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Chapter 1

Introduction

In planning situations involving tight deadlines a commonsense reasoner may spend a
substantial amount of the available time in reasoning toward and about a (partial) plan
of action. But the time taken in such reasoning brings the deadline closer, and this
ever-changing circumstance must be taken into account if the reasoner is to successfully
meet the deadline. This dissertation investigates the theoretical and practical problems

in designing a fully deadline-coupled real-time planning and reasoning mechanism.

1.1 How to (plan to) meet a deadline between Now and

Then: The problem and our approach

All agents, whether human or automated, that function in the real-world are subject to
the fact that time is spent as their reasoning (deliberation) progresses. Deliberation is
time consuming. Action occurs in the mere form of thinking or reasoning. In “Stop the
world: I want to think” [PEDM], it is argued that traditionally actions in Al are viewed
as separate from the planning process which leads to those actions. Fven when the
two are intertwined, as in real-time, dynamic or reactive planning, the planning effort
is treated as a different kind of beast, not an action itself. We propose a formalism

that treats thinking and acting uniformly with respect to the resources they consume.



Dean and Boddy [BD94| define inferential actions as computational procedures that
have no effect on the world external to the agent, but affect the internal state of
the agent. Inferential actions may provide the basis for selecting a physical action.
Under time-pressure, an agent must allocate enough inference time to account for
both inferential and physical actions. Agents invariably have bounded computational
resources. In a dynamic environment, they run the risk that the assumptions on which
their planning was based will change as they reason. New opportunities and options
may become available while old ones are lost as the agent’s deliberations progress.
Design of a rational agent in a real environment poses several challenges that are
newly recognized to be part of Al planning.

Some activities can be looked upon as reactive or reflex behaviors that require very
little deliberation. Explicit execution-time reasoning is eliminated by compiling all
the decisions about what to do in particular situations [AC87, Bro91, RK89]. Clearly,
these have significant bearing on the survival and effective functioning of an agent in
its environment, especially in a world where changes are rampant but regular. Recent
radical research in AI has prompted the claim that reactive activity is the sole com-
ponent of intelligent behavior, and can be engineered through a careful composition
of very elementary, ready-to-use behavioral units [Bro91]. Although the debate as to
whether the completely reactive non-deliberative behavior can live up to its stronger
claims still goes on, we and others [DF89, Doy82, PR90, IG90] believe that delibera-
tion is often the crucial component that highlights intelligent behavior in non-trivial

problem solving.

1.1.1 Foreseen and unforeseen situations

We roughly characterize commonsense planning and acting problems into two cate-
gories. In one, which we call the category of foreseen situations, even though a poten-

tially complex plan of action is required, the plan is canned and is readily available to



the agent. Here the planning time has no bearing on the actual use of the formulated
solution. E.g., the belabored process of inventing an effective CPR (cardiopulmonary
resuscitation) procedure is not of consequence while administering CPR to a motor
accident victim in an emergency situation; only the amount of time required to enact
the procedure is. Similarly, a fire-drill that has been rehearsed and mastered is avail-
able to a fireperson to execute in case of fire. In both of these, although significant
time has gone into the synthesis of the plan of action, it is spent a priori and hence
does not factor into the planning time.

On the other hand, in many situations plans are not readily available to be enacted.
The agent must either formulate a fresh solution from scratch or combine and adapt
existing solutions in challenging ways to solve the problem at hand. These we will call
unforeseen situations. In these situations deliberation is essential in the formulation
of a plan. Even in solutions that employ techniques such as CBR (case based reason-
ing) which rely on prior experiences, deliberation is required in the phases of retrieval,
matching, and refitting of existing solutions to form a novel solution [Ham89]. In un-
foreseen situations, not all planning can be done a priori, and hence involves inevitable

expenditure of time.

1.1.2 Deadlines

It is possible to characterize situations on the basis of the total time available to an
agent to formulate and enact a solution. For some problems it is not enough to come
up with a solution, or even the “best” solution. It is very important to come up
with a solution in time. This brings us to the issue of deadlines. Deadline situations
tilt the emphasis in problem solving from optimality towards feasibility. We find it
useful to classify deadline situations along two orthogonal dimensions. Along the first
dimension, deadlines can be classified as hard or soft In soft deadline situations, there

are rewards to meeting the deadline. Should the deadline be overshot, the returns



diminish with the margin by which the deadline is overshot. However, all is not lost
if the deadline is not met. An example of a soft deadline scenario is “getting to the
concert by 5:00 p.m. to reserve the best seats”. In contrast, hard deadline scenarios
present the all or nothing case. The rewards drop to zero once the deadline is missed,
therefore all efforts must concentrate on feasibility first, then optimality. What is not
feasible is not worthwhile. An example of a hard deadline situation is a pilot of a
helicopter planning to rescue a soldier who is stranded on enemy ground. Along a
second dimension a deadline may be classified as being non-ezxtensible or extensible.
By an extensible deadline, we mean one which can be extended by means of efforts
made by the agent. However, the agent has to plan to extend the deadline and, the
time to formulate and execute this plan must factor into the total time towards the
previously defined deadline. There is a possibility that the plan to extend the deadline
may not succeed. The following is an example of an extensible deadline scenario: It is
the night of July 30, and a student Paul has a deadline to submit an assignment by
August 1. He realizes that there isn’t enough time to finish the assignment and that
he could do better given more time. He decides to make a plea to the professor for an
extension on medical grounds. Paul must spend a significant amount of time on July
31, feigning an illness convincing enough for a doctor to give him a certificate when
he visits him. This requires planning and execution of the “extend-deadline” plan.
Should his plan succeed, Paul has a lot to gain. Should it not though, and the doctor

sees through his attempts, valuable time is lost from working on the assignment.

1.1.3 When is a plan good enough?

Planning effort typically consists of method (appropriate operators or sequences
thereof) selection, and subproblem combination. In fully deadline-coupled planning,
all the planning effort must be in real-time and must be accounted for in terms of

how long the clock ticks while the deliberations proceed. A second concern is how



to decide how much to plan so that the best plan may be found. Inferences need to
be controlled, and monitored with respect to the deadline. What is meant by “the
best plan” is different for different researchers engaged in controlling inference. Most
decision-theoretic research is concerned with optimality with respect to a set of prede-
fined criteria that are specific to the given problem domain. Given that deliberation
is costly, in that it uses resources that could be put to use elsewhere, it then becomes
necessary to map the cost of each unit of deliberation against the marginal benefit
of thinking. We do not solve the problem of finding the “best” plan. Our effort is
to give the inferential apparatus to a time-situated agent to enable her to reason in
time about how long her reasoning takes, and to be able to make judgements on the
feasibility of her efforts. We do not require that the agent should always succeed in
finding a feasible plan to solve the problem within the deadline; rather, our concern is
that that she should know whether or not she will be able to successfully reason about

the fact as time progresses.

1.1.4 Nell, Dudley and the railroad tracks

In this dissertation, we focus on the problem of real-time, real-world planning in
unforeseen, fully deadline-coupled situations. According to the above classification of
deadlines, our problem concerns hard, and non-extensible deadlines for the most part.
The deadline is hard in the sense that there is no merit to any solution that overshoots
the deadline. The deadline is non-extensible, in that that the agent has no means to
extend the deadline. Our solution has both reactive and deliberative components. An
agent in the real-world constantly receives input from her environment in the form of
observations. She must make timely changes to her belief set continuously. In this
sense our agent is reactive. On the other hand, she does not have a prespecified plan of
action for every stimulus from the environment and must therefore plan for her goals.

We address theoretical and practical issues in developing a reasoning mechanism for



an automated agent in a hard and non-extensible deadline situation. The interesting
scenarios are those in which the deadline is very tight, i.e. there is very little time for
thought and action. We will present several variations of a paradigmatic hard deadline
scenario to incrementally illustrate our approach and solutions. The dramatic life-and-
death scenario chosen is the following: Nell & Dudley and the railroad tracks.' Little
Nell is tied to the railroad tracks and the agent Dudley must figure out and enact a
plan to save her in time before an oncoming train approaches. This is an unforeseen
situation, and if he has never rescued anyone before, then he cannot rely on having
any very useful assessment in advance, as to what is worth trying. He must deliberate
(plan) in order to decide this, yet as he does so the train draws nearer to Nell. We want
to prevent Dudley from spending so much time seeking a theoretically optimal plan
to save Nell, that in the meantime the train has run Nell down. Moreover, we want
Dudley to do this without much help in the form of expected utilities or other prior
computation. Thus, he must assess and adjust (meta-plan) his on-going deliberations
vis-a-vis the passage of time. His total effort (plan, meta-plan and action) must stay

within the deadline. He must reason in time about his own reasoning in time.

1.1.5 Active logics

The platform that we have chosen for our work is called active logics. Active logics
are generalizations of step-logics which were introduced by Elgot-Drapkin and Perlis
[EDP90]. A step-logic is an inference mechanism situated in time which allows the
modeling of the agent’s reasoning process as it unfolds, one-step-at-a-time. Long
chains of reasoning take as much time as the cumulative sum of individual reasoning
steps that form the chain, and this fact is represented in active logic. Fach theorem is

marked uniquely by a time-stamp. The logic thus effectively represents what has been

!This problem was first mentioned in the context of time-dependent reasoning by McDermott

[McD78], and more recently discussed in [CL90].



proven up to any given point in time, as opposed to traditional logics which focus only
on a limiting (cumulative) theorem set. More details and features of step-logics that

guided our choice are described in Chapter 2.

1.1.6 The frame problem

Inherently, the planning problem has been demonstrated to be computationally in-
tractable [Cha87]. even in very simple domains, and under simplifying assumptions
such as the static world assumption [AHT90], which forbids simultaneous actions, or
erratic random changes during the course of planning or execution. With the added
constraints we have imposed on our problem characterization, we have an even more
difficult problem at hand. We have selected a largely declarative logic-based framework
for our purpose. We have selected the logic approach (to be elaborated in section 2.3).
Frame problems (temporal projection, qualification and ramification problems) arise
in any formal framework, and have generated a controversy over the relative merits of
a declarative mechanism. A planner may not have complete knowledge about the con-
ditions and effects of its actions. A problem that has assumed canonical status in this
regard is the Yale Shooting problem (YSP). We will use the YSP (real-time versions of
it) as a yardstick to demonstrate solutions to the above frame problems. In contrast
to procedural approaches, we regard this to be a satisfying feature of the temporal

reasoning rules developed for our fully deadline-coupled planning mechanism.

1.1.7 Space and computation bounds

Time is a critical resource, and our formalism is aimed largely at addressing time-
related issues. In a realistic setting, Dudley must also measure up to two other crucial
resource limitations as well, namely, space and computation bounds. Step-logics orig-
inally suffered from two crucial drawbacks. As theorems are proven, the belief set,

although still finite, can grow very rapidly, making it unrealistic for the inference en-



gine to derive all possible new conclusions in parallel. We describe these concerns
and offer some solutions by introducing a limited-memory architecture and a limited

inference-capacity engine into the active-logic framework.

1.1.8 A modal semantics for active logics

Most formal approaches do not have an appropriate representational framework to
tackle time-situated reasoning problems such as the above. They assume that an
agent is able to reason forever in a timeless present as if the world had stopped for the
agent’s benefit. Resource limitations have been of some concern in formal work. In
particular, the problem of logical omniscience has received attention in the epistemic
logic literature. It concerns the difficulty with the classical Hintikka possible world
semantics [Hin62] that the agent always knows the logical consequences of her beliefs.
However, no existing works have provided a semantics that can address the issue of how
the reasoning progresses vis a vis the passage of time. Although work in temporal logic
involves reasoning about time (e.g., [All84, McD82, MS87]), time is not treated as a
crucial resource that must be carefully rationed by the agent as it is being spent in every
step of reasoning. In [ED88a], a very limited first attempt was made at providing a
semantics associated with step-logics by defining the notion of a step-model. Although
active logics have since been characterized and implemented, no further attempts have
been made to give a formal semantics for the step-like reasoning process. In the final
part of this dissertation, we provide a modal semantics for active-logics that is intended
to bridge the gap between previous modal approaches to knowledge and belief, and
time-situated frameworks such as step-logics which have a means for attributing time

to the reasoning process.



1.2 Historical overview

Research in planning has seen a dramatic shift of focus in the recent years. Traditional
planning systems assumed the availability of complete knowledge at planning time, so
that once a plan was generated by the planner, it was assumed that it would be carried
out successfully by the executor. The shift has been motivated by the realization that
planners that rely on the traditional assumptions of complete knowledge perform very
poorly in significantly large or complex domains, in dynamic environments, or under
time-pressure and other resource limitations. Al research in planning has progressed
from static well-defined domains to dynamic, unpredictable domains, planning and
acting are closely coupled and interleaved, and increasing efforts have been invested
in designing agents who can reason about their own resource limitations in the course
of their planning.

[AHT90] offers a comprehensive overview of planning techniques and the recent
shift of interest towards more dynamic, complex and situated domains. Of interest to
us are planning formalisms that incorporate (a) representation and reasoning about
time, causality, and intentions (b) uncertainty of plan execution and (c) sensation and
perception of the real-world. [AHT90] also gives a chronology of planning systems
dating from 1960 thru 1990. They provide useful classification of planners based on
how they handle goal ordering and interactions, abstraction, search, and on how they
combine planning and execution.

To give a glimpse of the evolution of planning systems, we mention a few classical

systems here:

e STRIPS [FN71] was the earliest and the most influential planning system. Its
representation of world model and plan steps in terms of a set of operators and
add-delete lists has influenced the knowledge representation of our planner, e.g.,

in the use of action triplets in plans.



e NOAH (Nets of Action Hierarchies) [Sac75] reasoned about the intrinsic non-
linearity of plan steps and some schemes in which the temporal ordering as
well as conditional iterations and loops can be represented. NOAH’s procedural
nets represented meta-planning knowledge. This task-specific information was
written in procedural form in SOUP (Semantics of User’s Problem). It used
“critics” which are outside advisors that performed decision making regarding

non-linearity and plan optimization.

e NONLIN [Tat77a] introduced the notion of goal structure and the use of typed

preconditions.

¢ DEVISER [Ver83] was an extension of NONLIN that handled reasoning about

time and events.

¢ MOLGEN [Ste81] introduced the least commitment principle. They introduced

constraint formulation and propagation techniques in planning.

e NASL [McD82] was the first approach to planning that relaxed the “static world
assumption” and allowed for execution of each step as it was generated in a
(partial) plan. This made the planner more “reactive” but less likely to reason
about the effects of immediate action. (Our work in active-logic planning is close
to NASL in the way it advocated planning and acting as two equally important

aspects of problem solving.)

e PMM [HR79] provided an opportunistic planning framework in a blackboard
architecture. They introduced the concept of cognitive specialists which are
external to the planner and which influence planning decisions; They showed

how to utilize measures of worth of invoking these specialists.

Our work borrows from these and other early planning systems. Our chief contri-

bution is to embody planning and meta-planning within a uniform framework, allowing
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a fully time-situated treatment where all the time spent in planning and acting is fully
accounted for by the automated planner itself.

Up until mid 1980’s planning systems revolved around the basic model to plan
in advance (off-line) and then prove that the plan would work. Then, real-world
automated planning needs of urgency, uncertainty and unknowns began to be studied.

Distinct viewpoints exist on ways that deliberation and action may be combined
in planning. These fall into uniform and layered architectures. The former uses a
single representation and control structure for both action and deliberation (our work
is in this category) while the latter uses different algorithms to implement functions
at various layers.

Our work overlaps with various other research efforts: those that deal with newer
aspects of planning and acting (reactive, deliberative, deadline-driven); those that
address temporal projection and other frame issues in formal work; and those that
address logical omniscience and bounded rationality. A description of related work

appears at the end of the relevant chapters of the dissertation.

1.3 Research contributions

This dissertation reports work in fully deadline-coupled planning and reasoning. The

following mark the milestones in this research:
¢ An active logic for fully deadline-coupled planning and reasoning

— Revision and extension of the original step-logic framework for deadline-
coupled planning.
— A knowledge representation for actions, plans, contexts and temporal pro-

jections and time estimates.

Design of an inference engine with domain-independent rules for time-

management, planning and decision making.
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— A real-time truth maintenance mechanism that detects contradictions

within planning contexts and induces time-situated corrective action.
¢ A time-situated treatment of frame issues

— Addressing the temporal projection problem.
— Addressing the qualification and ramification problems.

— Solution to real-time versions of the Yale Shooting Problem.
¢ An active logic with space and computation constraints

— Design of a model of reasoning with limited memory.
— Modification of the inference engine to restrict parallelism.

— Proof of the adequacy of the limited memory model.
¢ Development of a modal semantics for active logics

— Addressing the problem of logical omniscience.

— Soundness and completeness of the modal active logic for thinking in time.

