acquire sufficient knowledge about the

environment, consisting of knowledge about (1) the state transition model (in the

form of probability distribution when the environment is indeterministic); and

(2) the observation model specifying the probability of underlying environment

61

state given the observed state; then optimal decision making and acting in such

environment can be modeled as a Partially Observable Markov Decision Process

(POMDP) [Sondik, 1971, Lovejoy, 1991].

Formally, a POMDP consists of seven components, 〈S, C,O,R, β, φ, τ〉. They

are, respectively,

• States : a set S;

• Action: a set C;

• Observation: a set O;

• Reward function: a function R : S → ℜ;

• Initial state probability distribution: β : S → [0, 1];

• Observation probability distribution: φ : S × C × O → [0, 1];

• Transition probability distribution: τ : S × C × S → [0, 1].

It has been observed that POMDPs can be transformed into a regular MDP

(albeit over an infinite state space) by using the belief state [Astrom, 1965]. Based

on this observation, many algorithms have been proposed [Cassandra et al., 1994,

McCallum, 1995, Hansen, 1998, Pineau, 2004]. With the exception of the UTree

algorithm [McCallum, 1995], most algorithms for solving POMDPs require the

knowledge of the underlying environments. The UTree algorithm adopts the so-

called history-based approach, which use the history of action-perception pairs

to differentiate hidden states. For example, when faced with the scenario shown

in Figure 4.3 (discussed in Section 4.6), UTree algorithm would be able to use

the memory of how many steps the agent has taken after leaving one black dot

to choose appropriate actions during the sequence of perceptually identical states

between black dots. However, although the UTree algorithm has been empirically

shown to work well in certain cases, there is a deficiency. For example, consider

62

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

v
v

v

j�
�

@
@

@
@

�
�

Figure 4.4: A 12× 12 toroidal grid world, where
the black dots are distributed indeterministically
with probability 0.2 on the line specified by the
equations y = x, where x, y ∈ Z.

the instance of grid-world in Figure 4.4 where the black dots are scattered inde-

terministically according to some probability distribution. The distances between

two black dots can be arbitrary large, rendering the history-based approach in-

effective.

4.8 Bounded Optimal Rationality

For any fully observable MDP, a reactive control policy (i.e., one whose action

recommendation completely depends on the current percept) is sufficient for op-

timal behavior, so an optimal policy in such environment can be assumed to be

the “best possible” in practice: the policy can be implemented as simple table

lookup, which is practically a constant time operation, for example, by using a

hash table.

However, this is not the case for an POMDP, where, to estimate the best

action, an optimal policy would usually need to perform certain kind of search,

which takes an indefinite amount of time. Spending more time in searching may

find a better action, but would increase the risk of losing track of the changes

in world; so there is a fundamental trade-off involved here. What is the “best

possible” policy is less clear in this setting.

63

One good starting point for identifying a performance measure is the notion

of Bounded Optimality proposed by Russell et al. [Russell and Subramanian,

1995], which defines the optimality of the performance of a bounded agent with

respect to the physical characteristics (e.g., processor speed, memory space) of

the machine on which the agent is implemented) and a fixed environment:

Definition 1 (Russell’s Bounded Optimal Rationality) Define
f = Agent(l, M) to be an agent function implemented by the program l
running on machine M . Then the bounded optimal program lopt is defined by

lopt ≡ argmaxl∈LM
V (Agent(l, M),E, U)

where LM is the finite set of all programs that can be run on M ; E is the en-
vironment in which the agent is to operate, and U is the performance measure
which evaluates the sequence of states through which the agent drives the actual
environment; V (f,E, U) denotes the expected value according to U obtained by
agent function f in environment class E, which is assumed to be a probability
distribution over elements of E.

A few remarks:

1. Observe that the bounded optimal agent is dependent on the environment;

intuitively, an agent specially trained to a specific environment will perform

better than others.

2. The design of an agent adapted to one environment will be quite different

from another (and the design process itself will likely take a lot of time

and resources); a design that can generalize and amortize the cost will be

desirable;

3. A BO agent is a function of the complete specification of a environment;

that is not likely to be available to the designer in most cases.

Because of the dependence on the fixed environment specification, Bounded

Optimality is not directly applicable to a non-stationary environment.

64

4.9 Non-stationary Environment

In every model or example environment we have discussed so far, the agent de-

signed is the only cause of changes in the world. More generally, we have been

assuming the rules governing the dynamics of the environment do not change.

The world we are living in obviously does not fit such an assumption.

A stationary process is a process of change that is governed by laws that

do not themselves change over time. Since the real world is non-stationary, it

would seem any agent that aspires to the claim of intelligence must be able to

deal with non-stationary environments adequately. However, it is much less clear

what would constitute a good performance measure in such environments. It is

not even clear learning would be possible (We will discuss this point further in

Section 4.10).

To develop an intuition of the difficulty, we again look at the grid-world. With

the stationary assumption, the distribution of the black dots in the world can be

specified by a characteristic function of two variables (namely the x, y coordinates

of the black dots), K : X × Y → {0, 1}; X, Y ⊆ Z, which returns 1 when the dot

corresponding to the pair of coordinates is black, and 0 otherwise. Without the

stationary assumption, the characteristic function will be of three parameters,

with the third parameter being the time (see Figure 4.5 for an example): K :

X × Y × T → {0, 1}

4.10 Intelligence in General

When an agent does not make any assumption about the “physics” of the envi-

ronment, then the agent can be seen as a universal agent, since it can then work

65

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

v v

v v

v v

v v

v v

v v

j
f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

v v

v v

v v

v v

v v

v v

j

Figure 4.5: A non-stationary toroidal grid world, where the positions of black
points move up a step for each time step. The two figures depict snapshots of
the world when t = 0 and t = 1, respectively. The black points are distributed
according to the equations (y − 2x − t) mod 12 = 0, where x, y, t ∈ Z, and t is
the time step number.

equally well (or badly) in every environment. Does an optimal agent in such an

environment exist? To answer this question, we need to overcome at least two

problems: (1) What can we assume about the universal environment? (2) What

does optimal mean in such an environment?

Looking at the example in Section 4.9, when K is the random function, obvi-

ously no learning would be possible, and every agent would perform as well (or

as badly) as any other on average. Therefore it seems justified to hypothesize

that

Conjecture 1 Learning, hence intelligence, is not always possible in all envi-
ronments.

and,

Conjecture 2 Intelligence is closely related, and relative, to environments.

Intuitively, the simpler K is, the faster should it be possible for an agent to

learn and converge to optimal behavior in that environment. The observation

leads to the following conjecture:

66

Conjecture 3 The most intelligent universal agent is the one whose rate of
learning is proportional to the algorithmic complexity of the environment.

Kolmogorov algorithmic complexity seems to be of particular relevance here:

Definition 2 (Kolmogorov’s Algorithmic Complexity) The conditional
prefix Kolmogorov complexity C of x given a sequence y is defined as the shortest
program p, for which a universal Turing machine U outputs x given y:

C(x|y) ≡ min
p
{(l(p) : U(p, y) = x)}

If we regard the universal environment as the one such that all possible envi-

ronments may occur in time, we can make no assumption about the environment;

therefore we may also call it the null environment. However, even in such an envi-

ronment, there seems to be a natural structure imposed by algorithm complexity.