¢ Implementation of some versions of the inference engine in Prolog

1.4 Outline

This dissertation report is organized as follows. Chapter 2 is an introduction to step-
logics and active logics. It describes unique features of these logics that make them
suitable for fully deadline-coupled planning and reasoning. Chapter 3 gives details of
the knowledge representation of the deadline-coupled active-logic mechanism. Chapter
4 describes the rules for temporal inferencing. Chapter 5 shows interesting applica-
tions of the temporal reasoning to various versions of the Yale Shooting problem and

provides solutions to aspects of the frame problem in the real-time setting. Chapter 6
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describes the inside workings of the inference engine. Chapter 7 discusses the estima-
tion of time and how it can be conjectured for various action types. Chapter 8 shows
how the active logic can be improved to address concerns of space and computation
bounds. Lastly, Chapter 9 offers a semantics for a modal active logic that is inspired
by the active logic for planning and shows that it is sound and complete. Chapter 10

lists the conclusions and suggests directions for future work.
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Chapter 2

The active logic platform

Our work in deadline coupled planning has been part of a larger study of of time-
situated reasoning undertaken at the Univ. of Maryland since 1986. It uses and
extends the research involving special formalisms, jointly grouped under the name
active logics which all share the basic property of time-situatedness. They are logics
that treat time not merely as an external entity to be reasoned about, but rather as a
feature guiding the inferences within. They are inspired by the view of logic as having
an evolving life (see [Nil83, Tho90]), in which theorems are proven, and sometimes
later disbelieved, as it interacts with its environment. They combine procedural and
declarative methods, since, while the actual workings are implementation dependent,
the behavior is nevertheless formal in many respects: it is largely governed by explicit
declarative axioms and rules of inference.

Farly work in active logics began with the development of a theoretical tool called
the step-logics. Step-logics [ED88b, EDP90, ED91] were introduced to model a com-
monsense agent’s ongoing process of reasoning in a changing world!. In the next
section we briefly describe step-logics, their structure and intent. In Section 2.2 we

elaborate on desirable features of active-logics that prompted us to for our particular

!Step-logics have also been used for multi-agent coordination without communication using focal

points [KR92], and for the introduction of new expressions into the language over time [Mil92].
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Figure 2.1: Step-logic studies

problem. In Section 2.3 we comment on the relative merits of a declarative framework,

and inspect active logics for deadline-coupled planning in this light.

2.1 Step-logics: An inference mechanism

Traditional logics are static entities, in that they represent the world from a timeless
present and have the property of logical omniscience, that is they are the deductive
closure of all theorems every proven by the agent. Step-logics [ED88a, EDP90] were
introduced to battle these two evils, in an effort to model a commonsense reasoner
with limited reasoning capability.

A step-logic is characterized by a language, observations and inference rules. A
step is defined as a fundamental unit of inference time. Beliefs are parameterized by
the time taken for their inference, and these time parameters can themselves play a
role in the specification of the inference rules and axioms. The most obvious way
time parameters can enter is via the expression Now(%), indicating the time is now 1.
Observations are inputs from the external world, and may arise at any step . When
an observation appears, it is considered a belief in the same time-step. Each step of

reasoning advances ¢ by 1. At each new step ¢, the only information available to the
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agent upon which to base his further reasoning is a snap-shot of his deduction process

completed up to and including step ¢ — 1. Figure 2.1, adapted from [ED88a] illustrates

o, —3

i+1:06

three steps in a step-logic with Modus Ponens ( ) as one of its inference rules.

An agent starts out with a finite (possibly empty) set of beliefs at time step 0.
Step-logics are deterministic in that at each subsequent step 7, all possible conclusions
that result from one application of all rules of inference applied to the previous step
are drawn. Thus the set of beliefs is always finite?.

Three mechanisms that are possible aspects of an agent-theory: self-knowledge (S),
time (T) and retraction (R) were proposed as the basis of developing an array of eight
step-logics. They were arranged in increasing sophistication with respect to S, T and
R: 5Ly :none; SLy :8; SLy:T; SLs: Ry SLy: S.R; SLs @ S, T; SLg : R, T; and
SLz:5T,R. A given step-logic is characterized by its own inference and observation
functions and a language. We note here that the finiteness attribute of step-logics
is what renders a computationally decidable treatment of the self-knowledge feature

possible for those logics that have it. Pictorially, a step of reasoning, which can be

regarded as a snap shot of the reasoning process thus far, is shown as :

ita,fb,...

The ¢ stands for the step number, and the beliefs «, 3, ... are held at step 7. The

ellipsis indicate finitely many other beliefs.

2.1.1 Time stamps on inferences

In step-logics there is the important distinction of capturing when a theorem was

proven. Thus there is the notion of i-theoremhood for every step ¢. Proof of an

2The original step-logic mechanism had no means however, to keep this set quite small, as large
number of conclusions were added to the belief set at each step from all possible inferences, rendering
the belief set computationally intimidating, though still finite. We address this drawback and suggest

solutions in chapter 8.
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t-theorem is based on the inference rules that characterize the particular step-logic.
Beliefs are not automatically inherited from one step to the next. Like all other thinking
actions, inheritance captures the latent capacity for a reasoner to decide which of her
current beliefs she wants to continue to hold at the next time step. It then seems
plausible that a careful monitoring of what will be inherited to the next time-step
may serve as a commonsense mechanism to dispel or distrust some current beliefs on
the basis of what else has come to be believed. A rational agent may not want to
continue to believe @ and —«a when they are seen to appear as a direct contradiction.
Contradictions and their handling are an important aspect of limited reasoning. In
the inference engine that has been built for deadline-coupled planning contradictory
beliefs are identified within the context of a particular partial plan. Contradictory
beliefs among different contexts are not a cause for alarm. They are given special
treatment that allows for a real-time truth maintenance to spring into action to resolve
the contradiction and allow its scope to be restricted in future theorem-proving.

We follow the general rule schema (RS) defined in [Mil92] which represents the

structure of an inference rule for active logics:

RS: =], 045,

where 7,5 € N and (¢ — 7) > 0. The schema RS captures the idea that at any step of
the reasoning process the inference of 3; through 3, as (i 4+ 1)-theorems is mandated
when all of a;_;, through a;_; = are (i—j)-theorems, and all of a;_; 44, through a;_;44,

are (i — j 4+ 1)-theorems, ..., and all of a;, through a;, are i-theorems.
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A particular special instance of this schema is a class of inference rules is obtained
when 7 = 0. This corresponds to those rules for which only beliefs at the previous step
(step 7 instead of steps ¢ thru ¢ — j) are used to make inferences in step 7 + 1. This
useful form is used in all the inference rules in the step-logics of Elgot-Drapkin. Below,
we describe three rules of the original step-logic in this form which we have included
in our active logic. The rule of observation is modified slightly in the active logic for
planning. As described in chapter 3 to follow, Dudley maintains a context of each
plan being developed. We restrict the reasoning to each context. Since observations
concern the environment, they enter the context of each plan (including a special

structure called the null plan) at the step during which they are made.

2.1.2 Making note of what time it is

This rule is intended to let an agent know what the current time is, at a particular
step in its reasoning. The current time is represented by a special predicate in the
language: Now(¢) denotes the belief that “it is now time 7.” This indexical knowledge
essentially must change with the ticking of a clock. Thus, the belief Now(7) is one

belief that is never inherited from one step to the next.?

AGENT LOOKS AT CLOCK

1:
i+1: Now(i+1)

1t is possible to think of an agent who is not always aware of what time it is. It is easy to write an
inference rule whereby the agent either periodically or randomly checks the clock to check the time.
However, as described in Chapter 3, this may make the process of time stamping the other beliefs with
the “now” value rather involved. The inference rules are constructed in such a fashion that using the
belief regarding the current time, the agent can keep track of the latest belief in a chain of planning

to be used in subsequent reasoning.
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2.1.3 Inheritance

Another rule, called INH for inheritance, addresses the issue of theoremhood persisting
from one step to the next. INH mandates the appearance (i.e., inference) of a wff «
at step 7 + 1, if a is an 7-theorem.

INHERITANCE  (INH)

If « is not Now(i)

In Chapter 5 we will present temporal inferencing. We do encounter contradictions
within a context set, and have devised a special rule for carrying over formulas in
a context set over to the next step. However, we still inherit the entire formula
CS(i,p,...)to the next step, while using the special rules to decide the formula C'S(i+
1,p,...) to be proven at step ¢ + 1. The inheritance rule allows us to capture the
entire history of the reasoning thus far. The time step numbers that appear within
the formulas on the other hand are the time-stamps that mark when the particular

theorem came to be proven. Active logics are unique in this respect.

2.1.4 Observations

The capacity to observe, and thereby to incorporate changes in its environment into
the reasoning account for the agent’s situatedness in the real world. Observations are
acquired through the following inference rule and represent extra-logical axioms or

facts presented to the agent.?

*The way observations are handled in the active logic work thus far is by defining a function
OBS : N — 2%, Tt is not reasonable to assume that the sensory capabilities of the agent can
automatically acquire sufficient information about the world. The cognitive and physical capabilities
of the agent must be used to augment perceptions. The process of directing action to aid perception
is quite complex and we will not offer solutions to it. In some examples later, we hint at a mechanism

whereby an agent may plan to make a particular observation upon which future planning is dependent.
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OBSERVATION (OBS)

i+1: «a

tIf o € OBS(i+ 1)

2.2 Unique features of active logics

Step-logics provide a way to reason about time in time. As a natural extension,
Elgot-Drapkin proposed a direction for future work where this very accountability of
deliberation time would be an indispensable feature. That topic is one of deadline
situations. Active logics are particularly attractive as a time-situated mechanism for
dealing with deadline situations in a changing world. It is a formal mechanism that
is designed to account for all the time in an agent’s reasoning, without getting into
the infinite regress of meta-meta-meta ... levels of reasoning. In this section we de-
scribe features of active logics that relate and contrast it to conventional commonsense
reasoning systems.

Capturing reasoning-time as an action: Reasoning actions occur concurrently
with other physical actions of the agent and with the ticking of a clock. The agent
can not only keep track of the approaching deadline as he enacts his plan, but can
treat other facets of planning (including plan formulation and its simultaneous or
subsequent execution and feasibility analysis) as deadline-coupled. Related to this
feature of active-logics is the fact that there is no longer a one final theorem set.
Rather, theorems (beliefs) are proven (believed) at certain times and sometimes no
longer believed at later times. Provability is time-relative and best thought of in terms
of the agent’s ongoing lifetime of changing views of the world. This leads to the issue

of contradictions below.

It involves detecting missing information, performing planning to obtain the required knowledge and

then proceed with the goal.
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Capacity to interact with the environment: Active logic reasoning is situated
in time by its very definition. An additional feature is that the agent can also be
embedded in its environment. The capacity to take note of changes in the environment,
to get feedback on its own actions, or input from the results of other agents’ actions
allows the agent to adjust its reasoning to unprecedented observations.

Handling contradictions: An agent reasoning with active logic is not omniscient,
i.e., his conclusions are not the logical closure of his knowledge at any instant, but
rather only those consequences that he has been actually able to draw.® Also, since
commonsense agents have a multitude of defeasible beliefs, they often encounter con-
tradictions as more knowledge is obtained and default assumptions have to be with-
drawn. While a contradiction completely throws an omniscient agent off track (the
swamping problem), the active-logic reasoner is not so affected. The agent only has
a finite set of conclusions from his past computation, hence contradictions may be
detected and resolved in the course of further reasoning.

Nonmonotonicity: Active logics are inherently nonmonotonic, in that further rea-
soning always leads to retraction of some prior beliefs. The most obvious one is Now(7),
which is believed at step 7 but not at 7 + 1. The nonmonotonic behavior enables the

frame-default reasoning that the commonsense agent must be capable of [MH69].

2.3 Merits of a (largely) declarative framework

In recent years real-time planning systems have largely been geared towards robot-
planning. For most of these systems the goal is not so much to model human com-
monsense behavior in real-time but to come up with an effective program that will

perform certain tasks in the real-time domain. These approaches are largely proce-

®Konolige [Kong86a], Levesque [Lev84] and Fagin and Halpern [FH88] proposed systems in which

the agents are not omniscient. However, the inference time is not explicitly captured in their systems.
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dural. Implementation of procedural methods tends to be much more time efficient
while the logic based inference engine often shows poor performance speeds. But, the
use of logic provides a unifying framework for the system that is hard to obtain in
unstructured hybrid designs.

To reason about the plan is to make meta-level decisions about the structures in the
knowledge base. For this, the KR must be powerful enough to express the complexities
of the reasoning, while remaining simple enough to be the object of reasoning.

Procedural knowledge makes it extremely difficult to capture generalizations or
domain-independent abstractions. They tend to prevent the same piece of knowledge
from entering different computations. We believe that unlike completely procedural
approaches, we have a principled way of incorporating the issues in deadline coupled
planning into the knowledge representation. Ome principled feature is the notion of
the clock. Our formal treatment of time makes the KR issues challenging but inter-
esting because of the novel capability to reason about the reasoning process itself.
One advantage of having as much as possible in declarative form instead of control
procedures is the possibility of dynamically changing the parameters or the inference
rules either as a result of learning or as a function of the context of reasoning. We
note that humans often regard some parameters as dynamic in their reasoning; e.g.,
people ask for paper and pencil or seek help from other persons or storage aids when
it appears that a particular problem has a higher memory requirement and can not be
“solved in one’s head”. In this case, the size of the short term memory is a parameter
that if expressed declaratively instead of being hardwired into the control structure,
allows more flexibility. In Chapter 8 we suggest the size of the memory as a parameter
that is represented as a belief in the declarative framework.

The choice of the declarative formalism allows the language to serve as a represen-
tational scheme, and the logical deduction to serve as the paradigm for the inference

engine.
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Among the advantages of a declarative framework that uses logic as the main
knowledge representation mechanism is the hope of coming up with a formal semantics
that gives precise descriptions of the meaning of expressions. This is a nontrivial task
for active logics and we will describe our successful efforts in that direction in Chapter
9.

Lastly, we remark that the declarative framework has been an asset to us while
incrementally designing the active-logic deadline-coupled planning mechanism. We
have attempted to provide commonsense inference rules inspired largely by human
behavior for formulating plans in deadline situations, for making decisions, as well
as for drawing default conclusions and later revising them in time. The design has
had a particularly nice additive property, in that more capability could be added
to the inference engine without having to rewrite the simpler inference rules. We
observed a natural modularity which we think can be attributed at least partially to

the declarative knowledge representation.®

2.4 Summary and related work

In this chapter we gave a brief introduction to step-logics, the original instances of
active logics.

Turing’s original proposal for a definition of intelligence was associated with the
notion of a continuous temporal property of an agent (the famous Turing test challenges
the automated agent to withstand a process of interrogation and emerge indistinguish-
able from a human). Russell and Wefald [RW91] define a limited rational agent. SOAR
[LNR87] is the most ambitious attempt to build an intelligent agent architecture. Kurt

Konolige [Kon86a] argues that the property that marks a situated agent who reasons

8Curiously, analogous findings are reported in [Bro86] regarding a totally non-declarative design
methodology. In the subsumption architecture, non-declarative complex behaviors are added on to

simpler ones.
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about states of the world and about the effects of its own actions is that the agent
draws conclusions from an initial set of beliefs but he/she does not necessarily derive
all the logically possible ones.

The above research is representative of what that can be grouped under the
“bounded rationality” [Sim82] approach to commonsense reasoning. Simon’s hypoth-
esis is that there is no perfect deliberation. Organisms adapt well enough to satisfice;
they do not in general optimize. Deduction models challenge the hypothesis of logical
omniscience in various ways. Konolige [Kon86a] suggests a deduction model that is
deductively closed under a set of rules, though not necessarily consequentially closed,
since the rules may not be logically complete. The assumption of deductive closure
greatly simplifies the technical problems by disregarding any particular control strat-
egy. It is suggested that systems that are not deductively closed can be modeled by
employing a low cost bound on derivations, thereby deriving only those proof trees
whose depth is bounded. This extension is not part of the model. The model, how-
ever, ignores the time element present in the inferencing, assuming that the agent can
perform the necessary computations in a time interval which is relatively short with
respect to its ability to act. In contrast, we are concerned with bounded rationality of
a time-situated nature.

In Chapter 9 we give detailed comparison of our work with other works ( [['H8S,
Lev84] etc.) that attempt to circumvent the logical omniscience problem. Most of
these formal approaches are still constrained to a static model of reasoning.

Step-logics have a place in this spectrum of research towards the design of rational
agents that are constrained by various resource limitations. They model a resource-

limited agent’s ongoing process of reasoning.
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Chapter 3

Knowledge representation

Fundamental to reasoning is the representation of knowledge; how the information
is symbolized and manipulated. In this chapter we provide a brief description of
the knowledge representation for our deadline-coupled planning mechanism based on
active logics. No sharp definition of active logics will be given, but they include
step-logics described in Chapter 2, as well as the active logic here. They all involve
beliefs coming and going as part of the time-situated inference. The active logic that
we develop here (we will call it PAL for planning active logic) is characterized by a
language £, an observation function OBS, and a set of inference rules INF. According
to the characterization of step-logics described in 2, this active logic falls in the 5 7Lg
category, since it embodies mechanisms relating to time and retraction. The retraction
mechanism for this active logic is different from the one suggested in the step-logic
work. We prefer to call it internal retraction. It is designed to affect the list of formulas
within the predicate that describes a context set (to be elaborated below). Thus,
the entire belief is not retracted but some formulas from the list within a predicate
are retracted.! The inference engine contains rules that are domain-independent, i.e.
are applicable to any instance of a planning problem, but are specific to planning

and acting in deadline situations. Axioms, which are fed into the system before the

!Retraction is implemented as lack of inheritance.
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starting time 0 capture the domain specific knowledge that is required for the particular
solution.