That is the basic intuition behind Solomonoff’s universal prior [Solomonoff, 1964,

1978]:

Definition 3 (Solomonoff’s Universal Prior) The universal prior M of a
sequence x is defined as the probability that the output of a universal Turing
machine starts with x:

M(x) ≡
∑

p:U(p)=x∗

2−l(p)

The so-called “Universal AI” proposed by Hutter [Hutter, 2005] is based on

the universal prior, and he has proof showing that his “algorithm” is optimal

in the universal environment. Unfortunately, universal prior is undecidable, so

the “algorithm” has no practical application, and is not strictly an algorithm

according to the conventional definition of “effective procedure that terminates

in finite number of steps.” It remains to be seen if it is possible to “scale down”

his method to a practical algorithm for an agent with bounded resources while

retaining the property of optimality.

In this thesis, we are attacking the problem from the opposite direction: we

start from boundedness, and seek ways to approach optimality. We can at least

be ensured of retaining the boundedness.

67

4.11 Discussion

It has been a long debate among AI researchers on how much knowledge is needed

for the agent to be able to evolve in “interesting” environments. In general, the

less prior knowledge is assumed, to more environments will the agent be adapted;

however, the price of the generality will be the efficiency; the less is specified, the

more the agent has to figure out. In the case of a learning agent, the more time

will it take for the agent to adapt.

For example, an agent that has a statistical model of the world, by using

Bayesian reasoning, etc. will perform better than one without. However, this

doesn’t mean we need to specify the agent in these concepts directly; it is pos-

sible that we can get away with it by just specifying the axioms of probability.

The question is how to choose the appropriate level of details to make the boot-

strapping faster. To answer this question, perhaps we need to apply to ourselves

similar analysis that we are applying to the designing of the agent. This may

be seen as an optimization problem: obviously, some prior knowledge is needed;

but accumulating and encoding world knowledge for an agent’s consumption is

an expensive, difficult and tedious task for human being. How much knowledge

will be optimal in the sense of exploiting the different characteristics of a human

and a computer for processing knowledge?

4.12 Conclusions

This chapter is mainly to set the stage for the subsequent chapter, by introduc-

ing the necessary background. In particular, we described a series of increasingly

general (or less restrictive) models of environments, and discussed possible per-

68

formance measures and algorithms for solving them. We put forward a few con-

jectures on general intelligence, i.e., an optimal algorithm for agent in universal

environment. In future work, we intend to make the conjectures more formally

rigorous. To develop a better understanding of the issues involved in the con-

jectures, we will propose an algorithm for a prototypical agent in a universal

environment in the next chapter.

69

Chapter 5

Reflective Reinforcement Learning

5.1 Overview

An agent is said to be rational if the actions it takes maximize the expectation

of success, given what it knows about the environment. In most environments,

rationality is not realizable since the time it takes for computing the best action

usually far exceeds the time available to issue an action to meet the changes in

the environment. Bounded rationality refines the notion of rationality by taking

the availability of computational resources (including time) into consideration.

[Russell and Subramanian, 1995] gives a mathematically rigorous formulation of

bounded optimal rationality which is by construction realizable or “feasible”,

given a model of the environment and some specification of the physical charac-

teristic of computational devices available to the agent. However, even though

we know an agent satisfying bounded optimal rationality exists given the above

conditions, we don’t know (yet) how to find that feasible agent or if finding it

will ever become “feasible” in realistic environment.

If we rise to the meta level and look at the whole problem composed of (a)

finding the feasible agent, and (b) solving of the (object) problem of maximizing

70

utility in the environment by the agent, an intriguing question arises: Is this

process of solving a task environment by separating it into the (sub)processes

of (1) finding a feasible agent, and (2) making the agent solve the task, itself

bounded optimal?

On the other hand, conventional reinforcement learning algorithms for par-

tially observable Markov-Decision-Processes (POMDPs) are often subdivided (ei-

ther conceptually, or sometime implementationally) into two parts: (1) main-

tenance of belief states from observations and state estimation; (2) finding or

approaching the optimal policy in the belief space. However, this subdivision

of labor presents some problems: e.g., the maintenance of belief states requires

computational resources and takes time; furthermore, in most (all?) existing

algorithms, determining the next action requires forward search in infinite be-

lief spaces that have exponential runtime. We are faced with the (meta-)task of

deciding how much resources to be appropriated for each component of the task.

Based on these observations, we develop the reflective Q learning (RQL) al-

gorithm that will adapt and specialize itself to the changing environment, by not

only using reinforcement learning for learning policy to adjust the environment,

but also to adjust the agent itself. In effect, an RQL agent can be seen as hav-

ing a meta-agent as a component, which treats the object-level agent as part of

its environment, thus subjected to reinforcement-based adjustment. From this

perspective, the object-level agent is responsible for reactive control, while the

meta-level agent is responsible for long-term deliberation on how to prepare the

object-level agent for better adaptation, and the two processes execute concur-

rently.

We rely on the convergence of conventional reinforcement learning algorithm

71

to ensure that the adjustments made will cause the whole system to gradually

optimize itself to bounded-optimality.

5.2 Problem Setting

AI research is concerned with three kinds of entities: environment E , designer H,

programmable machineM. Typically, the designer has some goal, i.e., preference

U for the environment to be in certain states, and would be interested in finding

program P to control the machine to help achieve the goal. The combination of

the machine and the program together specifies an agent A.

The objective of an AI researcher Hu could be understood as finding a general,

effective methodology Pu for the designer to design a program to make the most

effective use of the machine. Complications can arise, e.g., from finding the

balance between the two kinds of effectiveness — a more effective program may

require a design method that takes a long time to finish, making it overall less

effective.

In general, the designer would not have full access to the environment; i.e., the

designer could be either (i) without full knowledge about the transition model,

(ii) without full knowledge about the possible states, (iii) uncertain about the

current state of the environment.

5.3 Reflective Reinforcement

The premises of reinforcement learning (RL) and a bounded-optimal-rational

agent are basically the same: there is an autonomous agent interacting with

an environment; the agent receives information about the environment through

72

certain channels of perception, and has a set of actions that it can perform to

affect the environment. Recurrently, based on the input from its sensor and its

internal state, the agent would select an action to affect the environment in some

desirable way.

As shown in the previous chapter, in its basic form, the Q-Learning algorithm

is unable to deal with an infinite state space, since an essential requirement for its

convergence is infinitely repeated visits to all states and infinite amount of mem-

ory to store information about them. Various techniques have been developed to

mitigate this weakness, basically by clustering similar states together. However,

the successful application of these techniques are usually “labor intensive”, since

the clustering methods are domain dependent.

Here we propose an “internal state” approach to deal with the infinite world:

instead of learning actions based on the actual states of the environment, the

internal state approach instead learns the internal states of an agent, as well as

the external states.

5.3.1 Algorithm

The proposed algorithm, which we will call Reflective Q-Learning (RQL), is based

on the Q-Learning (QL) algorithm, where both the states and actions are decom-

posed into two components. In RQL, a state S consists of two parts, S = 〈P, M〉,

where P is a projection of the external world, which may be intuitively under-

stood as the perception of the agent; and M is the memory state of the agent.

An action A also consists of two parts, A = 〈E, I〉, the external and internal

action. The external action serves a similar role to the action in traditional re-

inforcement learning algorithm, i.e., to cause change in the environment, while

73

the internal action is used to manipulate the memory state. The memory state

M and internal action I together define a finite state machine F . If we label the

elements of each of the set with integer, the transition rule can simply be defined

as τ(m, a) = (m+ i(a)) mod |M |, where i(a) = ⌊a/|I|⌋, and |.| is the cardinality

of a set.

function REFLECTIVE-Q-AGENT(percept , astate)
p′, r′ ← percept
p, m, a, r, Q← astate
Q[〈p, m〉, a]← Q[〈p, m〉, a] + α(r + γ maxa′ Q[〈p′, τ(m, a′)〉, a′]−Q[〈p, m〉, a])
a← argmaxa′Q[〈p′, τ(m, a′)〉, a′]
p, m, r ← p′, τ(m, a), r′

astate ← p, m, a, r, Q
return ae, astate

Table 5.1: Reflective Q-Learning Algorithm

The algorithm is a strict generalization of the QL (which can be considered

as RQL with one internal state), and it retains much of the basic structure of

QL. Hence, it is rather straight forward to adapt most techniques for improving

QL, such as eligibility trace, prioritized sweeping, etc, to RQL.

5.3.2 Remarks

The internal state approach has the following potential advantages:

1. One obvious merit of our approach is, as mentioned above, the general-

ization of Q-Learning algorithm to a problem with an infinite number of

states. In this regard, our approach is not very different from other state

reduction techniques, and it remains to be seen whether this approach can

perform better than these known techniques. An immediate advantage is

74

we don’t have to devise a separate clustering method to classify the state,

since it is accomplished as part of the learning process.

2. Internal states provide a flexible medium for experimenting with varia-

tions of the Q-Learning algorithm. For example, one common theme in Q-

Learning research is the determination of an appropriate parameter value

for ǫ, the “exploration” factor for different domains. One trick we can play

with the internal state approach is we can attach a different set of parame-

ter values for different states of the agent, so that we can have a state with

very high exploration factor, whose main responsibility will be to cause un-

predictable behaviors. Again, the determination of these is “automatic” as

part of the learning process in our framework.

3. This framework allows the conflation of strategies for dealing with spatial

and temporal variations in the world. A big challenge for the Q-Learning

algorithm is dealing with changes in the world: for an agent residing in a

dynamic world, the policy it learns from one situation may not be effective

in another, and more significantly, the learnt policy may even be a hindrance

for the agent to adapt to the new situation. We conjecture that the internal

state approach to Q-Learning will be able to capture regularities in changes

over time, as well as those caused by the sequence of moves in physical

states. In other words, we think the internal states approach has a built in

mechanism to deal with perturbation, by its ability to accomodate multiple

policies and freely mix them together through internal transitions.

Because of these flexibilities, the convergence might be much slower than the

standard approach. Only empirical data can decide whether our approach is

75

sound.

5.4 Implementation

We have designed and implemented a general protocol for simulating agents-

world interaction which allows succinct specification of a reinforcement learning

agent and its environment. The protocol consists of (1) an agent specification

language, (2) an environment specification language, (3) an API (Application

Programming Interface) specification for the simulators where arbitrary agent

and environment behaviors may be specified. The framework is object-oriented,

based on CLOS, the Common Lisp Object System, enabling fine-grained control

and customization of a set of prototype agents and environments defined in the

protocol. In this section we will provide a documentation of the protocol and a

brief description of the prototype agents and environments.

5.4.1 Protocol

The agent and the world are CLOS classes; to add a new agent and environ-

ment, it would be sufficient to specialize the classes and implement the following

functions:

Generic function transition (world action)

"Return a new state of the world after taking action. Side-effect: the

world is destructively modified."

Generic function sensor (agent world)

"Return a perceived state; i.e., translate the state of the world into

percept of agent; in general, there are states that cannot be discerned

from each other wrt the agent. The purpose is to model the incomplete and

uncertain information that real agents will need to deal with."

Generic function utility (agent world)

"Return an estimate of the desirability of world wrt the agent."

Generic function policy (agent percept reward)

"Return an action, given the current perceived state of the world. Side

76

effect: the internal state of agent will be updated. In principle, policy

should not access the world directly, but call the sensor and utility

function."

5.5 Toroidal Grid World

There are several common benchmarks for POMDPs, e.g., the maze world and its

variations [McCallum, 1995], John Muir Trail [Angeline et al., 1994, Collins and

Jefferson, 1991], partially observable pole balancing [Meuleau et al., 1999], etc.

However, all of the these assume a stationary environment, i.e., a fixed transition

model. To test for the effectiveness of algorithms in non-stationary environments,

we need a benchmarking framework that includes dynamic elements. Ideally,

this framework should allow us to easily vary and control aspects of interest

of the world, such as observability, stationarity, determinism, etc, as well as

smooth transition from simple to more complex, realistic environments. For

these purposes, we devise the “toroidal grid world”.

5.5.1 “Physics” of the World

The toroidal grid world is a n× n, two dimensional grid world. Each grid point

may assume one of two possible values, empty or solid. At any given time, the

agent is located at one of the grid points, (x, y), where 0 ≤ x, y < n. At each time

step, the agent makes an perception (input) and produces an action (output).

The perception of the agent is controlled by a parameter, the range r, such

that the input to the agent consists of the configuration of the grid points within

the r × r square surrounding the agent. (The world will be fully observable by

the agent if we set r = n, and partially observable when r < n).

77

The action produced by the agent has five possible values:

{left, right, up, down, nil}.

The first four actions cause the agent to be in the immediate adjacent square to

the respective directions, while the fifth is a “no-op” that does not cause change

in position. Whenever the agent visits a solid point, it is rewarded with 1000

units; otherwise, -1 unit (e.g., to signify energy spent). To prevent the agent

from staying at (or repeatedly visiting) the same solid point, we keep a fixed-

length queue of q most recently visited solid points, so that no reward is given

for visiting points on the queue.

The “state of the world” can be completely identified by the conjunction of

the agent’s location and grid configuration. For an n × n world, the state size

is n2 · 2n2

. (When n = 48, the smallest grid size used in simulations that will

be described below, the state size is over 10600; hence, even if the world is fully

observable, conventional algorithms for solving MDP are out of the question in

this domain.)

The configuration of the solid points on the grid can be compactly represented

by a characteristic function k, whose range is {0, 1}, indicating whether a grid

point is empty (0) or not (1). In the case where the world is stationary, the

function would have two arguments, the x and y coordinates; for dynamic world,

it would have an additional third argument as the time index. A nondeterministic

world can be obtained by using a nondeterministic characteristic function.

Intuitively, the “complexity” of the characteristic function determines the

“complexity” of the world, which in turn determines how hard it will be to find

a “solution”, for some appropriate notions of “complexity” and “solution” (e.g.,

possible candidates for which are algorithm complexity and bounded-optimal

78

policy (suitably generalized to non-stationary environment), respectively). Since

the complexity of the characteristic function can be up to Turing-completeness, a

solution to the world will need to be Turing-complete as well. Hence, this bench-

mark seems adequate in providing a framework for us to study environments from

the very simple (fully observable, deterministic, stationary, Markovian, etc) to ar-

bitrarily complicated (including all combinations of observability, determinism,

stationarity and Markovian property).