The formal treatment is general, employing the Nell and Dudley scenario only in
the minor domain-dependent details of the axioms used, so that the design may be
tested on a specific scenario. We will repeatedly refer to “Dudley” as the generic

automated agent.

3.1 The language £

The language L is a first-order language. There are many special predicates corre-
sponding to the logical components of the planning system. Terms expressing actions

or fluents appear inside the scope of other predicates.?

3.1.1 Actions and fluents with time arguments

The traditional approach to planning has been to consider the world to be in a par-
ticular state or situation which is described by a set of formulas which are true in it.
We have a dynamic representation of the world as an evolving theory that changes
with changing time. The step-numbers serve as natural indices to represent a model of
the world at any given point in time. In contrast to the situation calculus formalism,
the world changes state with the passage of time, the occurrence of an event or the
execution of an action is not required to cause the state change. The minimal change
occuring in the belief set is the presence of a new Now value at every time step.

Thus, there is no inherent difficulty in representing simultaneous events or actions.

2Terms containing time interval arguments appear in lists denoted by Ca, R4 within the action
triplets, and also in beliefs CS, Proj and Ppl. A detailed description of these follows. There is a
predicate symbol for each action, event or fluent in the language. They are in fact treated as if they
are “quoted”. We omit the quotes to keep the long strings readable. Thus the beliefs of the agent

that we will describe shortly are still first order formulas.
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In particular, every event or action is concurrent with the ticking of a clock. Events
and actions correspond to the common sense notion of happenings in the world of
the agent. Examples of event are Fall(5,book, floor), Close(10, jack, door) meant to
represent the happening that “the book fell on the floor at time 5” and “Jack closed
the door at time 107, respectively. Actions are special events that require an agent to
perform them. The latter of the two events above, namely Close(10, jack, door) is an
action.

An agent usually has knowledge about certain properties that hold of objects or
world states. For example, On(7, Block_A, Block_B) in the blocks world describes the
property of “On-ness”. Color O f_Eyes(10, nell,blue) describes the property of “eye-
color”. These we call as fluents. Fluents usually tend to persist unless specific events
or actions occur that result in change.

We will represent an action, event or a fluent in our language by a formula X (5 :
F, Args) which consists of a predicate name X, a time argument and a list of other
arguments that may denote other properties, including space or agent names. The
time argument is a time interval S : F’ over which it holds, S and F being the start
and finish points of the interval. The other arguments follow and are denoted by Args
for easy reference. An example of a formula is A#(1 : 5,dudley, home). Using the
standard Prolog convention, capital letters will be used to denote variable names and
small letters used to denote constants or ground atoms. We often wish to express
formulas that hold only over the duration of their interval S : I’ and do not continue
to hold beyond F' by persistence. Most of the agent actions (e.g., Run, Shoot) fall in
this category. By S : F' we denote the time intervals in formulas with these actions.
We use the shorthand S for 5 : .5 to denote a point time interval. These formulas for
actions, events and fluents which have predicate symbols are used in “quoted” form
when they appear inside the predicates for context sets, projections and plans, so as

to still maintain a first order language for the agent’s beliefs. We do not explicitly
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show the quotes in the text.

Further, we have four different forms of formulas. X (5 : 7T, Args) denotes that X
holds over interval S : 7', =X (S : T, Args) denotes that =X holds over S : T'. Further,
Xo(S8 :T,Args) (resp., 7 X.(S5 : T, Args)) are used to denote that not only does the
agent believe in X (resp., =X) over the interval, but that the agent has reason to
believe that the time point S could be a possible point of change of the fluent from
=X to X (resp., from X to =X) in the event that =X (resp., X) holds in the interval
ending in S. For example, On(2 : 4, floor, ball) should be read as the ball was on the
floor in the interval 2 : 4 and On.(2 : 4, floor,ball) is read the ball was on the floor
over the interval 2 : 4 and probably wasn’t there before 2.

Either of { X (5 : I, Args), X (S : F, Args)} are defined to be in direct contradiction
with either of {=X (5 : F, Args),~X.(S5 : F, Args)}. A uniqueness contradiction exists
between formulas X (S : F, Argsl,U, Args2) and X (S : F, Argsl,V, Args2) if X (S5 :
F,Argsl,U, Args2) — =~ X(S : I, Argsl,V, Args2) whenever U # V. E.g., there is
a uniqueness contradiction between At(5, Dudley, home) and At(5, Dudley, railroad).
A formula a du-contradicts a formula 6, if it is in direct or uniqueness contradiction
with 6. The same definitions of contradiction extend to X, and the negated versions.

Formulas may enter the agent’s belief set either by means of an observation or
as the result of a deduction. If a formula a resulted from an inference rule whose
antecedents were f,...,03,, then a derivation of a is the set S containing all of
Bi,-..,Bn, and each S; in the derivation of 3;. It turns out that we are interested
only in the default formulas (obtained thru temporal projection inference rule) that are
used in deriving «. Default formulas will be defined later in this chapter. Whenever
we wish to call attention to these default formulas, we use annotated formulas such as
X(S: F,Args)[B;,,...,B;,] to denote that the proof of a contains the default formulas
By, B, Such an annotated formula has the status of a default and is as feasible

as the weakest default in its annotation as explained in Sections 4.1 and 4.3.
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3.1.2 Action triplets

An action triplet denoted by [C'4, A, R 4] consists of an action formula A preceded and
followed, respectively, by a list C'4 of conditions C'y and a list R4 of results. A is a
formula with an action. A condition or a result is a formula containing a fluent. The
conditions may need to be true over all or some of the duration of the action. An
action may be complex or primitive (atomic). A primitive action takes one time step

to perform. Various action types and their representations are described in 7.2.

3.2 Nucleus of the temporal reasoning

In this section we outline the structure of some key beliefs and the predicates used to

represent them.

3.2.1 Partial plans
A partial plan p is a ternary predicate Ppl. Thus
i: Ppl(i,p, Triplet_List)

denotes a partial plan being developed at step ¢ with the name p. The Triplet_List
is an ordered list of action triplets. We will sometimes use Ppl;, to refer to the
Triplet_List with respect to 7 and p.

A special plan with the name null is a plan with no actions in it. A predicate
Ppl(7,null,...) describes a null plan, and is concurrently manipulated with those for
the other partial plans. It is the only partial plan predicate when when no planning
is in progress. We use the null plan to maintain a thread of reasoning in which all the
theorems that are proven have either observations or axioms as their premises. This is
useful when we think of Dudley as a witness or passive observer in a certain scenario
who simply makes mental note of the observations and draws conclusions from them,

without planning to perform any actions of his own.
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3.2.2 Contexts

Dudley simultaneously develops alternative plans towards attaining his goals or sub-
goals. Each of these partial plans (including the null plan) defines a context within
which reasoning can be done about the expected state of the world if the plan were to
be carried to completion. In the context of a particular partial plan, the actions in the
plan and their effects and extended effects can be treated as facts as far as the state
of the world resulting in successful execution of the plan is concerned. In the next
chapter we will describe an inference rule (similar to Modus Ponens) that allows for
inferences to be made within a particular context. The context also serves as a basis
for applying temporal projection to obtain default formulas.

The ternary predicate CS(%, p, Context_List) denotes the Context_set for a plan
p at step ¢. The list Context_List consists of quoted formulas (we omit the quotes for
readability), and includes all of the facts (observations)?, formulas corresponding to
actions in the plan and formulas that the agent deduces to be true in the state of the
world resulting from the successful execution of plan p. We will often use CS; ,, to
denote the list Context_List. All formulas corresponding to a given predicate name
X are kept sorted in the C'ontext_List with the time interval S : F’ of each formula as
the key. The context set changes with time as the plan undergoes modification and as

inferences are made in the context of the plan.

3.2.3 The predicate that keeps track of time

Now/() denotes Dudley’s belief that the time is currently 7. This is one belief that is
never carried over to the next time step. The Now predicate serves to couple the step

number with the index used in a predicate to decide which predicates will be used in

3Actually it only consists of the subset of facts that is relevant to the particular partial plan.
Chapter 8 deals with space bounds on the reasoning and proposes a relevance mechanism to keep the

reasoning directed to a particular partial plan for a duration of time.
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the inferencing at the current step.

For example consider the step 5:

5:Proj(5,p,{...}),Proj(4,p,{...}), Now(5),...

At step 5, the rule that specifies both Now(i) and Proj(7, p,{...}) in its antecedent
will only pick Proj(5,p,{...}) to manipulate, the other formula with the earlier time
stamp (step 4) will be inherited and will contribute to the history of the reasoning.
The way most of the inference rules are designed, they pick the latest belief. In case
there can not be an exact match between the step number and the time stamp on a

predicate the latest will have to be explicitly chosen if so desired.

3.2.4 Projections

Firing of an inference rule corresponds to a think action. Dudley’s non-defeasible
beliefs are treated as facts'. Observations incorporate into beliefs in the same time
step. Theorems whose premises consist of facts alone are also regarded as facts.

At each step i, the ternary predicate Proj(i,p, Proj_List) denotes the projection
that is formed in the context of each partial plan p that is in progress, based on the

>. The i denotes the step number, and Proj_List is a list of

default of persistence
quoted formulas. We will often use Proj; ;, to denote the list Proj_List with respect
to 7 and p. The formulas in the Proj_List are derived by the application of the
temporal projection rule 4.1 described in chapter 4. They are not observations, and

have a default status among the formulas in Dudley’s beliefs in the context in which

they appear. If, in the course of Dudley’s reasoning, as time progresses, a projection

*Strictly speaking though, the agent only has beliefs, never facts, since even observations are not
etched in stone, and may very well change over time. In all the problems that we tackle though, we
will treat observations and facts synonymously.

®Projections (and persistences) have been studied by numerous authors; see e.g., [Wil83a, Kaug6,

McD87]. Our treatment is along the lines of time-maps of [DM87].
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is contradicted by later observations, or by theorems whose premises do not contain

defaults, it must be disbelieved, and so must any formula that used it as a premise.

3.2.5 Working estimate of time and feasibility

The belief WET(7, p, N) denotes the working estimate of time for the plan p computed
as of step 7 of reasoning is the integer N. WET computation is revised at each step by
an inference rule and the feasibility of the plan p is continuously checked by making
sure that the sum of N and 7 does not exceed the deadline. The binary predicate

Feasible(:, p) denotes the belief that the plan p is feasible as of step 1.

3.2.6 A deadline-coupled goal

The belief Goal(i, G, D) is maintained to denote that Dudley has a belief to meet a
goal G by a deadline D. In all the examples pertaining to the Nell and Dudley scenario,
we have a single goal “to save Nell” which is coupled to the deadline that Dudley has
previously computed (perhaps from the expected time of arrival of the train, extrap-
olated from its current position and speed).® The binary predicate Unsolved(:, &)

indicates that the goal GG is unsolved as of step .

3.3 Summary

In this chapter we have provided a glimpse inside the active logic planner to view the
prominent belief predicates used to represent the declarative knowledge of the agent.

In the next chapter we describe the inference rules that manipulate them.

6An agent must be able to infer goals from a current situation. This topic has received a great
deal pf attention and treatment (e.g. [Wil83al]), but is is not within the scope of our work. We will
assume that Dudley treats his belief about a deadline-coupled goal as an axiom acquired through

direct observation or prior inferencing process to which we will not allude.
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Chapter 4

Temporal reasoning

This chapter describes Dudley’s inference mechanism for temporal reasoning. We
describe three inference rules that are crucial for this: temporal projection rule (TP),
context set revision rule (CSR) and the restructured modus ponens rule (RMP). In
all the active logic scenarios we have underlined new formulas in the context sets
or projections, to highlight the differences with the corresponding beliefs that were
inherited from the previous step. In each step the TP rule derives a new projection in

the current context and the RMP and CSR rules together deduce a new context set.

4.1 Temporal projection rule (TP):

The temporal persistence rule (TP) effectively smoothes beliefs over time intervals
which present gaps in the agent’s knowledge. At each step, Projj ,, holds the results
of the temporal projection rule applied to the context set CS;j_q 5, of the previous
step. Our approach can be best described by a term which we call parallel projection.
That is, the entire known state of the world at one moment is used to determine the
(expected) state at the next moment. Since active-logics are built around the idea of
specifying what is known (e.g., proven) so far, and all context sets, and all formulas

in the C'ontext_List can be simultaneously reconsidered at each new time step.
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Here is a description of the TP rule applied to atomic formulas corresponding to a
given function name X in the context set at step 7 in order to constitute Proj; q , for
the partial plan p. Note that formulas of the form X (S : F, Args) are not projected,
since they are intended to represent mostly agent actions that do not persist. Formulas
X (5 : F,Args) each containing the function name X are kept sorted in CS;}, with
(S : F) as the key. Only functions corresponding to fluents (i.e. those formulas
without the bar on top as in S : F) are eligible for projection. The formulas in
Projj;1p are strictly those that are obtained by persistence of those in CSjj,. Let
a; and a;1; denote consecutive formulas in sorted order in CS; , and let a; denote

! Figure 4.1 shows a

the last formula in this order. The TP rule is described below.
pictorial description of the TP rule, with the dashed lines denoting the intervals that

are filled with the projection.

1. If a; is of the form X (5, : Fj, Args) and a ;44 is of the form X (5,41 : Fj41, Args)

then Proji;qp contains X (F; +1: 5,41 — 1, Args) whenever F; < 5.

2. If a; is of the form X (5 : F;, Args)and o is of the form X (541 : Fj41, Args)

then Proj;, 1, contains X (F; +1: 541 — 1, Args) whenever F; < ;4.

3. If a; is of the form X(S5; : F}, Args) and aj4; is of the form —X(5;41
Fiyq, Args) then Proj;;1,p does not speculate over the truth or falsity of X
over I; +1:.5;41 — 1. The projection rule will smooth over this interval when
further information about a possible point of time where the value of X changes

becomes available.
4. If o; is of the form X(S; : F;, Args) and ;41 is of the form —X.(5;41 :
Fjy1, Args) then Proj;,q , contains X(F; + 1: 541 — 1, Args) whenever F; <

Sjt1-

!For brevity, we only describe the rule for o; = X(S; : Fj, Args). The same applies to a; =

Xc(Sj @ Fj, Args). The dual form involving =X is similar.
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Figure 4.1: Pictorial description of the TP rule

5. If oy (with the latest interval in CS; |, corresponding to X is of the form X (.5 :

Fy, Args) or X (8 : F}, Args) then Projj g, contains X (£} +1: 00, Args).

If any of a; and a4 in the context set du-contradict, the projection is frozen for
the interval in dispute until the contradiction is resolved. In case of a contradiction, it
may sometimes be necessary to break up the formulas into two or more parts to identify
the extent of the contradiction over some sub interval. e.g., when X (5)[Y(4)] and
=X (1:6)arein a context set, the latter must be split into {=X(1:4),-X(5),-X(6)}
to identify the range of the contradiction.

In case of a contradiction in the context set, between two formulas, a; and a;44
in the sorted order, Dudley’s TP rule attempts to decide on which of the contradict-
ing formulas to project, until the contradiction is resolved. Often times, one of the
contradicting formulas is a fact while the other is weaker since it is only based on

projections, and the contradiction is resolved in subsequent steps. The projection is
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frozen for subsequent formulas a;19, a;43 , ... in the sorted list. However, when a
fact ap = X(S% : Iy, Args) is encountered further down the chain, Dudley can resume
projection starting with the interval S : Fj by applying the above procedure to the re-
mainder of the sorted list with ay as its first element. Projections are not made in the
interval between the contradiction and Sy, until the contradiction is resolved. [Mil92]
gives an account of contradiction handling in step-logics that addresses the problems
of lingering consequences and the difficulties in designing recovery mechanisms. We
handle only those contradictions that are the result of default beliefs derived from
temporal projection. These are internal contradictions within the context set. We
have relatively simple recovery and a simple way to deal with lingering consequences
using the CSR rule that follows.

Example

Consider a scenario with a bucket filled with oil and a ball lying on the floor. This

example illustrates an application of the TP rule to CSq5 , to yield Projig p.
15:...,CS(15,p,{..., filled(0), filled(4), ~filled.(7),

filled(10), on(0, floor, ball), —on.(5, floor,ball), .. }), ...

16 : ..., Proj(16,p,{..., filled(1 : 3), filled(5 : 6), filled(11 : c0),

on(1l : 4, floor,ball), —on(6 : oo, floor,ball),...}),...