5.5.2 Experiment Settings

Agent Parameters

The RQL algorithm, to a large extent, is domain independent: it assumes very

little knowledge about the environment. For example, compared with most al-

gorithms in the POMDP framework, RQL doesn’t assume a given world model

nor an observation model; in other words, we need to provide neither knowl-

edge about the preconditions, effects, etc of actions, nor characteristics such as

accuracy or reliability of sensors of the agent.

In theory, the only thing that needs to be changed in order to adapt the RQL

algorithm to a particular domain (environment) is the number of actions, |C|,

available to the agent. However, in practice, the time to convergence of RQL

will be affected by the choice of values for a few parameters. Since RQL can be

considered a generalization of Q-Learning (which is RQL with one internal state),

all Q-Learning parameters still apply here: learning rate (α), discount factor (γ),

exploration factor (ǫ), and eligibility trace (λ). Besides these, RQL also has

an additional parameter: the number of internal states, |I|, which constitutes a

kind of upper limit on the complexity of the agent. Intuitively, a larger number of

79

internal states would enable the algorithm to handle more complex, hence a larger

class of environments; however, it would also require a longer training period to

learn the appropriate internal structures. Our simulations below confirm this

intuition.

Environment Parameters

Since RQL, like most reinforcement learning algorithms, includes an “explo-

ration” factor which makes it stochastic, repeated trials using a variety of param-

eters are necessary for empirical verification of its performance and robustness.

This section gives details about the parameters used in our empirical study.

Within the toroidal grid world, the behavior of the environment can be fully

characterized by a quadruple 〈n, r, q, k〉, signifying the grid-size, perceptual range,

queue length and the characteristic function, respectively, of the environment as

detailed in the previous section. In our simulations, the typical values for the

grid-size n are 48, 120, 240, 480 and 720. In the rest of this chapter, unless

specified otherwise, the values of r and q will be 3 and 32, respectively.

As mentioned earlier, even for the smallest size of 48, the number of possible

states is in the order of 10600, making conventional Q-learning algorithms, which

require an entry in memory for each distinct state, unsuitable for fully-observable

variation of this domain. However, if we restrict the range of perception to only

part of the environment (e.g., to only the r × r points around the agent), Q-

learning can have some success in certain settings — depending on the values

of r and k. Intuitively, Q-learning would do well when the environment is such

that it is possible for the agent to follow an optimal policy without retaining any

information about the past. We will use an example to demonstrate this in the

80

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f

v v

v v

v v

v v

v v

v v

j

Figure 5.1: Simplified k0 (interval of 2).

following subsection.

In the toroidal grid world, the most important factor in deciding the nature

of the environment is the characteristic function k. In our simulation, we mainly

used three instances of k: k0, k1 and k2 as defined by the equations below:

k0(x, y, t) =

1 if [(y + 2x) mod n = 0] ∧ [y mod 8 = 0]

0 otherwise

(5.1)

k1(x, y, t) =

1 if [(y + 2x) mod n = 0] ∧ [random(8) = 0]

0 otherwise

(5.2)

k2(x, y, t) =

1 if [(3y + (x mod 5)2 + t) mod n = 0] ∧ [y mod 2 = 0]

0 otherwise

(5.3)

where n is the grid-size, and random(i) is a non-deterministic function that re-

turns a number in 0, . . . , i− 1 with equal chance each time it is invoked. (Hence,

in Equation 5.2, the clause random(8) = 0 will be true, on average, once every 8

times the characteristic function k1 is called to determine the existence of reward

at a point.)

Among the three, k0 is the simplest one; it is deterministic and stationary. In

81

effect, the clause (y + 2x) mod n = 0 in Equation 5.1 causes the solid points to

be distributed on lines with a slope of −2 that intersect the origin (0, 0) and its

diagonally opposite corner (n, n), whilst the clause y mod 8 = 0 means the solid

points occur once every 8 consecutive points on the lines (See Figure 5.1 for a

simplified version of the world induced by k0, where the interval is 2 instead of 8).

With a large enough field of perception (r), a corresponding environment will be

a fully observable MDP, and can thus be solved using conventional reinforcement

learning algorithms, in theory. A larger grid-size will render these algorithms

impractical in most cases, however.

In Equation 5.2, an additional element of complication is introduced, in the

form of the random(.) function, making k1, and hence the resulting environments,

non-deterministic.

The definition of k2 in Equation 5.3 introduces another complication by mak-

ing use of the time index (t), which so far has been ignored in the previous two

characteristic functions. Because of the occurrences of t in the definition, a re-

sulting environment will no longer be stationary. In other words, “rules” that

hold for one instant may no longer be true in the next, making it seemingly the

most challenging.

5.5.3 Deterministic Stationary Environment (k0)

As hinted above, in an environment induced by k0, if we let the range of perception

r to be large enough (e.g., r = 10) such that the next solid point along the line

is “within sight” of the agent when it visits one, then traditional Q-learning can

still converge to an optimal policy, even though the environment is not a fully

observable MDP.

82

Figure 5.2 and 5.3, which show the performances of ordinary Q-Learning and

RQL respectively, confirm our observation:

The drops in QL performance can be explained by the exploration factor,

which sometimes makes the agent wander away from the lines until the solid dots

fall out from the field of perception. When no solid dot is in sight, Q-learning

can do no better than random walk, since all states would be indistinguishable

from the perspective of the agent.

RQL converges slower in comparison, because of the overhead in maintaining

and learning the internal memory states. However, the extra memory makes it

less susceptible to wandering, since it can wander farther before losing track of

where it is.

Figure 5.4 and 5.5 show the performances when the range of the field of

perception is set to r = 3. In this case, Q-Learning fails altogether to pick up the

right behavior (see Section 4.6 for explanation), while RQL learns the optimal

policy successfully.

It is well known that the condition entailed by fully observable MDP is suffi-

cient for Q-Learning to converge to optimal policy; this experiment provides an

example where full observability is not necessary.

5.5.4 Non-deterministic Stationary Environment (k1)

To test the performance of RQL in nondeterministic environments, we carried out

simulations in environments induced by the characteristic function k1 (as defined

in Equation 5.2), where the rewards (solid points) are distributed nondeterminis-

tically, with 1/8 probability, on lines intersecting the two diagonal corners of the

grid, with slope -2.

83

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

W:toroidal:r10:s720; A:q:e.005; Trial 0

perf
mean

Figure 5.2: Q-Learning in toroidal-grid-world with r = 10. In this (and sub-
sequent) figure(s), the x-axis is the number of steps taken, and the y-axis is
the performance. The solid line shows the performance average over a running
window of the last 216 time steps, while the dash-line is the life-time average.

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

W:toroidal:r10:s720; A:r:i5:e.005; Trial 0

perf
mean

Figure 5.3: RQL in toroidal-grid-world with r = 10.

84

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

W:toroidal:r3:2x:s720; A:q:e.005; Trial 0

perf
mean

Figure 5.4: Q-Learning in toroidal-grid-world with r = 3.

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

W:toroidal:r3:2x:s720; A:r:i5:e.005; Trial 0

perf
mean

Figure 5.5: RQL in toroidal-grid-world with r = 3, using 5 internal states.

85

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

W:toroidal:r3:2x:chance:s720; A:r:i5:e.001; Trial 2

perf
mean

Figure 5.6: Performance of RQL on an indeterministic toroidal grid world.

Clearly, for a large enough grid-size, the optimal policy would be for the agent

to follow the lines. Since it takes 3 steps at minimum to go from one point on the

line to the next (e.g., one step to the left and two steps down), thus the agent

needs to travel 3·8 = 24 steps on average to get one reward. Using a reward value

of 1000, this entails that the best average performance the agent can achieve is

(1000− 24)/24 ∼ 40.

To give a sense of the baseline performance to evaluate against, on a grid of

720 × 720 points, there is 1 reward per more than 5000 grid points — in other

words, a “brute-force” agent doing exhaustive search would get no better than

negative expected reward.

It is worth mentioning that in this setting, the distance between two rewards

can be arbitrarily large, making it hard for history-based or instance-based learn-

ing algorithms [McCallum, 1995].

Figure 5.6 shows the result of a trial on a 720× 720 grid. The figure shows,

in the form of the many “valleys” in the running window average performance

curve, similar periodic deterioration of performance due to the exploration factor,

which we also observed in the deterministic case (k0). The peaks do approach

86

the best possible performance of around 40, though; which means the optimal

policy had been attained, but then sometimes “forgotten”.

One obvious approach to diminish the forgetfulness, or the dips in perfor-

mance, is to employ simulated annealing technique to reduce the exploration

factor ǫ when sufficient performance is attained. However, we did not follow this

path for several reasons: first, even though in this particular case, we are able

to determine the optimal performance through analysis, in general, there has not

been known good way for the agent to assess its own performance and determine

whether it is close to optimum; second, even though it appears simulated an-

nealing would speed up convergence for stationary environment, we have reason

to believe it would hurt when the environment is non-stationary: The intuition

behind simulated annealing is to increase exploration, thereby learning, when not

much is known about the environment and hence performance is poor; but de-

crease exploration in order to increase exploitation of the learnt knowledge when

performance improves. However, in the case of a non-stationary environment, the

decrease in exploration would quite probably be detrimental to the adaptation of

the agent to the changed environment.

Instead of some ad hoc method for minor performance gain, we think these

simulation settings bring into focus much larger and interesting issues that call

for more systematic analysis and suggest many interesting questions: for exam-

ple, what are the meanings of the various parameters (such as ǫ, γ, etc that are

employed by various reinforcement learning algorithms) in non-stationary envi-

ronment? Would it be possible to find a universal, i.e., truly domain independent,

values for these parameters? Answering those questions will be a main part of

our future direction.

87

Average Performance over Repeated Trials

The nondeterminism in the environment, as well as the stochastic nature of the

algorithm, demand varied and repeated trials of the algorithm. Figure 5.7 to

5.9 show the results of simulations where we first varied the number of internal

states, and then the grid size. Each graph shows the average performance of 8

trials (see appendix for individual trials).

Figure 5.7 contains the outcome of the first batch of simulations, using a grid-

size of 48× 48, and k1 as the characteristic function. The six graphs are results

of the simulations where the numbers of internal states used are 1, 2, 3, 5, 10 and

20, respectively.

The first two graphs, where RQL is given 1 and 2 internal states respectively,

display little or no learning at all. This is not surprising: as mentioned earlier,

the optimal behavior in this environment is to follow certain lines with a slope of

-2. Because of the non-deterministic spacing between two consecutive rewards,

the agent needs to do this blindly, i.e., without relying on any distinction from

its perception while following the lines. Therefore, for the agent to realize the

behavior of going one step left and two steps down, it needs to keep track of

at least three states that correspond to the three steps routine. The rest of

the graphs confirm this observation: when RQL is provided with there or more

internal states, the required behavior is picked up somewhat successfully.

As noted earlier, the number of internal states represents a trade-off between

the capacity for complex behaviors and amount of training required for learning.

This is reflected in the slower learning rates shown in the last two graphs, where

10 and 20 internal states are used respectively.

The next two batches of simulations, whose outcomes are shown in Figure 5.8

88

and 5.9, where grid-sizes of 240 and 720 are used respectively, display similar

trend. (Closer examination of the first batch of graphs would reveal that the

performance of RQL in the 48×48 case appears to be inferior to the latter batches.

An explanation for that is local minimal: when the grid-size is comparatively

small, the agent may travel in direction perpendicular to the lines (i.e., with

slope 1/2) and still get above zero performance average.)

89

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 1 internal state

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 2 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 3 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 5 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 10 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 20 internal states

perf
mean

Figure 5.7: Static, nondeterministic, 48× 48 toroidal grid world.

90

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 1 internal state

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 2 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 3 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 5 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 10 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 20 internal states

perf
mean

Figure 5.8: Static, nondeterministic, 240× 240 toroidal grid world.

91

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 1 internal state

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 2 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 3 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 5 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 10 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 20 internal states

perf
mean

Figure 5.9: Static, nondeterministic, 720× 720 toroidal grid world.

92

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

W:toroidal:default:s720; A:r:i5:e.001; Trial 0

perf
mean

Figure 5.10: Performance of RQL on a non-stationary toroidal grid world.

5.5.5 Non-stationary Environment (k2)

Figure 5.10 shows the result of a trial where the distribution of rewards is induced

by k2, which is non-stationary. In this case, there is one reward per 1450 grid

points on average.

Similar to the previous case, we ran multiple trials for each set of parameters

(Figure 5.11 to 5.13).

93

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 1 internal state

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 2 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 3 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 5 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 10 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 20 internal states

perf
mean

Figure 5.11: Dynamic 48× 48 toroidal grid world.

94

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 1 internal state

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 2 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 3 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 5 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 10 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 20 internal states

perf
mean

Figure 5.12: Dynamic 240× 240 toroidal grid world.

95

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 1 internal state

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 2 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 3 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 5 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 10 internal states

perf
mean

 0

 20

 40

 60

 80

 100

 120

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

pe
rf

or
m

an
ce

steps

With 20 internal states

perf
mean

Figure 5.13: Dynamic 720× 720 toroidal grid world.

96

 0

 20

 40

 60

 80

 100

 0 200000 400000 600000 800000 1e+06

m
ar

ke
rs

 fo
un

d

episodes

John Muir Trail

mean

Figure 5.14: Performance of RQL on John Muir Trail.

5.6 Other Experiments

5.6.1 John Muir Trail

John Muir Trail is a variation of the toroidal grid world, where a number of

markers are distributed on the grids according to a fixed scheme, forming a sort

of trail which might be broken, i.e., markers may be missing in some segments of

the trail. The task is to find as many marker as possible within a fixed number of

steps. Traditional studies of this problem use various techniques such as evolu-

tionary algorithm, neural networks, and sometimes the mix of the two [Angeline

et al., 1994]. In episodes of 512 maximal steps, the RQL algorithm is able to find

50 out of 89 of the markers after 40000 episodes, and all of them after around

750000 episodes (see Figure 5.14).

5.6.2 Partially Observable Pole Balancing

In the classical pole balancing task environment [Sutton and Barto, 1998], a pole

is hinged at one end to a cart that can move in both directions along a track of

97

some fixed length; the objective is to control the cart (by applying force in either

direction) to keep the pole from falling over while avoiding running off the track.