4.2 A restructured Modus Ponens rule (RMP):

Instead of applying MP in its familiar form : viz. from a and a — § deduce 3, we
choose a representation in clause form and apply a restructured MP in accordance
with our philosophy to let earlier defaults play out their effects completely to result in
an anticipated state of the world to which later defaults may be applied if necessary.
A formula which is a fact has no justification attached to it. All axioms are treated

as facts. A formula a which was derived using one or more projections 31,33... is
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only as feasible as the weakest projection, and is itself classified as a default. Such
a formula is annotated with the projections used in its derivation and is written as
alfB, Ba, ...

Let ma; V-ag V...V -a, V3 be the expression in clause form that appears in the
context set CSj 1, of a plan p at step 7. This may either be an axiom or an observation.
We formulate a rule that adds new atomic formulas (with or without justifications)
derived within a context to CSj;1 . We use the terms, finished and unfinished to de-
scribe a resolution where the results are atomic and non-atomic formulas respectively.
The rule only carries over the result of a finished resolution to the context set at the
next step.2

The process of resolution can be outlined as follows:

o All the a; from CS;j}, which are facts are first used to resolve. If there are no
facts that are eligible for resolution, the resolution is not carried out at all. There

must be at least one fact among the resolvents for the RMP to fire.

e Subsequently, if the resolution is unfinished, members from CS; ,UProj; ;, which

2Since we have the luxury of applying all rules to all formulas at every step, not much is to be
gained by adding the results of an unfinished resolution to the context set. We wait to get more
information later such as from observations or from further deductions so that an atomic formula can
be derived. This serves the purpose of limiting the size of the context set. It is possible to write a
version of the RMP that will also add the results of unfinished formulas to the context set, and would
effectively function the same but use more space.

9The motivation behind this is to reduce the large number of formulas resulting from applying
RMP to projections alone, since what can be derived thus is also obtained by the combined effect
of RMP and TP. This reduces the actual number of formulas in the context set without loss of any
meaningful commonsense conclusions. As an example, consider the axioms Alive(T) — —Dead(T).
Suppose Alive(0) is the only formula in the context set. By TP, the agent would add Alive(1 : co) to
the projection. and by RMP, = Dead(0) to the context-set. Note that = Dead(1 : co) will subsequently
be in the projection, and there is no need to additionally have —Dead(1 : co)[Alive(1 : c0)] in the

context set. Hence this is a reasonable way to curtail the size of the context set.
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are themselves defaults are next tried. All formulas from Proj; , as well as those
formulas in CSj ;, that are annotated with projections qualify as defaults. From
among those in Proj; ,, those with earlier time parameters are used before the
ones with later parameters. For the annotated formulas, the annotation with
the latest time parameter that was used in the derivation is used to decide the

priority?.

e The result of the resolution § is then annotated with all the projections used,
either directly, or in the annotation of resolving formulas from the context set.
The annotations are attached in square brackets to the formulas. This provides
the basis for a real-time truth maintenance mechanism which is useful in resolving

contradictions.

o If a projection a with a later time than the time of 3 is used in the RMP
application, [ is not added to the context set. It is discarded. Thus the axioms
are used to derive future conjectures based on projections of current beliefs,
but prevented from using future projections to derive past conclusions and from

jumping to extreme conclusions as we demonstrate in Section 5.1.

o If 3=X(S5:F,...) hasits time interval S : F" such that S is later than the time
intervals of all the a; used in the resolution, then it is marked as X.(5 : F,...)
in the context set, to denote that it could be a potential point of inflection in the
value of the function X.?> This marking is of help in deciding whether to project

X such as in the TP rule above.

*In case of a tie, we draw all the conclusions resulting from the use of the projections with identical
time intervals, one at a time. This may result in implicit contradictions. In this situation, what the
system deduces an expected contradiction.

®There is an implicit causality assumption here; earlier events are potential causes in axioms for
changes but later events are useful only in explanations of past values, not responsible for changing

the past values. Note that we say a potential point of change.
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Example

This example illustrates two applications of RMP (in steps 4 — 6) following Dudley’s
observation of someone dropping a ball into a full bucket. Given the axioms that a
ball dropped into a full bucket results in a spill, Dudley concludes that the floor will

no longer be dry®.

Axioms(These are part of the Context_List of every context set):
=Filled(T)V —~Drop(T, ball) v Spill(T + 1)

=Spill(T) V =Dry(T + 1, floor)

4 : CS(4,null, {..., Dry(0, floor), Filled(0), Drop(4, ball)}),
Proj(4,null, {..., Dry(1 : co, floor), Filled(1 : c0)})

5: CS(5,null, {..., Spill.(5)[Filled(4)], Dry(0, floor), Filled(0), Drop(4, ball)}),

Proj(5,null, {..., Dry(1 : oo, floor), Filled(1 : c0)})

6 : CS(6,null, {..., Spill(5)[Filled(4)], Dry(0, floor),
= Dry.(6, floor)[Filled(4)], Filled(0), Drop(4, ball)}),

Proj(6,null, {..., Dry(1 : o), Filled(1 : 00)}) *

The RMP rule is used in extending the context set. This allows Dudley to compute
the extended effects of actions. It also allows him to deduce the future consequences
of his planning as it interacts possibly with the actions of other agents or with events
observed in the world. It allows for reasoning with the current projection by letting

earlier events play out their consequences in an anticipated future before later events.

5This is an extended effect of the spill; we will elaborate later on the significance of this type of
reasoning.

"Note that there is a contradiction between the CS and the Proj. It is resolved in the next step.
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4.3 Context set extension and revision rule (CSR):

The CSR rule ensures that the context set is always kept updated to match the most
current projection, and the state of the world in which the agent is situated. As
explained before, formulas are annotated by the projections which are used to support
them in future conjectures. In the event that the projections cease to hold as of
“now”, the formulas that are supported by them are dropped from the context set
in the revision process. The revision is a kind of real-time truth maintenance. The
CSR rule also plays the important role of resolving contradictions in a time situated
manner.

Following is a description of the rule used in deciding the contents of CSj,qp

based on the contents of CS;

ip » Proji, and Pplj ,. In Phase I we decide a set

Candidates; ;, selected from CS;;, which are formulas to be considered as candi-
dates for retention. Phase II decides which members of Candidates;;, will make it

to CSi+1,p‘

Phase I (Select candidate formulas to inherit):

L. If two formulas @ and ¢ in CS; [, du-contradict each other, then the following

criteria are used in deciding which of them go to CandidatestS.

(a) If a is a fact, while § is a default (is annotated with a projection), select o

and reject 6 to go into Candidates; .

(b) If @ and § are both defaults, select neither? to go into Candidates; .

8Note that we do not encounter situations in which facts (direct or indirect descendents of obser-
vations alone) contradict each other. Observations with different time intervals involving the same
function may well disagree, but these are not contradictory.

Where both are defeasible beliefs, a working strategy is to not inherit either of them, and to

continue the reasoning to see if one of them will reappear in the face of stronger evidence.
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2. Formulas that are not part of a contradiction go into Candidates; ,.
Phase 11 (Choose among candidate formulas):
1. A formula a from Candidates; ;, which is a fact is inherited to CSj 4 -

2. A formula a[fy, Be, ..., k] which is a default is inherited unless for some 1 <
J <k, B; € Proj; . Also, if any of f1,..., B now appear as facts in CSjp,

they are removed from the annotation.

3. Formulas corresponding to actions that are added to the plan in the previous

step are added to the CSi_|_17p10.

We remark here, that there are two more rules which fire to add formulas to
CSji1,p- One is the OBS rule which add new observations that are made in step ¢+ 1
to CS;jyq1p- The other is RMP, which was described before in detail.

Example

In step 5 in this example, Dudley concludes that there must have been a spill at step
5 based on the projection that the bucket was still filled at step 4. At the same time,
however, he is told by a reliable observer that the bucket was in fact not filled at step
4 and adopts it as a fact.

The projection catches up at step 6 to no longer believe Filled(4). As a result of
CSR, Spill(5)[Filled(4)] and = Dry.(6, floor)[Filled(4)] are no longer inherited to the
context set at step 7. Note that the projection at step 7 already reflects a wet floor.
This will also be subsequently revised in step 8 by an application of the TP rule, since

—~Dry.(6, floor)[Filled(4)] is no longer in CSy jy11.

19Formulae in the context set are in fact, doubly annotated in the implementation, with the projec-
tions if any used in their derivation, and with the action(s) in the plan that are used in their derivation.
Should the plan get revised to no longer require any of these actions, the corresponding formula is not

inherited in the CS.
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4 : CS(4,null, {..., Dry(0, floor), Filled(0), Drop(4, ball)}),
Proj(4,null, {..., Dry(1 : oo, floor), Filled(1 : c0)})

5: CS(5,null, {..., Spill(5)[Filled(4)], Dry(0, floor), Filled(0),~Filled(4),

Drop(4,ball)}), Proj(5,null, {..., Dry(1 : oo, floor), Filled(1 : c0)})

6 : CS(6,null, {..., Spill(5)[Filled(4)], Dry(0, floor), Filled(0),~Filled(4),
=Dry.(6, floor)[Filled(4)], Drop(4, ball)}),

Proj(6,null, {..., Dry(1l : co, floor), = Filled(5 : c0)})

7: CS(7,null, {..., Dry(0, floor), Filled(0), ~Filled(4), Drop(4, ball)}),
Proj(7,null, {..., Dry(1 : 5, floor), ~Dry(7 : co, floor), = Filled(5 : c0)})

8 : CS(8,null, {..., Dry(0, floor), Filled(0), ~Filled(4), Drop(4, ball)}),

Proj(8,null, {..., Dry(1 : co, floor), ~Filled(5 : c0)})

4.4 Summary and related work

This chapter described three key rules that form the core of the temporal inferencing.
The TP rule performs temporal projections in the current context of each plan. The
RMP rule extends the Context_List of the current context set to enrich it, enabling the
agent to reason about the changing environment and the extended effects of its actions.
The CSR rule ensures that the context set is kept consistent with the most current
projection. Chapter 5 shows how this machinery for temporal reasoning, although
designed with deadline-coupled planning applications in mind tackles frame issues in
a deadline-coupled way.

The issue of temporal projection has been extensively studied in the Al litera-

ture. In particular, much of effort was devoted to the problem of forward temporal
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projections, or predictions that are necessary for planning. This is the problem of
determining all the facts that will true during a future time period, given a partial
description of the facts that are known. Numerous solutions have been proposed to
the temporal projection problem [Gel88, Geo87, Hau87, Kau86, Lif87b, Lif87a, Mor88,
Pea88, Sho88, Bak89] to mention a few.

They may be grouped into four categories:

1. chronological minimization [Sho88, Kau86)]
2. causal minimization [Hau87, Lif87b]
3. model approach [MS88, Ams91, GS87]

4. time map approach [DM8&7]

Our projection mechanism has commonalities with some of the chronological min-
imization approaches, notably those of Shoham [Sho88], Lifschitz [Lif87a], and Kautz
[Kau86]. In our approach as well as theirs, defaults are applied forward in time, so that
earlier events play out their consequences for later ones. However, these approaches
specialize in forward temporal projection problems and can handle backward projec-
tions, but cannot solve explanation problems or be used by an active agent who may
obtain new information while doing projections. OQur projection mechanism provides
an active agent the capability to revise its conclusions, in light of new observations,
to give explanations to previous events, and to use its predictions in planning.

We prefer a different term for our projection approach: parallel projection. That is,
the entire known state of the world at one moment (may be in the context of a plan)
is used to determine the (expected) state at the next moment. Since active logics are
built around the idea of specifying what is known (proven) so far, all predicates can be
simultaneously reconsidered at each new time step. Persistence of a specific predicate

(e.g., At(1:5, dudley,home)) from one moment to another depends on everything that is
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(known to be) true at the earlier moment, because in fact that is how things are really
affected in the world. This is also the central idea behind the resolution rule(RMP)
described in Chapterchapter:temporal.

The chronological minimization approaches were criticized by Kautz [Kau86], in
that, by always granting preference to later changes over earlier ones, the agent may
draw artificial conclusions about the time of an action that caused a change. The causal
minimization approaches [Hau87, Lif87b] introduce a special “Causes” predicate which
they then minimize using circumscription. A drawback is that the axioms cannot be
written in an unrestricted logic and therefore it may be difficult to use it in a planning
system. Changes that have known causes are preferred over unjustifiable changes.
However, this means that when no knowledge about a cause exists, changes cannot
be reasoned with correctly. Uncertainty is tackled to some extent in [Hau87] through
the notion of “potential causes” when the agent knows about the occurrence of an
action but is uncertain about its success. We do not yet have a mechanism to handle
this type of uncertainty (we assume that all actions in the agent’s plan succeed unless
observed otherwise).

Among the other original approaches, Morgenstern and Stein [MS88] provide an
elegant solution to both backward and forward projections. However, in their solution,
there is no time attached to the reasoning; a meta-reasoner concludes (supposedly
sometime after all the observations) all the facts true in a “chronicle”, given the partial
description. They select models using the criterion of “fewer unmotivated actions”.
However, there is no acting agent who can actually compute these models and check
which one is preferred.

Ginsberg and Smith [GS87] present an approach of reasoning about action and
change using possible worlds. The approach involves keeping a single model of the
world that is updated when actions are performed. The update procedure involves

constructing the nearest possible world to the current one in which the consequences
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of the actions under consideration hold. There is no explicit notion of time in this
approach and the reasoning done by an “outside” reasoner, hence the time of reasoning
is not a concern.

Dean and McDermott [DM87] present techniques for temporal database manage-
ment. They allow two types of prediction in their system: projection and refinment.
Their system is based on a temporal map that can be described by a graph in which
the nodes are instants of time associated with beginning and ending events, and the
arcs connecting these nodes describe relations between pairs of instants. We use or-
dered lists as a simpler data structure and in our framework time is associated with
events and predicates, and not the other way around as in [DMS87];'! however, the
projection is done in a similar way.

As in previous systems we compared with, Dean and McDermott describe their
mechanism as “reasoning about time from the outside. It’s as though all of what you

> We consider

know about the past, present and future is laid out in front of you.’
reasoning done by an agent in time. It has only the past and the present in front of

it, and it takes the passage of time into its reasoning process.

1 Our projection mechanism is similar to that of [DM87], but we distinguish the case where a change
occurs but it is not clear when it occurs. In particular, if o is of the form X (S; : Fj, Args) and a1
is of the form =X (Sj41 : Fjt1, Args) then Proji+17p does not speculate over the truth or falsity of
X over Fy+1:5;41 — 1. The projection rule will smooth over this interval when further information

about a possible point of time where the value of X changes becomes available.
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Chapter 5

Frame issues in real-time planning

5.1 Time-situated variations of the YSP

Chapter 4 described Dudley’s time-situated reasoning mechanism. Other aspects of the
planner related to time estimates and feasibility analysis with respect to tight deadlines
are described in Chapter 7 and also in Chapter 6. We demonstrate here how this
mechanism applies to several real-time variations of the Yale Shooting Problem [HM8&7]
appropriate to active logics. The first is a witness scenario where Dudley is a witness
to the scene of the crime. In it we show how Dudley draws the intuitive conclusion
that Fred must be dead on observing a shoot action, and discard the unintuitive one
where the gun mysteriously gets unloaded just before the shooting. We present two
developments of the witness scenario which are of a detective nature where Dudley must
offer a reasonable explanation about actions in the past, to fit his present observations.
On seeing Fred alive at a later time, the same mechanism allows him to continue to
perform belief revision to account for “why things went wrong”[MS88]. The last is a
killer scenario where Dudley formulates a plan to kill Fred by a certain deadline and
reasons that Fred is expected to be dead in the context of his plan to carry out a shoot
action.

In the classical YSP problem, there is a certain ambiguity about the role of the
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reasoner. There the reasoning is itself timeless, presumably it takes place after all the
events in question. Qur treatment is significant in that Dudley the reasoner can reason

in time about the events in progress and adjust his reasoning to suit new observations.

Witness: We suppose that the reasoner is an eyewitness on the scene of the crime:
Dudley sees Fred and sees a loaded gun at time 0, but no action is observed. Then,
following a wait period during which nothing happens, at time 4 Dudley sees the gun
being fired at Fred, but cannot see what happens to Fred after that. Dudley is then
draws the commonsense conclusion that Fred has been killed. Here we are mimicking
Baker’s simplified version of the YSP (no loading action[HM87] is required, and the
wait action occurs between steps 0 and 4).

Below we sketch the steps in this reasoning.
Axioms(These are part of every context set):
= Loaded(T) V =~Shoot(T) V =~ Alive(T + 1);
—Alive(T) V Alive(0 : T)

0: CS(0, null, {Alive(0)ops, Loaded(0)ops }),

Proj(0,null, {})

Dudley observes that a gun is loaded, and that Fred is alive. Dudley is a passive
eyewitness. Hence the reasoning context is that of a null plan. There is no projection

yet regarding either Alive or Loaded.

1: CS(1, null, {Alive(0)ops, Loaded(0)ops}),
Proj(1, null, { Alive(1 : 00), Loaded(1 : c0)})

Rules yielding new conclusions: TP. There are no new observations.