The relevant aspects of the environment can be represented as a four tuple

〈x, ẋ, θ, θ̇〉, i.e., the position x and velocity ẋ of the cart, and the angle θ and

angular velocity θ̇ of the pole. Since the four components are continuous, this

environment has in theory an infinite number of states. A typical discretization

scheme is to divide each component into a small number of ranges; for example, a

program by Barto et al. [Barto et al., 1983] to simulate this environment divides

the four components into 3, 3, 6 and 3 discrete values respectively to obtain a total

of 163 (3× 3× 6× 3+1, where the 1 is the catch-all for all other possible values)

states. In such a setting, several well-known reinforcement learning algorithms

have been demonstrated to be able to ‘solve’ the task, i.e., to control the cart

successfully for over 100,000 steps after a number of trials.

The task becomes more challenging when some aspects of the state of the

environment are unobservable or suppressed, turning the task into a POMDP.

For example, Meuleau et al. [Meuleau et al., 1999] considers the pole balancing

task where only the position of the cart and the angle of the pole are observable,

while the knowledge of their velocities is missing.

Figure 5.15 shows the performance of our algorithm on the partially observable

pole balancing task. Meuleau et al. [Meuleau et al., 1999] indicated that they

subdivided the position and angle into finer discrete values (6 and 8 instead of

3 and 6 in Sutton’s original setting), but did not give detail on where they put

the cuts, so we are unable to reproduce the exact experiment. By inspecting the

figure in their paper, they attained an average performance of 600 steps in about

400000 trials. Even without the finer discretization, our algorithm attains 600

98

 0

 500

 1000

 1500

 2000

 2500

 0 50000 100000 150000 200000 250000 300000 350000 400000

max
avg

Figure 5.15: Partially observable pole balancing. The x-axis represents the num-
ber of trials (or episodes), and the y-axis the number of control steps attained
before failures. The pluses denote maximum values of 200 trials, while the solid
line is the average.

steps of control in less than 250000 trials.

5.7 Summary

QL POMDP UTree RQL

FO Y Y Y Y

PO easy Y Y Y Y

PO hard N Y Y Y

PO rand N Y N Y

PO dyna N N ? Y

Table 5.2: Capabilities of various algorithms in different environments.

Table 5.2 is a summary of the capabilities of various algorithms. Below are

explanations of the labels:

FO: Fully observable.

99

PO easy: Partially observable, easy (e.g., where relevant features are within the
field of perception).

PO hard: Partially observable, hard (e.g., where relevant features are not within
the field of perception).

PO rand: Partially observable, indeterministic.

PO dyna: Partially observable, non-stationary.

QL: Standard Q-Learning.

POMDP: The class of algorithms that require the knowledge of transition mod-
els for the environments.

UTree: History (aka instance) based learning.

RQL: Reflective Q-Learning.

RQL seems to have a distinctive advantage in all the settings that have been

tried.

The one uncertainty is in the UTree case in the dynamic world. Ideally,

we should test it empirically using our setting, but we have not had success in

getting the McCallum’s UTree implementation [McCallum, 1995] to run. General

considerations of the nature of the algorithm suggest it might have trouble in a

dynamic setting. For instance, UTree will regard changes of positions of the solid

points as uncertainty in rewards that need to be resolved, and will split in an

effort to resolve it. One possibility is UTree will continue to split excessively

long as the rewards move around. A future work to consider is to empirically

investigate the performance of UTree in the dynamic setting.

5.8 Related Work

Designing agents in non-stationary environments has received little attention from

the AI community, where the “common wisdom” seems to be that, for an agent

100

to perform well in such an environment, it would need to solve many tasks that

have been proved computationally intractable, therefor impractical. The sub-

area that is closest to our work is research in POMDP. Among those, most

require the knowledge of the underlying transition models and observations of

the environment. The exceptions include the so-called history-based approaches.

History-based methods express policies conditioned on sequences of recent obser-

vations, instead of belief states. For example, the UTree algorithm [McCallum,

1995] offers an approach in which the observation histories are represented using

a suffix tree with variable depth leaves, and where branches are grown whenever a

new observation sequence is not Markovian with respect to the reward. The Pre-

dictive State Representation (PSR) approach [Littman et al., 2002, Singh et al.,

2003] is based on a similar premise, but instead of using history to condition

action-choices, the policy is conditioned on test predictions, where a test is a

sequence of future observations. In this approach, states are expressed in terms

of probabilities of observation sequences.

5.9 Conclusions and Further Work

It is generally believed that solving non-stationary environment is a difficult prob-

lem. Indeed, if “solving” means finding an optimal agent program, the problem is

intractable, and therefor impractical. However, being practical usually does not

require optimality; most of the time, it only needs to be good enough to survive,

or just a little bit better than the competition.

In this chapter, we introduced a new algorithm, RQL, for reinforcement learn-

ing in an unknown environment which may be time varying and non-stationary.

Experiments verified that the algorithm works well in situations not currently

101

known to be solvable or handled well by other existing algorithms.

One intriguing possibility is to see if it can be proved that RQL converges to

BOR for input sequence predictable by Solomonoff’s universal induction scheme.

RQL seems to have all the necessary ingredients of a bounded optimal agent:

the ability to acquire by learning an internal finite state machine, which is a

universal representation for any finite computing device. When put in a suitable

environment that can be marked by the agent, and hence serve as recording tape,

an RQL agent would be able in principle to learn the universal Turing machine;

so there is no lack of expressiveness in the representation. It has been discovered

that a POMDP can be reduced to an MDP over the infinite belief space. It seems

one possible direction to prove a convergence result is by identifying the internal

memory states learned by RQL with regions in the belief space. This will be one

important part of our future work.

102

Part IV

103

Chapter 6

Conclusions

6.1 Overview

Designing intelligent agents to perform well in realistic environment is an enor-

mously challenging task. Attempts at breaking down the problem may be put

into two categories: the top-down and the bottom-up approaches.

With the top-down approach, we model the problem by making some simpli-

fying assumptions and ignoring certain aspects of reality; e.g., we may advance

our understanding of computation by first constructing a model of computation

assuming the availability of infinite memory space, or infinite time. Examples of

this approach include the AIξ model of “Universal Artificial Intelligence” [Hutter,

2005], Universal Induction [Solomonoff, 1964, 1978], bounded optimality [Russell

and Subramanian, 1995], etc. Although the theories so constructed are general

and less susceptible to local minima than bottom-up bricks building, entities and

properties derived from them are usually non-constructively identified, rarely in-

forming procedural ways for achieving them. As a result, it is harder to design

concrete and practical algorithms from these theories.

With the bottom-up approach, we identify specific situations that agents may

104

encounter in the environment and design specific algorithms to deal with them;

the hope is that the more general situations can be solved by algorithms composed

of the various specific algorithm “bricks”. The majority of AI research such as

planning, automated theorem proving, machine learning, etc, may be put into

this category. This approach leads to sometimes practical algorithms but with

usually limited applicability. Moreover, it is non-obvious, or at least, not always

possible that there exists a composition of optimal algorithmic bricks that can

produce an optimal algorithm for more complicated situations.

The main goal of our research is to bridge this gap between theories and

practices. From one end, we start from POMDPs, one of the least restrictive

frameworks that has been more extensively studied, and seek to relax the few

requirements (e.g., the stationary constraint 1) assumed by existing algorithms.

From the other end, we use the notion of bounded-optimality as a guiding prin-

ciple for algorithm and agent design.

6.2 To the Future

Mathematicians stand on each other’s shoulders while computer

scientists stand on each other’s toes.

— Richard Hamming

We will see where we can go by first looking at what we have accomplished

so far (reproduced from Chapter 1):

1. The outline of a formal model of reflection based on the Belief, Desire,

1A stationary process is a process of change that is governed by laws that do not themselves

change over time.

105

Intention (BDI) agent model.

2. Preliminary design and implementation of a conversational agent based on

this model.

3. Design and implementation of computational-reflection inspired reinforce-

ment learning (RQL) algorithm that can successfully handle partially ob-

servable Markov decision processes (POMDPs) as well as non-stationary

environments.

4. Design and implementation of a novel benchmark problem which arguably

captures all the essential and challenging features of an uncertain, dynamic,

time sensitive environment.

5. Empirical studies of the comparative performances of RQL and some exist-

ing algorithms on the new and some well-known benchmark problems; this

includes the implementation of the RQL algorithm, benchmarks, and the

design and implementation of a general protocol for simulating agents-world

interaction.

6. Setting the stage for clarification of the relationship between bounded-

optimal rationality and computational reflection under the universal en-

vironment as defined by Solomonoff’s universal prior.

Among these, Reflective Q-Learning is the most intriguing. Experiments have

shown that it is rather competitive in well-known benchmark problems; however,

its more important role may be to serve as a prototype for investigation in possi-

ble ways to approach optimality in a general, unrestricted environment. An RQL

agent has the basic form (as a finite state machine) as well as the operation rule

106

(Bellman update) suggested by the definition of Bounded-Optimal-Rationality

(BOR), which, although not directly applicable to non-stationary environment,

should be a good starting point for a rigorous performance measure of an intel-

ligent agent. Even if we fail in our proof, the cause of failure should shed much

light on the nature of general intelligence.

107

BIBLIOGRAPHY

James [F.] Allen. Recognizing intentions from natural language utterances. In

Michael Brady and Robert C. Berwick, editors, Computational Models of Dis-

course. MIT Press, 1983.

Michael L. Anderson and Donald R. Perlis. Logic, self-awareness

and self-improvement: The metacognitive loop and the problem of

brittleness. Journal of Logic and Computation, 15(1):21–40, 2005.

http://logcom.oupjournals.org/cgi/content/abstract/15/1/21.

P. J. Angeline, G. M. Saunders, and J. B. Pollack. An evolutionary algorithm that

constructs recurrent neural networks. IEEE Transactions on Neural Networks,

5(1), 1994.

Lilian Ardissono, Guido Boella, and Rossana Damiano. A plan-based model of

misunderstandings in cooperative dialogue. International Journal of Human-

Computer Studies/Knowledge Acquisition, 1998.

K. J. Astrom. Optimal control of markov decision processes with incomplete

state estimation. J. Math. Anal. Applic., 10:174–205, 1965.

J. A. Austin. How to Do Things with Words. Harvard University Press, 1962.

A.G. Barto, R.S. Sutton, and C.W. Anderson. Neuron-like adaptive elements that

108

can solve difficult learning control problems. IEEE Transactions on Systems,

Man, and Cybernetics, 13(5):834–846, 1983.

R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton,

NJ, 1957.

Wolfgang Bibel. Let’s plan it deductively! In IJCAI, pages 1549–1562, 1997.

URL http://citeseer.nj.nec.com/article/bibel97lets.html.

Michael E. Bratman. Intention, Plans, and Practical Reason. Harvard University

Press, 1987.

Michael E. Bratman, David J. Israel, and Martha E. Pollack. Plans and resource-

bounded practical reasoning. Technical Report TR425R, SRI International,

September 1988. Appears in Computational Intelligence, Vol. 4, No. 4, 1988.

S. Carberry. Plan Recognition in Natural Language Dialogue. The MIT Press,

Cambridge, MA, 1990.

A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in par-

tially observable stochastic domains. In Proceedings of the Twelfth National

Conference on Artificial Intelligence (AAAI-94), pages 1023–1028, Seattle,

Washington, August 1994. AAAI Press.

Waiyian Chong, Mike O’Donovan-Anderson, Yoshi Okamoto, and Don Perlis.

Seven days in the life of a robotic agent. In Chris Rouff Walt Truszkowski,

Mike Hinchey, editor, Innovative Concepts for Agent-Based Systems, volume

2564 of Lecture Notes in Computer Science, pages 243 – 256. Springer Berlin

/ Heidelberg, Jan 2003.

109

Phil Cohen. Dialogue modeling. In Ron Cole, Joseph Mariani, Hans Uszkoreit,

Annie Zaenen, and Victor Zue, editors, Survey of the State of the Art of Human

Language Technology, chapter 6.3. Cambridge University Press, Cambridge,

MA, 1996.

Philip R. Cohen and Hector J. Levesque. Communicative ac-

tions for artificial agents. In Proceedings of the First Interna-

tional Conference on Multi-Agent Systems, pages 65–72, San Fran-

cisco, CA, USA, 1995. The MIT PressCambridge, MA, USA. URL

http://citeseer.nj.nec.com/article/cohen95communicative.html.

Phillip R. Cohen and Hector J. Levesque. Confirmations and joint action. In

Proceedings IJCAI-91, pages 951–957, 1991.

Phillip R. Cohen and C. R. Perrault. Elements of a plan-based theory of speech

acts. Cognitive Science, 3(3):177–212, 1979.

P.R. Cohen, C.R. Perrault, and J.F. Allen. Beyond question answering. In

W. Lehnert and M. Ringle, editors, Strategies for Natural Language Processing,

pages 245–274. Lawrence Erlbaum, Hillsdale, 1981.

R. Collins and D. Jefferson. Antfarm: toward simulated evolution. In C. Langton,

C. Taylor, J. Farmer, and S. Rasmussen, editors, Artificial Life II, Santa Fe

Institute Studies in the Sciences of Complexity, volume X. Addison Wesley,

1991.

S. Colton and A. Bundy. On the notion of interestingness in automated mathe-

matical discovery. In AISB Symposium on AI and Scientific Discovery, 1999.

D. Dennett. The Intentional Stance. MIT Press, Cambridge, MA, 1987.

110

J. Doyle. What is rational psychology, toward a modern mental philosophy. AI

Magazine, 4(3):50–3, 1983.

Michael R. Genesereth and Nils J. Nilsson. Logical foundations of artificial intel-

ligence. Morgan Kaufmann Publishers, Inc, 1988.

Barbara J. Grosz and Candace L. Sidner. Plans for discourse. In P. R. Cohen,

J. Morgan, and M. E. Pollack, editors, Intentions in Communication. MIT

Press, 1990.

R. Guha and Douglas Lenat. Cyc: a midterm report. AI Magazine, 11(3):32–59,

1990.

E. Hansen. Solving pomdps by searching in policy space. In Uncertainty in

Artificial Intelligence: Proceedings of the Fourteenth Conference, pages 211–

219, Madison, Wisconsin, 1998. Morgan Kaufmann.