2: CS(2, null, {Alive(0)ops, Loaded(0)ops }),
Proj(2, null, { Alive(1 : 00), Loaded(1 : 00)})
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Wait period. No new actions or conclusions.

3: CS(3,null, {Alive(0)ops, Loaded(0)ops }),
Proj(3, null, { Alive(1 : 00), Loaded(1 : c0)})

Wait period.

4: CS(4, null, { Alive(0)ops, Loaded(0)ops, Shoot(4)ops }),
Proj(4,null, { Alive(1 : 00), Loaded(1 : c0)})

Rules yielding new conclusions: OBS. A shooting is observed by Dudley.

5: CS(5, null, { Alive(0)ops, nAlive.(5)[Loaded(4)], Loaded(0),ps, Shoot(4)eps }),

Proj(5, null, { Alive(1 : 00), Loaded(1 : c0)})

Rules yielding new conclusions: RMP. In the RMP application to the axiom
—Loaded(T) V =Shoot(T) V = Alive(T + 1) in clause form, Shoot(4) is resolved with
first since it is a fact. Next, Loaded(4) is used in favor of alive(5) in the resolution due
to the projection being at an earlier time. It is allowed to play its effects before the
projection at the next time is considered. The projection Loaded(4) used in the infer-
ence is used to annotate the inference = Alive(5)[Loaded(4)], and the result is noted as

a possible point of inflection in the value of the predicate Alive.

6: CS(6, null, { Alive(0)ops, nAlive.(5)[Loaded(4)], Loaded(0) b5, Shoot(4)eps }),
Proj(6, null, { Alive(1 : 4), 7 Alive(6 : 00), Loaded(1 : 00)})

Rules yielding new conclusions: TP. Note that Alive is no longer projected to infinity
but only until time 4 according to the new context set information. Also —Alive is

projected from time 6 onwards. The projection for Loaded remains unchanged.

The witness version of the YSP gives the intuitive answer: In the context of the
null plan, Fred must have died at step 5 as a result of the shooting, provided of

course, that the default regarding the gun staying loaded up until step 4 is indeed
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true. ~Alive(5)[Loaded(4)] is still defeasible, only as good as Loaded(4) really, and is

treated as a default.

Detective: To illustrate the real-time nature of our reasoning process, we now con-
sider two different developments of the witness scenario following step 6. In one of
them, at step 7, I'red is seen to be alive and walking about, in another, at step 7, the
gun is examined, and found to be in fact unloaded. Suppose that the shooting itself
does not unload the gun. What conclusions can Dudley make in each of these devel-

opments of the former scenario? In short, how can Dudley play detective in real-time?

Development 1: But Fred is alive!

7: CS(7,null,{..., Loaded(0),p5, Shoot(4),ps, Alive(0)ops, ~Alive.(5)[Loaded(4)],
Alive(T)ops }), Proj(7, null, { Alive(1 : 4), = Alive(6 : 00), Loaded(1 : 00)})

Rules yielding new conclusions: OBS. Dudley sees that Fred is alive.
8: CS(8,null,{..., Loaded(0)ops, Shoot(4),ps

Alive(0)ops, Alive(l : 6), 7 Alive.(5)[Loaded(4)], Alive(T)ops })
Proj(8, null, { Alive(1 : 4), Alive(8 : 00), Loaded(1 : 00)})

Rules yielding new conclusions: RMP, TP. Alive(1 : 6) is derived by applying RMP to
—Alive(T) V Alive(0 : T) in clause form. Alive(T) being a fact, is used. The TP rule
tries to make the best of all the Alive formulas in the context set to yield a projection.

It will straighten out in the next step.
9: CS(9,null,{..., Loaded(0),ps, 7 Loaded(4), Shoot(4)sps, Alive(0)ops, Alive(l : 6),
Alive(T)ops }), Proj(9, null, { Alive(8 : 00), Loaded(1 : 00)})

Rules used to yield new conclusion: RMP, CSR, TP. The RMP rule derives = Loaded(4)
from Alive(5), Shoot(4) and —=Loaded(T) V —~Shoot(T) V = Alive(T + 1). The CSR
rule must deal with a contradiction in the context set. Alive(5) is a fact, while the
default is = Alive.(5)[Loaded(4)]. Alive(5) makes it into the Candidg 1,,1) set and is

subsequently inherited, while the default is rejected. The TP rule also confronts the
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contradiction, but handles it with ease, since Alive(0 : 7) are all facts. The projection

1s resumed quickly past the contradiction due to the presence of later facts.

10: CS(10,null,{..., Loaded(0)os, 7 Loaded(4), Shoot(4)ess, Alive(0)ops, Alive(l : 6),
Alive(T)ops }), Proj(10, null, { Alive(8 : 00), ~Loaded(5 : 00)})

Rules yielding new conclusions: TP. The TP rule changes the projection to reflect the
new knowledge that the gun was unloaded at step 4. Note, that no projections are made

on whether the gun was loaded at steps 2 or 3.

Development 2: Look at this gun, it is not loaded!

7: CS(7,null,{Loaded(0)ops, ~Loaded(T),p5Shoot(4)ps,
Alive(0)ops, " Alive (5)[Loaded(4)], }),
Proj(7,null, { Alive(1 : 4), 7 Alive(6 : 00), Loaded(1 : 00)})
Rules yielding new conclusions: OBS. In this development of the eyewitness scenario,
Dudley observes that the gun is unloaded at step 7. This reduces the feasibility of the
Loaded(4) default, and Dudley’s conclusions take a more skeptical turn. Note that there
is already a disagreement between the formulas in PrOjT,null and CST,null' It takes

the agent one step to get the projection to match the changed context set.

8: CS(8, null, {Loaded(0)ops, ~Loaded(T)ops, Shoot(4) s,
Alive(0)ops, " Alive.(5)[Loaded(4)], }),
Proj(8, null, { Alive(1 : 4), 7 Alive(6 : 00), 7 Loaded(8 : 00)})
Rules yielding new conclusions: TP. The projection is revised. Since 7 is not believed
to be a point of change of the Loaded predicate (Dudley merely stumbles upon the
unloaded gun, he does not see it being unloaded), no conjecture about Loaded is made

over the 1 : 6 interval.

9: CS(9, null, { Loaded(0)ops, ~Loaded(T)ops, Shoot(4) b5, Alive(0)ops, }),
Proj(9,null, { Alive(1 : 4), 7 Alive(6 : 00), 7 Loaded(8 : c0)})
Rules yielding new conclusions: CSR. = Alive.(5)[Loaded(4)] is not inherited since the

projection in the annotation is not supported at the current step.
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10: CS(10, null, { Loaded(0)ops, ~Loaded(T)ops, Shoot(4)eps, Alive(0)ops }),
Proj(10, null, { Alive(1 : 00), = Loaded(8 : c0)})

Rules yielding new conclusions: TP. The Projection adjusts to the change in the Alive
formulasin the context set. In the face of the observation that the gun was not loaded at
step 7, Dudley reserves the conclusion regarding Fred’s death from the shooting!. Should

more evidence become available at a later time, this conclusion may be reinforced again.

Both the above are explanation scenarios. The elegant recovery of the agent is to
be attributed to the non-monotonic inference process that initiates changes to restore
consistency. In the first development, when Fred is found to be alive past the time of
the shooting, Dudley can successfully conclude that the gun must have been unloaded
between the loading and the time of the shooting. Furthermore, he can successfully
change his on-going reasoning model to reflect these changes. In the second develop-
ment, when the gun is found to be unloaded at a later time, under the assumption
that shooting does not unload the gun, Dudley chooses to be ambivalent about Fred’s
death. Even though he had imagined earlier that Fred would be dead, now he no
longer has the same confidence in the projection, it must be changed, and the conclu-
sion about Fred’s death refrained from making, until more is known about the time of

the unloading.

Killer: At time 0, Dudley sees that there is a loaded gun, and that Fred is alive. He
is playing the killer, and has the goal —Alive(5). He must formulate a plan to kill

Fred. Our temporal projection mechanism must allow Dudley to support the intuitive

!Since Dudley doesn’t know when the gun was unloaded, he doesn’t conclude =Loaded(4)[Alive(5)]
or ~Alive(5)[loaded(4)]. Loaded(0) is not projected due to the fourth item of the TP rule, since 7
is not believed to be a point of change of the Loaded predicate, as explained above. The conclusion
—Loaded(4)[Alive(5)] is prevented by the fourth item of the RMP rule, i.e., if a projection o with a

later time than the time of § is used in the RMP application, £ is not added to the context set.
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extension that Fred will be dead in the context of Dudley’s plan. This is crucial for
Dudley to ‘imagine’ the unfolding of his plans. We show a few illustrative steps from
this killer scenario:

0: Goal(kill, = Alive(5),5),

Proj(0,null, {}),
CS(0, null, { Alive(0)ops, Loaded(0)ps })

Dudley’s goal results in the formation of a partial plan. In this paper we do not describe
the details of plan formation. The context set of the partial plan in the first step in its
formation is the context set of the null plan. Also, the first projection is the projection
in the null context.
1: Goal(kill,~Alive(5),5),
Loaded(4)
Ppl(1, kill, Shoot(4) )

- Alive(5) )
CS(1, null, { Alive(0)ops, Loaded(0)ps }),

Proj(1, null, { Alive(1 : 00), Loaded(1 : c0)}),

CS(1, kill, { Alive(0)ops, Loaded(0)ops })

Proj(1, kill, { Alive(1 : 00), Loaded(1 : 00)}),

Dudley formulates a plan to achieve the goal.
2: Goal(kill, = Alive(5),5),
Loaded(4)

- Alive(5) .
CS(2, null, { Alive(0)ops, Loaded(0)ps }),

Proj(2, null, { Alive(1 : 00), Loaded(1 : 00)}),
CS(2, kill, { Alive(0) b5, Shoot(4), Loaded(0)ps }),
Proj(2, kill, { Alive(1 : 00), Loaded(1 : 00)})

Shoot(4) is added to the context of the “kill” plan, since the action was added to the

plan at the previous step.
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3: Goal(kill, = Alive(5),5)
Loaded(4)

- Alive(5) )
CS(3, null, { Alive(0)ops, Loaded(0)ps }),

Proj(3, null, { Alive(1 : 00), Loaded(1 : c0)})
CS(3, kill, { Alive(0) b5, ~Alive.(5)[Loaded(4)], Shoot(4), Loaded(0)ops }),

Proj(3, kill, { Alive(1 : 00), Loaded(1 : 00)})

In the context of his plan to kill, Dudley concludes that Fred will die. Within the context
of his plans, his actions are treated as facts. It will take it another step to reach the

same conclusion in the null plan.

4: Goal(kill,—Alive(5),5), Ppl(4, kill, ﬂ),
CS(4, null, { Alive(0)ops, Loaded(0)ops, Shoot(4)eps }),
Proj(4, null, { Alive(1 : 00), Loaded(1 : c0)})
CS(4, kill, { Alive(0)ops, Shoot(4) ps, ~ Alive.(5)[Loaded(4)], Loaded(0) s }),
Proj(4, kill, { Alive(1 : 4), 7 Alive(6 : 00), Loaded(1 : c0)})

Dudley has acted upon his ‘kill’ plan, and the action triplet is removed from the partial
plan, in accordance with the inference rules for planning and acting (not described here).
Shoot action is observed, and appears in the context of both plans. In the context of his
plan to kill, he concludes that Fred is dead from the shooting provided the projection

that the gun stayed loaded is true.

5.2 Two more aspects of the frame problem

The temporal persistence rule (TP) tackles the projection frame problem, in deciding
what fluents persist in the context of a given plan and for how long. The Context Set
Revision rule (CSR), together with the restructured Modus Ponens rule (RMP) deals

with the ramification problem, by allowing the agent to reason about the extended
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effects of its actions in the context of its plans. This allows Dudley to form a com-
prehensive mental image of the future and to extend it in time in accordance with his
changing environment. The qualification problem must also be addressed if Dudley
must anticipate the success of his actions in a plan. The treatment of various versions
of the YSP illustrated Dudley’s ability to handle the temporal persistence problem.
In this section we examine how the active-logic planning mechanism offers solutions

to the qualification and ramification problems.

5.2.1 The qualification problem

In a nutshell, the qualification problem is the impossibility of specifying the
(pre)conditions required for an action. A famous example (due to McCarthy) is the
‘banana in the tailpipe’ problem. There are an infinite number of eventualities that
can potentially interfere in the successful execution of an action toward its intended
effect. It is impossible for the reasoner to account for all of these during the plan
formulation or execution phases.

Apparently, in case of human commonsense reasoners, the knowledge representa-
tion for an action is determined by a complex learning mechanism, but once developed,
the agent simply maintains a short list of preconditions that he/she deems necessary
for the ‘normal’ execution of an action and takes them into account while formulating
his/her plans. This has the tremendous advantage of keeping the planning process
simple. But agents do not function in a static world. Hence the plans are not crisp.
The agent is constantly observing and ‘thinking’ about his/her plan in the interval
between formulation and execution. He/she has a great deal of world knowledge that
makes it possible to recognize the presence of qualifications. Commonsense agents
can incorporate these qualifications into the reasoning to alter their plans in suitable
ways. The ‘normal’ conditions for an action are those that the agent is accustomed to

accounting for while forming one’s plan.
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There are two aspects of the qualification problem. One falls into the category of
learning. This is the problem of identifying whether a given condition is a qualification
for a particular action. For example, a child learns through (repeated) trials that an
object is impossible to lift with its fingers when it is hot. Thus Ho#(T, X) is a po-
tential hindrance to the attempted action Lift(T,0bject). Until the condition is not
known to be a qualification (the axiom Hot(T,object) — Hinders( Lift(T,object)) is
not known), the agent attempts to lift the hot object and subsequently fails, unaware
of the qualification. Thus agents need suitable learning capabilities to identify qual-
ifications. The other aspect falls within the realm of planning. This is the problem
of incorporating the known qualifications into the planning process when considered
necessary. The human commonsense agent goes about its way, thinking only of the
‘normal’ conditions until some pointers to a potential qualification are seen in his/her
knowledge base. Our real-time automated reasoner plans in a changing world. Obser-
vations can trigger further inferencing. Especially in deadline situations, these may be
very crucial to making timely modifications to one’s plans.

Consider the banana in the tailpipe. Suppose human agent Steve drives to work
everyday. As he steps out of the house towards the car, Steve thinks of the only
condition in his knowledge representation for the action of starting the engine — he
just fumbles in his pocket to make sure he has the keys. If he just did not know that
having a banana in the tailpipe can hinder the action of starting the car, he might think
nothing of it even if he sees one sticking prominently in the tailpipe. This of course,
will lead to subsequent failure to start the car, and maybe particularly expensive in
a deadline situation. However, if he knows that the banana is a hindrance to the
action of starting the car, and he notices it in the tailpipe, Steve, as a commonsense
human agent immediately realizes that the plan of starting the car will not work. it
needs modification. Possible modifications may include efforts to remove one or more

of the responsible causes, such as getting rid of the banana, or may involve alternate
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planning to achieve the goal such as deciding to walk to work instead.

We would like our automated agent to have the capability to take care of a known
qualification in its planning. The context set of the plan is continuously revised by the
agent. Aslong as there is no formula in the context set indicating a hindrance to any of
the actions in thee plan, the agent concludes that it is ok to go ahead with the current
action. This may lead to failure under some circumstances. However, in others, with
the added real-time capacity to take notice of changes in one’s environment, the agent
may notice a qualification in time to modify the plan suitably.

We assume that Dudley has an inference rule that enables him to replan once a
hindrance has been noticed. Here we only encapsulate it in the phrase modify plan.
The details of the replanning have been omitted.