E.J. Horvitz, J.S. Breese, and M. Henrion. Decision theory in expert systems

and artificial intelligence. International Journal of Approximate Reasoning, 2:

247–302, 1988.

Eric Horvitz. Models of continual computation. In Proceedings of the 14th Na-

tional Conference on Artificial Intelligence and 9th Innovative Applications of

Artificial Intelligence Conference (AAAI-97/IAAI-97), pages 286–293, Menlo

Park, July 1997. AAAI Press.

Eric Horvitz. Principles and applications of continual computation. Artificial

Intelligence, 126(1-2):159–196, March 2001.

Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions Based on

Algorithmic Probability. Springer, Berlin, 2005. URL http://www.idsia.ch.

111

Darsana Joysula. A Unified Theory of Acting and Agency for a Universal Inter-

facing Agent. PhD thesis, University of Maryland, 2005.

Douglas B. Lenat. AM: Discovery in Mathematics as Heuristic Search, pages

1–225. McGraw-Hill, New York, NY, 1982.

Douglas B. Lenat. Theory Formation by Heuristic Search. Artificial Intelligence,

21:31–59, 1983.

Douglas B. Lenat and John Seely Brown. Why AM and EURISKO appear to

work. Artificial Intelligence, 23(3):269–294, 1984.

S.C. Levinson. The essential inadequacies of speech act models of dialogue. In

M. Parret, M. Sbisa, and J. Verschueren, editors, Possibilities and Limitations

of Pragmatics, pages 473–492. Benjamins, Amsterdam, 1981.

D. J. Litman and J. F. Allen. A plan recognition model for subdialogues in

conversation. Cognitive Science, 11:163–200, 1987.

M. L. Littman, R. S. Sutton, and S. Singh. Predictive representations of state. In

Advances in Neural Information Processing Systems (NIPS), volume 14, pages

1555–1561, Vancouver, 2002.

Karen E. Lochbaum. Using Collaborative Plans to Model the Intentional Struc-

ture of Discourse. Ph.d. dissertation, computer science department, Harvard

University, Cambridge, MA, 1994.

W. S. Lovejoy. A survey of algorithmic methods for partially observed markov

decision processes. Annals of Operations Research, 28(1-4):47–66, 1991.

112

Pattie Maes. Issues in computational reflection. In D. Nardi P. Maes, editor,

Meta-Level Architectures and Reflection, pages 21–35. Elsevier Science Pub-

lishers B.V. (North-Holland), 1988.

Andrew McCallum. Reinforcement Learning with Selective Perception and

Hidden State. PhD thesis, University of Rochester, 1995. URL

http://www.cs.rochester.edu/ mccallum/phd-thesis/.

John McCarthy. Artificial intelligence, logic and formalizing common sense. In

R. Thomason, editor, Philosophical Logic and Artificial Intelligence. Klüver

Academic, 1989.

Susan McRoy. Achieving robust human-computer communication. International

Journal of Human-Computer Studies, 48:681–704, 1998.

Susan W. McRoy and Graeme Hirst. The repair of speech act misunderstandings

by abductive inference. Computational Linguistics, 21(4):5–478, 1995.

Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and Leslie Kaelbling. Learning

finite-state controllers for partially observable environments. In Proceedings of

the 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI-99),

pages 427–436, San Francisco, CA, 1999. Morgan Kaufmann Publishers.

R Montague. Syntactical treatments of modality, with corollaries on reflection

principles and finite axiomatizability. In Modal and Many-Valued Logics (Acta

Philosophica Fennica, vol. 16). Academic Bookstore, Helsinki, 1963. Reprinted

in R. Montague (1974). Formal Philosophy, New Haven, pp. 286-302.

K. L. Myers. User Guide for the Procedural Reasoning System. SRI International,,

Menlo Park, CA, 1997.

113

M. Nirkhe, S. Kraus, M. Miller, and D. Perlis. How to (plan to) meet a deadline

between now and then. Journal of logic computation, 7(1):109–156, 1997.

D. Perlis, K. Purang, and C. Andersen. Conversational adequacy: Mistakes are

the essense. International Journal of Human Computer Studies, pages 553–575,

1998.

Joelle Pineau. Tractable Planning under Uncertainty: Exploiting Structure. PhD

thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213,

August 2004.

Anand S. Rao and Michael P. Georgeff. Modeling rational agents within a bdi-

architecture. In James Allen, Richard Fikes, and Eric Sandewall, editors, Pro-

ceedings of the Second International Conference on Principles of Knowledge

Representation and Reasoning (KR-91), pages 473–484, Cambridge, MA, May

1991.

Stuart Russell. Rationality and intelligence. Artificial Intelligence, 94(1-2):57–78,

July 1997.

Stuart Russell and Devika Subramanian. Provably bounded-optimal agents. Jour-

nal of Artificial Intelligence Research, 2, 1995.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall, second edition edition, 2003.

H. Sacks, E. A. Schegloff, and G. Jefferson. A simplest systematics for the orga-

nization of turn-taking for conversation. Language, 50:696–735, 1974.

David Sadek and Renato De Mori. Dialogue systems. In R. De Mori, editor,

Spoken Dialogues with Computers. Academic Press, 1998.

114

John R. Searle. Speech Acts. Cambridge University Press, New York, 1969.

S. Singh, M. L. Littman, N. K. Jong, D. Pardoe, and P. Stone. Learning pre-

dictive state representations. In Machine Learning: Proceedings of the 2003

International Conference (ICML), pages 712–719, 2003.

Brian Cantwell Smith. Procedural Reflection in Programming Languages. PhD

thesis, Massachusetts Institute of Technology, 1982.

R. J. Solomonoff. Progress in incremental machine learning—preliminary report

for nips 2002 workshop on universal learners and optimal search. Technical

Report IDSIA-16-03, IDSIA, Lugano, 2003.

R.J. Solomonoff. A formal theory of inductive inference. Information and Control,

7:376–388, 1964.

R.J. Solomonoff. Complexity-based induction systems: comparisons and con-

vergence theorems. IEEE Transactions on Information Theory, 24:422–432,

1978.

E. J. Sondik. The Optimal Control of Partially Observable Markov Decision

Processes. PhD thesis, Stanford University, Stanford, California, 1971.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT

Press, Cambridge, MA, 1998.

Michael Thielscher. Introduction to the fluent calculus. Linköping Electronic

Articles in Computer and Information Science, 3(14), October 1998.

R Thomason. A note on syntactical treatments of modality. Synthese, 44:391–395,

1980.

115

D. Traum and E. Hinkelman. Conversation acts in task-oriented spoken dialogue.

Computational Intelligence, 8(3):575–599, 1992.

David R. Traum and James F. Allen. Discourse obligations in dialogue processing.

In Proceedings of the 32th Annual Meeting of the Association for Computational

Linguistics, pages 1–8, 1994.

J. von Neumann and O. Morgenstern. The Theory of Games and Economic

Behavior. Princeton Unversity Press, 1944.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge

University, Cambridge, England, 1989.

C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–292,

1992.

T. Winograd. Computer Models of Thought and Language, chapter A procedural

model of language understanding. Freeman, 1973.

David H. Wolpert and William G. Macready. No free lunch theorems for opti-

mization. IEEE Transactions on Evolutionary Computation, 1(1):67–82, April

1997.

116