Inference rule to take note of a hindrance:

i:CS(i,p,{..., Hinders(A),...}), Ppl(i,p,{...,[Ca, A, R4l,...})
1+ 1: modify plan p

Axioms(these are part of every context set):
=Start(T : T + 1,engine) V Running(T + 1, engine)
condition(Start(T : T + 1, engine), Have(T, key))

—In(T, banana, tailpipe) V = Start(T : T + 1, engine) V Hinders(Start(T : T + 1, engine))

0: Goal(car_start, Running(6, engine), 6),
Proj(0, null, {}),
CS(0, null, { Have(0, key)oss })

1: Goal(car_start, Running(6, engine), 6),
Have(b, key)

Ppl(1, car_start, Start(5 : 6,engine) )

Running(6, engine)
CS(car_start, 1, { Have(0, key)ops }), Proj(1, car_start, {})

2: Goal(car_start, Running(6, engine), 6),
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Have(b, key)
Ppl(2, car_start, Start(5 : 6,engine) ),

Running(6, engine)
CS(2, car_start, { Have(0, key)ops, Start(s : 6, engine), In(2, banana, tailpipe)ops }),

Proj(2, car_start, {Have(l : co, key)})

3: Goal(car_start, Running(6, engine), 6),
CS(3, car_start, { Have(0, key)ops, Start(s : 6, engine),

Running.(6, engine), In(2, banana, tailpipe)ops }),

Proj(3, car_start, { Have(l : 0o, key), In(3 : co, banana, tailpipe)})

Have(b, key)

Ppl(3, car_start, Start(5 : 6,engine) )

Running(6, engine)
4: Goal(car_start, Running(6, engine), 6),
CS(4, car_start, { Have(0, key)ops, Start(5 : 6, engine), Running.(6, engine},

In(2, banana, tailpipe) s, Hinders(Start(5 : 6, engine))[In(6, banana, tailpipe)],

Proj(4, car_start, {Have(l : 0o, key), In(3 : 0o, banana, tailpipe), Running(6 :
Have(b, key)

o0, engine)}) Ppl(4, car_start, Start(5 : 6,engine) )

Running(6, engine)
At step 4, the context set of plan car_start contains
Hinders(Start(5 : 6, engine))[In(6,banana, tailpipe)]. The agent notices this in step
5, and moves on to modify the plan, either by removing the Start(5 : 6, engine) action
from the plan and finding an alternate one, or by removing the cause of the hindrance.
We do not include details of the replanning flowing this step, since the focus of this
work is the frame and temporal issues.
A relevance mechanism brings into short term focus only those conditions that
may be relevant to the processing of an action at the current time. This is achieved by
integrating a model of a short-term memory and an algorithm guided by heuristic rules

for bringing those formulas which are relevant to the agents current line of reasoning.
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For example, if the agent is not currently aware of a banana in the tailpipe, the
particular axiom regarding the hindrance is not in focus, hence not in the current
context set. Thus, the above formalism, combined with a relevance mechanism offers
a fuller treatment of the qualification problem. Details of the space constrained agent

are in [NKP93].

5.2.2 The ramification problem

This is the difficulty in explicitly recording all the consequences of an action. An
action often produces, in addition to its intented effect, a variety of ramifications
(or side-effects) that are often dependent on the environment in which the action is
performed, upon the domain (integrity) constraints existing at the time, etc. STRIPS
like systems could not handle this problem at all. Effects of actions were canned into
add and delete lists. We would like the automated reasoner to have the flexibility
to reason about extended effects that are within the realm of its inference capacity
and permitted under his deadline constraints. We illustrate this with the help of an
extension of the example scenario mentioned before in 4. To recapitulate:

Dudley is standing next to a bucket, at location bucket_loc, with a ball in his
hand. The bucket is filled to the brim with oil. Dudley may be the household robot
assigned with normal clean up goals, and routinely drops objects into buckets (trash
cans). In his ‘normal” sphere of activity he seldom encounters buckets filled with
oil. Dudley has the compound goal In(5,ball,bucket) A at(10, Dudley, nextroom),
i.e., to drop the ball in the bucket and then go to the next room. His knowledge
representation of the Drop(T, Object) action is determined by his everyday experience.
It has the condition A#(7T, Dudley,bucketloc) A Have( Dudley, Object) and has the
result In(T + 1, bucket,Object). However, when Dudley drops the ball in the bucket,
the oil spills all over the floor, and hinders Dudley’s next action of walking to the next

room, since he slips on the oil and falls.
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Can Dudley reason about this obvious extended ramification of his drop action?
He knows that the bucket is full. He has the axiom that dropping an object will cause
the oil in the bucket to spill. The spilled oil will cause the floor to get wet, and will
hinder his walk. As in the above scenario, ramifications are of particular interest when
the ramification of one action (Drop) becomes a qualification for another (Walk)?.

Our representation of the contexts of the plans, and the continued reasoning within

the context allows Dudley to take care of obvious ramifications of his actions.
Axioms:

=Drop(T : T + 1,ball, bucket) V In(T + 1, ball, bucket)

condition(Drop(T : T + 1, ball, bucket), At(T, dudley, bucket_loc) A have(T, ball, dudley))

= Filled(T, bucket, 0il) V =Drop(T : T + 1, ball) vV Spil(T + 1, 0il)

=Spill(T : T+ 1, 0il) V ~Dry(T + 1, floor)

~Walk(T1:T2,dudley, L1 : L2) V At(15,dudley, L2) ( v¥( T2 -T1) = L2 - L1, where v is
Dudley’s speed.)

condition(Walk(T1 : T2, dudley, L1 : L2), At(15, dudley, L1))

Dry(T, floor) V -Walk(S : F,dudley) V Hinders(Walk(S : F,dudley)),S<T < F

5: Goal(p, In(15, ball, bucket) A At(20, dudley, nextroom, 20),

At(14, dudley, bucket loc) A Have(14, dudley, ball)
Drop(14 : 15, ball)
In(15, ball, bucket)
Ppl(5, p, )
At(15, dudley, bucket loc)

Walk(15 : 18, dudley, bucket loc : nextroom)

At(18, dudley, nextroom) ,
7
CS(5,p, {Filled(0, bucket)ops, Have(0, ball, dudley),ps, At(0, dudley, bucket 1oc) s,

Dry(0, floor)s, Drop(14 : 15, ball), In.(15, ball, bucket),
Walk(15 : 18, dudley, bucket_loc : nextroom), At.(18, dudley, nextroom)})

2with suitable knowledge about the domain, our mechanism will also allow us to deal with actions
in the self-defeating category [GS87]. However these problems involve the characterization of the

applicable physical laws, and tend to become quite complex in any framework.
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Proj(5,p, {Filled(1 : 0o, bucket), Have(l : 0o, ball, dudley),
At(1: 17, dudley, bucket_loc), At(18 : 0o, dudley, nextroom),
Dry(1 : oo, floor), In(16 : oo, ball, bucket)})

The above step in reasoning shows a plan to achieve the goal, and shows
its context set at step 5, soon after plan formulation. In steps 6, 7,
and 8 to follow, by applications of RMP, Spill(15,0il), —=Dry(16, floor) and
Hinders(Walk(15 : 18, dudley, bucket loc : nextroom)) will be members of the
Context_List. Once ‘Hinders’ enters the context of plan p, Dudley must take the
required replanning steps to remedy the situation. One possible remedy could be to
wait until the floor dries, but the agent must evaluate this plan against the possibility
of overshooting the deadline for his goal. Thus in deadline situations, it is not sufficient
for the situated agent to detect the ramifications, it also needs to have the ability to
react to them in a timely fashion. This example illustrates a real-time treatment of

the ramification problem.

5.3 Summary and related work

We have presented a framework that handles several real-time versions of the YSP
(including several aspects of the frame problem) and performs fully deadline-coupled
planning and reasoning. As such, it is difficult to compare it with isolated brittle
solutions that handle particular temporal aspects of one of the above mentioned prob-
lems. Moreover, our inference engine was not designed to solve the YSP or to tackle
particular aspects of the frame problem. Instead, we consider these problems as in-
dependent benchmarks against which to test our flexible and yet robust real-time
reasoning mechanism.

What distinguishes this work is the capacity of an agent to perform the reasoning

in a changing environment, accepting new observations, and incorporating them into
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current (and changing) beliefs. The agent dynamically forms a model to fit his/her
evolving knowledge base by using a combination of procedural and declarative meth-
ods. There is no meta-reasoner to step in and perform the difficult tasks, neither are
“undecidable” methods invoked to analyze all possible models. The agent effectively
computes a plausible model, and has the capacity to revise it as time goes on, resolving
contradictions as and when they arise in the process. The mechanism functions for
the agent whether he/she is the one performing the actions, or observing them.

We have compared our temporal projection approach with chronological mini-
mization [Sho88, Kau86], causal minimization [Hau87, Lif87b], the model approach
[MS88, Ams91]. and the time map approach [DM87] in Chapter 4.

Here, we compare our solution with two other recent works that address the YSP.
Baker [Bak89] provides a solution to the YSP using situation calculus and circum-
scription, with an ‘Ab’ predicate in which the result is varied. It is necessary to add
“existence” axioms for situations, but this is done elegantly in this framework. Baker’s
approach can solve most versions of the YSP (though not in real-time). It is not clear
who does the reasoning, the (undecidable) circumscription provides the likely models.
Since the agent’s role is not obvious, it is not possible to integrate it within a planning
framework, hence it can not be easily extended to the “killer” scenario. It can not
solve the ‘stolen car’ problem,> which we can address. Our approach can handle all
the other problems mentioned here, although our detective scenario is closer to that
in [MS88] and different from the murder mystery described. Our approach can also

offer a treatment for all the ramification problems mentioned in [Bak89].

3The ‘stolen car’ problem, is a problem with chronological minimization. Upon seeing his car
stolen, the agent is forced to conclude that the car was stolen only at the last possible moment before
it was found missing. Our mechanism does not run into a problem with the ‘stolen car’. Suppose
it is known that - Missing(0, car) and then, at time 10, Dudley observes Missing(10, car), the TP
rule does not project =~ Missing up until time 9, unless Missing.(10) is known. We do not postpone

changes until the last possible moment unless a potential cause for the change is known.

61



[Ams91] is the only other work other than ours that attempts to discuss the issue of
who the reasoner is in a given scenario, which we have addressed at length. Amsterdam
highlights the advantage which a reasoner has when he/she is at the site of the action,
namely, that he/she can observe an action whenever it happens. This allows the
agent to utilize the closure property — “if an action is not mentioned then it did not
happen”. However, here again, there is a meta-reasoner doing the inference. That
theory’s greatest limitation (and this is said in [Ams91]) is the rigidity of the above
mentioned closure principle. There are scenarios where actions can be derived from
propositions and hence do not have to be explicitly specified.

In this chapter we developed various real-time versions of the Yale Shooting sce-
nario. Using them we demonstrated Dudley’s time-situated handling of the three

frame problems, namely projection, qualification and ramification.
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Chapter 6

Time-situated Planning

Recently there has been a surge of interest in systems capable of intelligent behavior
in dynamic and unpredictable environments [AC87, Bro91, Kae88, HR90]. Resource
limitations, including the treatment of time as a consumable resource has received
attention in systems that perform real-time planning. In chapter 1 we examined some
of the relevant literature in traditional Al planning, and discussed recent trends in the
field. A comprehensive survey of research in deliberative real-time AI can be found
in [GL94]. In this section we describe the extent of our contribution to Al planning.
While our research tackles issues involving time and deadlines, it deals only modestly
with optimality issues in planning.

This chapter describes the details of the planning mechanism. The temporal rea-
soning rules described in Chapter 4 provide the beliefs regarding the context sets and
the temporal projections which are used to decide the structure of the partial plans.

Real-time truth maintenance ensures that all the contexts are kept current.

6.0.1 TIssues in real-time planning

Real-time systems research from the Al perspective has regard for two major problems
as described in [BH91]:

1. Response time constraints
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2. Dynamic situations

Response time constraints for a task pose a limitation on the total time (the time
to plan and the time to execute) of a solution. Response time constraints further factor
into the problem of meeting deadlines and the problem of providing optimal response
times. In our commonsense formalism we have addressed the first aspect of response
time constraints, namely, deadlines. Total response time includes both planning and
execution time. Optimal response time is not necessarily the result of planning for an
optimal solution (with respect to cost factors other than time), since the planning cost
for it may be extraordinarily high. Typically, planning time and solution quality have
a trade-off between them. This has been extensively studied in several works based
on decision theory [Hor88, DB88, RW91]. They tackle the response time optimization
problem, which is aimed at finding the best possible solution within the least amount
of time. However, these works do not have the means to account for all the time spent
in their reasoning, nor is it their main concern.

Dynamic situations are those where the world changes in the course of planning.
Planning completely before the execution phase can lead to obsolete solutions. Typ-
ically, cycles of planning followed by execution are suggested as a solution to this
problem [Kor90, BH91]. However, the time required to decide how much planning

must be done before execution begins is not often taken into account.

6.0.2 Where the active-logic work fits in

Our work overlaps with the above concerns in real-time planning. We explore two
particular aspects: 1. Real-time embeddedness 2. Deadline-coupled reasoning. The
main contributions of this dissertation to Al planning are in these two areas. The
first addresses the fact that the agent is embedded in a dynamic environment, and

furthermore, ensures that all the time spent in the reasoning and acting is in the real
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time-frame. The second addresses the issue of response time.

The decision theoretic works hinge on having a priori and complex knowledge of
“utilities” associated with procedures, and on analyzing how differing time costs can
affect the “optimal” choice of a decision procedure. Performance profiles graph the
expected value of parameters returned by a given procedure as a function of time.
Quoting from [BD94]: “knowing expected value is also in general insufficient; there
is need for the complete probability distribution.” This type of complex knowledge,
sometimes represented by surfaces in three-space needs to be analyzed so that these
techniques can yield significant incremental benefits due to deliberation.

We have not attempted to model complex deliberation that assumes the prior
availability of detailed characteristics of the decision procedures. In fact, we have (with
the exception of some heuristic inference rules) not attempted to perform optimization.
A plan that takes longer or consumes more material resources is as acceptable as one
that takes less time or is more efficient, as long as it is feasible.! However, as noted
before, we meet important time-related aspects that these works only partially seem
to: we account for all the time spent in the deliberation. This includes the time for
reasoning, as well as the time spent in any meta level reasoning. Furthermore, we do
so uniformly, without invoking any additional procedures or demons for the meta level
thinking.

We propose a generalized mechanism for planning in time. The specific inference
rules for the planning tasks themselves and algorithms developed here are not very
sophisticated. But, for someone interested, there is nothing that prevents one from

encoding richer planning structures into our framework while it still accounts for all the

We remark here, that it would be possible to model detailed decision theoretic reasoning in the
active-logic framework if the desire is to model an “expert” agent who is endowed with extensive prior
information about the domain and about the decision algorithm characteristics. We have not made

many attempts in this direction.
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time spent in planning and acting. Moreover, apart from its capacity to integrate and
interleave planning with execution, the planner has the ability to incorporate changes
around it into its reasoning. The active-logic mechanism includes observations from
the world into the belief set at the very moment that the agent takes note of them,
and they continue to affect the ongoing theory being developed by the agent in real-
time. Observations can be used to provide crucial feedback during the monitoring of an
action and act as a valuable aid in error detection and recovery. We have not addressed
the issue of plan failure and recovery in this work. But a time-bounded treatment
of it using deadline-coupled inferencing would be a direct extension to our current
work. Observations also serve to inform the agent of crucial events that will affect
the future of its planned actions. Sometimes, observations can render the planning
process unnecessary if the (sub)goal is observed to be already solved. At other times
observations may completely upset the assumptions on which the plans were based,

calling for much more planning effort.

6.1 Inference rules for fully deadline-coupled planning

This section contains a sample subset of domain-independent inference rules for the

active logic for deadline coupled planning.

1. The agent makes an observation

i:CS(i,p,{...})...
i+1:CS(i+1,p,{...,a}),..

;a € OBS(1+ 1)

An observation is incorporated into the context set of every plan p being pro-
cessed. In particular the null plan maintains a context consisting of all observa-

tions and the theorems that come to be proven in this context. Note that this
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rule is a modified form of the original step-logic observation rule which did not
have to make the distinction between contexts. In the absence of any planning
or temporal projection, the context of the null plan bears close resemblance to

the belief set of the S L7 logics of Elgot-Drapkin.

. Forms the first partial plan(s) by finding a triplet for the goal

Now(7), Goal(i,G(S : F,...), Deadline_G), Unsolved(7, G),
CS(i,null, {..., Result(Ag, Ra,), Condition(Ay,Ca,), Ar — G,.. .})...

Ca,
Ppl(i + 1, py, Ay, ),
1+ 1: Ra, (S : Fre—~F,...)
CS(i+ 1,pr, CS; nun)Proj(i + 1, pr, {})
Feasible(i + 1,p)WET (i + 1, p;,0) . ..

if G ¢ Proji,null U Csi,nulb

When Dudley has a goal that is not currently being planned for, he develops the
first partial plan(s) for solving it. For every available action Ay (or conjunction
of actions) that solves the goal he generates a new plan and calls it by a name
pr. In short, corresponding to every axiom with the consequent G he performs
backward reasoning to deduce the actions that must be done to achieve GG. The
time of the action is is linked the deadline by the “e—” symbol which denotes
that the result of the action must be protected until the deadline. We give a
simple example to illustrate this rule.

5: Now(5), Goal(h, At(10, dudley, home), 10),

Unsolved(5, At(10, dudley, home)),

CS(5,null, {..., Result(Walk(T1 : T2, dudley, garden : home, Walk_speed),

{At(T + 3, dudley, home)}),
Condition(Walk(T : T2, dudley, garden : home, Walk_speed),
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{At(T, dudley, garden)}),

Walk(T : T2, dudley, garden : home, Walk_speed) — At(T2,dudley, home), .. .})

At(T, dudley, garden)
6 : Ppl(6, walkit, Walk(T : T2,dudley, garden : home, Walk_speed) ),

At(T2,dudley, home)

3. Adds an action to the plan to satisfy a condition

{...,C}
i:Ppl(i,p,< ... A ... 72),CS(,p,{...,.Q = C})

Ry

Co {...,C}
i+1:Ppli+1,p,¢...| Q A co?)

Ro Ra

if C'¢ Proj; ,UCS;,

For every condition C'in the condition list of an action that is not projected to be
true, if there is an axiom for satisfying it, Dudley adds the corresponding action
to the plan. If there is more than one axiom for satisfying the same condition,

Dudley formulates a plan for each possibility, and indexes the name of the partial

plan with a new suffix to distinguish the new plans.

4. Refines a non-primitive action
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Ca

i:Ppl(i,p,q...| A ), CSEp QLA AQE — A
Ra
CQ, CQu
i+ 1:Ppli+1,,p,9---| Q1 | | Qr |-¢)
Rq, Rq.

provided every condition in C'4 € CS;; UProj; ,.

The active logic planner is hierarchical. Abstraction is embodied in the way
the axioms encode the knowledge about actions. Skeleton plans at upper levels
first synthesized by using higher level actions. These are then broken into more
primitive actions by rules such as the action refinement rule described above.
As the refinement progresses, better estimates of the execution time of the plan
become available. The context set maintains the actions reasoned about at all
levels. Further, these actions are used to annotate any reasoning based on them.
Lower level actions are annotated by the higher level action that they refine (see
the context set rule from Chapter 4). In the event replanning becomes necessary,
this provides the mechanism to revise a plan by substituting an action and all
the actions below it in the hierarchy when required. Our design allows for the
concurrent processing of levels, and for concurrent refinement of multiple partial

plans?.

5. Includes a Conditional action in the plan

2More on restricting parallelism in Chapter 8.

69



{...,C4,}
i: Ppl(i,p,< ... A o 2),CS(,p, {. .., CAQ — Ca,})

{CluCq {...,Ca,}
i+1:Pplli+1,p,<... Q A cog)
Ro Ra

if C'¢ Proj; ,UCS;,

When an axiom C' A @ — C4, is found to be a way to satisfy a (sub)goal C4,,
the action @ itself is not sufficient for C'y4,, C' has to be true in the projection
as well. This is taken care of by adding C' in addition to the conditions for @)
in the action triplet introduced in the plan. Later in Chapter 7 we elaborate on

the planning options that depend upon the category of C.

6. Executes an action

Ca
i : Ppl(s, p, AG:T,..) | - ¢),CS(E,p,{...,Ca})
Rp .
i+1:Ppli+1,p,{...})

This inference rule executes an action when its start time has been bound to the
current Now by the agent. The time for some actions is decided right when they
are inserted into the plan, for others it must be decided by a specific inference
rule. In our present implementation, we execute a primitive action as soon as

its conditions are satisfied.

7. Includes a Repeat-until action in the plan with signaling-condition SC 4
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Cg
Ppl(i,p,<...| B ),
Rg |
j
CS(i,p,{..., Repeat_until(S : T, A,SC4,...) — Cp, condition(A4, C4)})

Ca(S:T,..)
i+1:Ppli+1,p,{ .| Repeat_until(S:T,A SCya,...) coeg)
Cg i
The above inference rule adds a repeat-until type of action to the plan. The
condition of the repeat-until action is the condition for the repeated part, but
maintained over the entire duration of the outer loop. More detailed discussion

on this category of actions will follow in Chapter 7.

8. Executes of a Repeat-until action in the plan

Ca
i Ppl(i,p, ... Repeat_until(i : T, A, SCa4,...) )
Cp

Ca
i+ 1:Ppl(i+1,p, Repeat_until(i +1:T, A, SC4,...) )
Ch

if SCA ¢ Csi,p U Proji,p

9. Completes execution of a Repeat-until action when a signaling-condition appears

Ca
i Ppl(i, p, Repeat_until(S : T, A, SCa4,...) . 2),CS(1,p, {...,5Ca})
Cp )
i+1:Ppli+1,p,{...})
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10. Spawns the generation of multiple plans on encountering a compound condition®

C'a(R:S,..)NC"4(V:W,..)

Ppl(i,p,< ... A cee o)
Ry )

L j

CS(i,p, {A"—= C), A" = C[})

r T 3

Ppl(py,i+1,¢ ... Al A )
CH(P:Qe=S) | CHT :Ue=W) |
i1 L -2 Ji-1
Ppl(ps,i+1,¢ ... A Al s ?)

I CHT :Ue=W) i CY(P:Qe=5) I )
This inference rule encodes the linear planning strategy of our planner. Clearly,
a total ordering such as this will cause the generation of non-optimal and some-
times even redundant plans. We have some heuristic inference rules that identify
some obvious redundancies in a planner and identify the presence of loops. In
general though, we have not focussed on plan optimization. One heuristic rule
that identifies a redundant plan and rejects in favor of a better one is described

below:

11. Freeze a plan when it is found to be inefficient

CAk(V : W,)
i:Ppl(i,p,< ... A; Ap coe?)
Ra,(P:Qe=5)
i+ 1:Freeze(i,p)

if P:Sand V : W overlap, and R4, and Cy, are in direct or uniqueness contradiction

3This rule can be easily generalized to more than two conjuncts in a condition.
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6.2 Examples of active-logic scenarios

Appendix A gives examples of some sample scenarios which are variations of Dudley’s
railroad track predicament. They bring out some of the interesting aspects of time-

situated planning that we have discussed in this chapter.

6.3 Summary and related work

In this chapter we have described the inference rules related to plan formulation. In
Chapter 7 we discuss the inference rules related to time estimation and feasibility
analysis.

In this section we briefly describe the handling of interactions and dependencies
in some well known planners. Mapped along an axis representing the amount of
deliberation, reactive systems occupy the low end, while the works that we mention at
the end of Chapter 7, which perform extensive deliberations and meta-reasoning are
on the high end. In this section we also mention some reactive planning research as
well as those planners that perform a modest amount of meta-reasoning but do not

reason about the deliberations themselves.

6.3.1 Plan interactions and dependencies

The Sussman anomaly[Sus73] showed that certain planning situations are intrinsically
non-linear. Waldinger [Wal75] first suggested the technique of “goal regression” to
tackle the problem of conjunctive goals. With INTERPLAN [Tat75], Tate suggested
recording a link between the effect of one action and the condition of another. (We
have used a similar idea by using the “e—” symbol to record the need to preserve a
certain effect of an action until a later time). NOAH’s procedural nets, and SOUP
(Semantics of User’s Problem) [Sac75] used critics which are outside advisors that

perform decision making regarding non-linearity and plan optimization. It was the
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first partial-order planner. We have a total-order planner, simply because it turned
out to be the simplest kind to build while we concentrated on the time-related aspects.
We commit to a sequence of actions, but the actual times at which the action must
be executed is bound to the Now only at the time of acting. NONLIN [Tat77b] could
detect interactions and take the necessary corrective action. DEVISER [Ver83] went a
step further and handled time limits while performing partial order planning. Planning
with conditional operators and iterators has been dealt with in NOAH [Sac75], SIPE
[Wil83b] among others.

There have been numerous efforts to improve planning by recognizing goal inter-
actions and dependencies during the planning process, and better representations of
actions and plans; we refer to [AHT90] for a collection of these. These researchers
recognize the need to use features of the plan to reason about improving the plan.
But this is not done by the planner itself. In our work, although we do not make
any attempts to optimize plans, we perform domain-independent meta-level reason-
ing within the same framework as the object-level planning; and unlike the “critics”
[Sac75], the meta-reasoning is an intrinsic part of the planning that also consumes

time.

6.3.2 Approaches to handling meta-planning tasks

One way to implement meta-level decision making is to design two distinct component
systems, one for object-level and one for meta-level reasoning. The other way is to
design a uniform meta-level architecture where the meta-level problems are formulated
using the same language and structures as the base-level problems, using similar meth-
ods. This introduces flexible systems, but along with it also introduces the possibility
of infinite regress. This is the metareasoning challenge.

Reactive systems eschew meta-level planning, and even planning. by considering

all contingencies at design time. Typical of this group is the work of Brooks [Bro91,
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Bro86]. Other efforts that obviate the need for explicit reasoning at execution time
are [AC87] and [RK86] and [Kae87]. This is an interesting approach. In the problems
that we have dealt with in this dissertation, which fall in the “unforeseen” category,
the fully reactive approach is often believed to lead to brittle and inflexible systems if
no real-time deliberation is performed [DF89, Doy88, PR90, IG90].*

At middle of the deliberation spectrum, many researchers agree that some form
of deliberation is necessary in planning. We mention a few of these here. (A detailed
relationship with several approaches to associating a cost with the deliberation pro-
cess is discussed at the end of Chapter 7.) SIPE [Wil83b] separated execution and
generation by allowing the user to guide the planning process (perform the meta rea-
soning) during execution. The PRS system [GL88] uses metareasoning to recognize
the need for additional planning. More recently [IG90] proposed a situated architec-
ture for real-time reasoning. Based on PRS, it provides management representation of
metareasoning strategies in the form of metalevel plans, and describes an interpreter
that selects and executes them. The architecture is not fully embedded in real-time
though, since the time of this interpreter is not accounted for.

Our fully deadline-coupled planner has an important qualification that these efforts
fail to meet: in addition to performing metareasoning for determining the current time,
estimating the expected execution time of partially completed plans and being able to
discard alternatives that are deadline-infeasible, it also has a built-in way of accounting
for all the time spent as a deadline approaches. This means not only accounting for
the time of various segments (procedures in the more usual approaches), but also the
time for this very accounting for time! Active logics do this without a vicious circle of

“meta-meta-meta...” hierarchies.

*Partial reactivity to the environment is achieved in our formalism by taking timely note of changes
in the environment through observations. However, we simply incorporate the observations into the

ongoing deliberative process of reasoning; they do not trigger any special reactive components.
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Chapter 7

How long will it take?

7.1 Estimating the WET of a plan

A truly time-situated planner must be able to keep track of every unit of time spent,
whether it is spent in inferential or physical activity. This also includes the time spent
in making estimates of how much time will be spent. Thus, first of all, we need a
time-situated estimation mechanism. The WET (working estimate of time) of a plan
is a rough estimate of the total time that the plan will consume. It consists of two
parts. The PET (planning estimate of time) is the (estimated) time spent in reasoning
about the plan. This includes plan formulation, refinement, temporal projection and
context-based reasoning. The EET (ezecution estimate of time) of the plan is the
(estimated) time required to actually execute the actions that have been identified in
the plan. Thus, WET = EET + PET.

The WET estimation consists of EET estimation and PET estimation. Our ap-
proach is to concentrate on the EET portion. We estimate the PET only by a small
factor that is an estimate of how long it will take to refine the current plan to the
level of primitive actions. Basically, for each action that is non-primitive, we add a
constant number of time steps (default is two) that are required to firstly refine the

action, and secondly to bind the variables for actual execution of the action. Thus, we
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add at least 2n to the EET of the plan if there are n non-primitive actions currently
in the plan. If a measure of the level of abstraction of an action is available (such as in
the representation in the ABSTRIPS planner [Sac73], that number would reflect the
number of steps required to refine the action into primitive level actions, and could be
substituted as an estimate in place of the constant 2.

In our design, the decision to not include an estimate of the (future) meta-planning
time' into the WET was taken to avoid recursion of meta-meta-meta ... levels of
estimation. Time must be spent to choose between alternatives or to adjust the plan to
ensure that it does not violate other goals [Wil83a]. Inferencing such as this constitutes
the meta-planning that Dudley performs. We do account for the time spent in making
these inferences, as they are made. But the WET is restricted to actions in the plan,
namely object level actions. This is not a serious disadvantage. We have a uniform
approach to treating planning and meta-planning. A meta-level plan will eventually
be translated into an object level plan that satisfies the meta-goal. Once at this level,
the WET will accommodate the execution time of the meta-plan into the new WET.
We give a brief example to illustrate this.?

Suppose Dudley has a plan to go out and fetch the newspaper in the morning.
However, on a particular morning, it is raining outside. The plan being developed
to fetch the newspaper has the ramification that it will cause Dudley to get soaked,
and violate the sustenance goal® to keep himself dry. He must then (meta) plan to
try and still keep himself dry. The meta-reasoning results in an object level plan to
wear a raincoat, which must be merged with the plan to fetch the newspaper. The

new WET will continue to reflect only the execution time of the plan to walk outside

!Current and past meta-planning time is fully accounted in the sliding Now predicate and is
factored already into the feasibility analysis.
2This example is mentioned in [Wil83a].

3 A sustenance goal is one which must be preserved during the entire planning process.
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and fetch the newspaper while the meta-planning proceeds in time. But once the
object level plan to wear the raincoat begins to be synthesized, the WET reflects this
additional time to look for a raincoat and put it on. As the meta-planning proceeds,
time is consumed and is accounted for by the sliding Now. In this sense, we have
a commonsense formalism for a fully deadline-coupled estimation of the WET. One
may argue that the planning time may be too high, and if the WET can not factor
that into the computation the estimates will be too low to be useful! That may very
well happen if planning continues to introduce only inferential actions into the plan
for which no object level estimation is available. With human reasoners, in case the
problem involves very complex deliberations that are all inferential, they do not have
any idea of how long their reasoning may take. So long as the agent can switch to
reasoning about object level actions after a certain amount of thinking, the estimates
will not be too low. Between these estimates and the accounting for how much Now
has changed while making them, we feel that we have a reasonable estimation method
for the WET. It has the advantage that it is a simple computation that does not
require too much prior knowledge or tedious processing.

Note that the WET is only a rough estimate and hence feasibility conjectures based
on it are at best approximate. The agent often tries to estimate an upper bound on the
WET, so as to make sure deadlines are met. Deadlines may still be missed because: (1)
The WET estimate was not accurate, individual components took longer to execute
than expected. (2) The agent experienced sudden unexpected changes that rendered
the planning obsolete. (3) Actions in the plan took their estimated time too execute,
but, these actions failed and did not yield the expected results.

The following two rules compute the WET of a plan and check for its feasibility

at every step in the reasoning.
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e Computes the WET

CAl CAk
Aq(s1: f1, ... | Ag(sk o fr, - )
i Ppl(i.p, 1(s1 0 f1,0-0) k(sk  fry )
Ra, Ra,

CS(...,estimate(Ar, Ea,)
i+1:WET(i,p,Y;_, Fa;)

the summation is limited to those j values for which EAj4 is known.

The WET is Dudley’s calculation of how long his partial plan (formed as of the
previous step) will take to refine and execute. This he adds to the current time
and compares the result to the deadline to make sure the plan is not hopeless.
As long as the WET + Now is within the deadline, he declares it Feasible, and

continues refining and/or putting the partial plan into execution.

e Keeps track of feasibility

i : Ppl(i,p, {...}), Deadline(p, DdYWET (i, p, n)
i+ 1: Feasible(i, p)

if n+i < Ddl.

7.2 Categories of actions and time estimates for plans

As Dudley develops a partial plan to save Nell, he continuously refines his estimate
of the time needed to carry the plan to completion.® In the begining phase of plan

generation, actions are more complex and abstract. Estimates for the execution time

4E,4j is the time estimate A;. It includes the two steps required to refine A; if A; is non-primitive.
®The WET estimation is one of our concessions to procedural methods: we do not require Dudley
to figure out how to do arithmetic but rather allow that he already knows. But we do require him to

note the passage of time during the execution of the procedure.
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for these actions are based on prior experiences with the action or with similar actions
and are held as axioms of the form estimate(< action >, < time_to_complete_action >
). The estimates may also be acquired as a result of observation. As Now changes,
and time is spent in planning, the agent substitutes lower level actions into the plan
for which closer estimates may be available, up until the level of primitive actions
where the estimate is simply the anticipated interval for executing the low level task.
In general, the estimate may or may not be separable into individual constituents.
Dudley’s database of axioms and rules contains knowledge about actions and their
(intended) effects. However, not all actions are the same from the perspective of
planning. Especially with regard to planning under time pressure, Dudley may have
to estimate differently the time interval for the duration of each action in the plan,
depending on the type of the action. We attempt here to formalize some categories of

commonly encountered actions from the standpoint of planning.

e The Repeat_until category

(Repeat < action > until < signaling_condition >) is the form of an action
that needs to be performed in a loop. In order to achieve a particular goal, the
only known procedure may be to repeat a certain action or sequence of actions.
Very often, there is an observation that signals the successful completion of the
task. This observation (signaling_condition) may or may not coincide with
the goal. For example, dialing the telephone repeatedly until a connection is
obtained, is a means for establishing contact with someone. Similarly, beating
egg whites until stiff peaks appear [Ger90] is a means for beating eggs to the right
consistency. An agent must incorporate repeated actions into plans in many day
to day situations. The signaling_condition is often known to the agent. The
inference rules for plan formulation enable the agent to formulate a plan with

a Repeat_until action, and guide the actual execution of this type of action.
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A primitive action can be directly acted upon, and is removed from the plan
upon its execution. A Repeat_until action is a non-primitive action which can
be executed, i.e. the repetitive part of it can be executed, but is not removed

from the plan unless the signaling_condition is observed.

For most actions that fall in this category, the agent may have an estimate
of how long it may take until the signaling_condition typically appears. The
agent knows what sequence to repeat, but does not know the exact number
of times that it must be carried out. For example, in the case of beating egg
whites, Dudley may know that this typically takes 3 minutes. If 6 minutes
go by and stiff peaks do not appear, it signals a possibility of failure of the
Repeat_until action®. The planning process as well as execution is incremental;
the actual number of times the repeat is executed is determined in real-time

through execution combined with observation.

There is a difference in the two examples of Repeat_until actions described above.
In the case of the egg whites, it is necessary to repeat the action, not because
it fails to give the intended result, but more because it is part of a sequence of
actions that must be performed in order to achieve the goal. Here, the cumulative
effect of the repeats marks the end of the loop. In the example of dialing until
a connection is obtained, the agent keeps redialing because the earlier dialings
fail. The first successful action marks the end of the loop. However, we will

omit this distinction here, and put both examples in the Repeat_until” category,

6This paper does not offer a formal treatment of plan failure and recovery. An alarm mechanism
can be built that signals a potential failure to Dudley in the event that he overshoots his estimate for
a Repeat_until action by a substantial margin.

"Another real-time scenario which illustrates the use of a Repeat_until action, is one in which
Dudley chases the bad guy in real-time. As the target object moves, Dudley must perform the action

of taking one pace in the direction of the current position of the target. At every step ‘now’ and ‘here’
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since, from the planning agent’s point of view the plan has the same structure

and monitoring must be done to watch out for the signaling_condition.

e The Conditional_effect type actions
An axiom for this type of action is often of the form:

CNA— R

(if < condition(s) > and < action > then < result >) ,where R is a (sub)goal,
and is the result of performing A, given that condition C is satisfied. The
condition €' must be held true in addition to the list of conditions C'4 which are

seen as necessary by the agent in order to be able to perform A.
Within this category, there are two possibilities:

(a) C'is do-able under the agent’s domain of control, i.e. the agent has an
axiom of the form B — (. The inference rule for planning for this type of axiom
is as follows: To make a plan to achieve R, insert A into the plan, and add C
along with C'4 as the conditions in the triplet corresponding to result R. In our
formalism, once inserted, ' will also be continuously checked at each step, so

that the plan may be altered in the event that C' ceases to hold. Further,

(i) If C is already true in the context of the plan, the agent does not
have to plan additionally for it. The estimate of the time for achieving R in this

case is not affected by the presence of C'.

(ii) However, if C' is not already in the context of the plan, it will be
necessary to add action B to the plan to first achieve C' and then proceed with

A. In this case the estimate should include along with the estimate of A, at least

must be used as parameters to create a new instance of a pace in the dynamic plan. Dudley may
be able to estimate the time required to reach the bad guy from the differential in their respective
speeds, and can use it to tailor his plan vis-a-vis the approaching deadline; but the actual number and

specification of the paces must match the uncertainties in the changing environment.
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two additional time steps: one is estimated for the addition of B to the plan,
and at least one other for executing it. In this case, the estimate is £+ 2, where
estimate( A, /). In subsequent steps, as B is added and refined, a more accurate

estimate can be obtained.

As an example of this category, consider this axiom from the Yale Shooting
Problem:

Loaded(T)A\shoot(T') — —alive(T+1). If the goal is to kill Fred and Load(T) —
Loaded(T+1) is known, a plan for killing must include along with the conditions
for shoot, the condition that the gun must be loaded. Further, in the event that
the gun is not already loaded, the Load(T) — Loaded(T + 1) axiom suggests

additional planning to this end.

(b)  C is not do-able, but is merely observable, i.e. it is not under the

control of the agent. Here there are two cases to consider:

(i) If C has already been observed and is projected to remain so,

planning and time estimation can proceed as in case 2(a)(i).

(ii) C is an observable condition, but it is not known ‘now’ whether
or not C is true. Then, Dudley must insert into his plan an action to observe
whether C' is true, and depending on the conclusion, insert A into the plan, in
the event that C' is indeed true. If several alternatives exist, based on several
observable conditions, each suggesting different actions to be undertaken, he
must postpone deciding between them for the present. However, he can use
the possible list of alternatives to obtain a bound on the estimate, taking the

alternative that has the maximum estimate into account.

As an example of 2(b)(ii) consider: Dudley can see that Nell is tied to the tracks,
but can not tell from the distance what kinds of knots the bad guy has used in

tying the ropes. He knows of the following common kinds of knots from his boy
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scout days and of particular procedures employed in tying and untying them.

Clove_hitch A Untie_clove_hitch(T : T + 2) — —Tied(T + 2)
Timber_hitch A Untie_timber _hitch(T : T + 2) — —Tied(T + 2)
Unknown_knot A Cut_ropes(T : T + 8) — —Tied(T + 8)
estimate(Untie_clove_hitch, 2),

estimate(Untie_timber_hitch, 2),

estimate(Cut_ropes, 8)

Since Dudley has no control over which knot he will encounter upon arriving
at the tracks, he must plan for all contingencies. The decision regarding which
action to insert into the plan must wait until the appropriate observation. He
could plan to cut the ropes regardless, but that will take the longest time. Thus,
by postponing his decision until run-time, Dudley may save on time. He must,
however, make sure that the conditions corresponding to all the above alter-
natives will be satisfied at that point in time, if he wishes to keep the choices
to the very end. He must therefore bring a knife to the tracks in case he will
have to resort to cutting. He thus creates at this point a kind of pseudo-action
(or meta-action) to insert into the plan. This action is the disjunct of all the
alternatives. To supplement the plan to take that decision, Dudley inserts an
Observe action into the plan,® which will itself take a time step. The estimate of
the pseudo-action is taken to be the maximum of all its disjuncts. The result of
the Observe action is unknown at the time of planning. At execution time, more
will be known, and the pseudo-action can be substituted for the actual action

applicable in that context.’

8This ties to spatial reasoning, and to aspects of a plan that involve getting more information; for
instance Dudley may have to move in order to see whether Nell is tied. This in turn relates to existing
work ([KP89], [Dav88]) on ignorance and perception.

°This is also linked to the notion of plan commitment. This is a strategy to delay commitment
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e Actions with a simple formula for an estimate

These are the kind of actions for which the agent can determine a time estimate
instantly, if an estimate for the rate of the action is known, and if an estimate for
the amount of work to be done is also known. The Run action is in this category.
Knowing the distance to Nell and his speed of running, Dudley can estimate how
long his Run will take. But, it is possible that one or both, the distance or the
speed may not be known. Dudley must carry out a deliberate observation or
calibration to obtain these. E.g., Dudley looks out of the window and sees Nell
tied to the rail tracks. He may not know the distance between his house and the
tracks. Either he must look it up, ask someone, or do some calibration, such as
simple trigonometry. His own running speed, he may know from past experience,
or he may need to figure that out too, by running the length of his living room
and timing himself as he does so. Such methods for obtaining estimates for
actions in this category may be undertaken in circumstances where it is very
crucial to obtain these estimates, and further decision making hinges on them.
The cost of the more refined methods is obviously the time spent in obtaining
them. In our simplified scenario, Dudley knows the distance to the rail track

and his speed of running.

e An action with a fixed interval between its start and finish times

This is the simplest category, and includes the kinds of actions which are rela-
tively simple. These actions have a fixed duration. The estimate for an action
in this category is the difference between its start and finish times where known.
An example of this category of action is ‘pull’. It takes one step to pull Nell

from the tracks once she is untied.

until the last possible instant to allow for more flexibility in planning, of course at the cost of planning

for all contingencies and allowing for the time in the on-the-spot decision-making.
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For each category of actions described , we have described the inference rules for
planning for the actions and for the estimation of the time required to carry them to
completion. In most cases some form of a time estimate is either known from prior
experience, or acquired from observation. In those cases where no known estimates are
available to the agent, the unknown estimates are a measure of how much knowledge
the agent has regarding the WET of the plan. The currently unknown estimates may
potentially be a big drain on time. Dudley keeps a count of how many such unknown
estimates exist in each plan. In ongoing work on this front, we are looking at ‘agent
attitudes’ to characterize agents who can use this and other uncertainty information
along with perhaps some on-line utility computation, to perform a primitive risk anal-
ysis as a basis of choosing between plans which have the same time estimates. An

agent who is risk averse may choose to go with a plan that is better known even if it

has a large WET.

7.3 A discussion on other meta-level reasoning tasks

In the previous section we described the WET computation which is the component of
the inferencing crucial to deadline-coupled planning. Several other meta-level decisions
must be taken under time-pressure. We have addressed these to a very limited extent.

We describe them briefly.

7.4 Goal interactions

Dudley may concurrently have several goals and subgoals. It is likely that the actions
in one plan may contradict other goals. Since our reasoning is confined to the context of
the plan, we do not currently have a way to handle complex goal interactions between
several plans. Within a plan, the effect that the goals have on each other is recorded in

the context set and reasoned about. Goal interactions must be reasoned about using
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meta-plans. Some of the agents goals are sustenance goals [Wil83a] and therefore
beliefs regarding them appear in the context of every plan. We can reason about
sustenance goal conflicts without significantly enhancing our framework. Whenever
an action in a plan contradicts a sustenance goal, Dudley tries to construct a meta-
plan to protect that goal. Which in turn causes the generation of an object level plan
which must be carefully merged with the current plan. In the example we mentioned
before, the sustenance goal to keep himself dry causes the generation of the object
level plan to wear a raincoat, which must be merged with the plan to go out and fetch

the newspaper.

7.5 Choosing between plans

When more than one partial plans are being formulated, a meta-level task is to decide
which of them to work on. Since the active logic allows simultaneous generation of
plans, the question of which one to continue to reason about is not relevant except
when we have a limited memory. We will discuss heuristics to guide this decision
later in Chapter 8. With the active logic we have described thus far, the dilemma of
choosing arises when one or more plans are ripe for action (contain primitive actions
whose conditions are satisfied). Actions are interval formulas. They may have specific
times of execution such as “Wake up at 7:00 am”. This action will be performed at
7:00 am and is linked to the Now explicitly in its definition. Other actions may have
variable times that have to be bound to the current time when the agent decides to
act.

The agent’s choice of acting on an action in one plan v/s the other is guided by

several criteria:

e Does performing one action alter the physical state of the world so that the other

one can no longer be executed? (Are they mutually exclusive?)
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e Is it possible to perform both actions concurrently?

e Is the action reversible? If it becomes necessary to backtrack on the plan, can it

be undone?

Although not a part of this work, an obvious but non-trivial extension to the
active logic would be to perform commonsense reasoning of the above nature

before choosing one of many plans that are currently ripe for action.

7.5.1 To act now or to plan further

A related issue in meta-planning is to take the decision regarding “acting now” or
delaying action until more reasoning about the plan gives better measures of success.
This is an issue that has received extensive attention in works such as [Hor88, BD94].
Often this involves reasoning about the probability of success and a numerical measure
of the utility of various actions. One can implement algorithms such as these in a time-
situated active-logic framework. We currently adopt the simple strategy that was
adopted very early on in one of the first works that attempted to interleave planning
and acting [McD78]. Whenever Dudley is ready to act, he performs the action.

Issues to think about in this regard are:

o Will there be lost opportunities? Will it be difficult to perform the same action

later?

o Will performing this action result in more informed planning? Will it help to

choose alternatives and to get better estimates?
o [s the action reversible?

Taking an action often reduces unknowns. Besides, as is clear from our detailed

discussion of the frame problem, it is the only way to test whether it will succeed.
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7.6 Summary and related work

This chapter describes some important meta-level tasks. The estimation of WET
and checking of feasibility involve inferences that are drawn at every step in deadline
situations. We showed how knowledge of action categories can help in estimating EET
of the plan. We briefly discussed some issues in more elaborate meta-level decision
making,.

An excellent survey of research in deliberative real-time Al is available in [GL94].
They categorize real-time systems into purely reactive (those that hardwire reactions
completely), combined response systems (those that have distinct asynchronous com-
ponents that handle deliberation and reaction) and integrated systems (those that have
a single architecture that is capable of a wide range of timely responses depending upon
the time criticality requirements).

Those in the last category put the time that is available in the best use. These
approaches have been collectively characterized by terms such as flexible computation
[HRI1], deliberation scheduling [BD94], and anytime algorithms [DB88, ZR92]. They
spend the resources available to the agent in deciding whether to act, how to act, and
when to act. The main differences between our approach and these is the following;:
(1) they do not account for the time-cost of the deliberation scheduling algorithms
themselves, only for the cost of deliberation that they consider; while our mechanism
is completely situated in time; (2) they require prior complex (meta) knowledge about
their reasoning algorithms or procedures themselves, and their characteristics with
respect to time; they also require a great deal of knowledge about the domain in the
form of probabilities of events and expected utilities of actions that the agent must
be aware of; (3) they usually attempt to solve an optimization problem in a specific
domain, whereas our approach is to come up with a formalism that accounts for all

the time spent between Now and the deadline while attempting to reason about the
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feasibility of a solution, not to find an optimal solution. Thus, we note that these
approaches are not alternatives to our time-situated reasoning approach using active
logics, but rather that they are suited for a different range of more informed problem
solving.

Below, we give a more detailed account of a few works in this deliberative category.

7.6.1 Anytime algorithms

This now widely used term was first coined by Dean and Boddy [DBS&S8]. It represents
a class of algorithms which have the following characteristics:

(1) They can be interrupted at any time and will produce some solution to the
problem; (2) given more time they will produce better solutions; and (3) the user of the
algorithm has some explicit characterization of the tradeoff between the algorithm’s
performance and the amount of time that is available to compute a solution.

Anytime algorithms are similar in spirit to the notion of “imprecise computation”
commonly used in research in operating systems which divides the task into a manda-
tory part that gives a solution and an optional part that refines this solution. The
problems that have been attempted using the anytime technique have the flavor of
more traditional optimization problems, which by themselves cannot cover the space
of planning problems. The feature of “interruptibility” of anytime algorithms is not
particularly one of great value in deadline-coupled planning in commonsense scenar-
ios involving hard and non-extensible deadlines. We want Dudley to come up with a
feasible solution by the deadline (if possible). We do not care if at any point of time
he has found an approximate solution of an inferior quality. Having that assurance is

not crucial.
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7.6.2 Flexible computation

Work by Horvitz et al [Hor88, Hor89, HR91] attacks problems that may be classified as
“high stakes decision problems”. A typical example is in the medical domain where the
decision making is complex, but highly informed. Most of the options and quantified
information regarding relationships among decisions and propositions is available in
the form of influence diagrams. Horvitz et al have also addressed the problem of
dividing computational resources between meta-reasoning and object-level problem
solving, particularly in the case when both are being solved using anytime algorithms
[HB90]. By the use of mathematical functions which assume particular forms for the
various utilities, they manage to keep the meta-reasoning cost quite small or constant.

Lesser et al [LPD88] provide a design-to-time approach which combines existing
multiple methods for various tasks to maximize the quality of the combined solution
within the available time.

In an approach that is inspired by economics, Etzioni [Etz91] addresses the problem
for a time-constrained agent using special terms commonly used in economics. When
a particular resource is available in limited quantity, it renders competing actions
mutually exclusive. He defines an opportunity cost for each action, which is the
maximum of the utilities of the other contending actions. He suggests a heuristic to
choose the action with the highest marginal utility, without assuming prior knowledge
of the utilities. There is a learning mechanism that calculates them through repeated
executions. It seems that it would be possible in principle to implement Etzioni’s
methods within our active logic framework.

Lastly we mention work in the direction of building systems and architectures that
exhibit desirable real-time behaviors, although not all components of these systems
function in the real-time domain: Guardian [HRWA192] Phoenix [HHC90] and PRS
[IG90]. FORBIN [DFMS88] which is a planning architecture that supports hierarchi-

cal planning involving reasoning about deadlines, travel time, and resources are some
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examples of such systems. TILEWORLD [PR90] is a simulated dynamic and unpre-
dictable parametrized agent and environment. It is possible to experiment with the
behavior of the agent and various meta-level strategies by tuning parameters of the
TILEWORLD system. Once again, although all the reasoning here is not performed in
real-time, many of their observations, especially regarding the manifestation of agent
attitudes through the tuning of parameters could be of use in the development of an
active logic where the active logic can self-adjust its parameters to the environment

to decide the level of risk or deliberation it can perform.
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Chapter 8

Towards realism: Limited space and

computation capacity

8.1 Resource limitations

We have thus far described our design using active logics to tackle the fully deadline-
coupled reasoning problem. It has also been described in [KNP90, NKP91]. The
original step-logic work suffered from the litterbug problem. In a step-logic with the
inheritance property, the agent’s finite set of beliefs increases steadily as time goes by.
Space is the other crucial resource that the agent must carefully reason with, while it
reasons about time in a time-situated manner. Another problem that has its beginings
in step-logics is the issue of unbounded parallelism. If unlimited computation power can
not be assumed, it must be reasoned about and controlled. In this chapter we describe
these shortcomings and provide meaningful solutions that brings the formalism closer
to realism.

Studies in cognitive science that suggest a break up of human memory into two
memory stores: a short-term memory (STM) and a long-term memory (LTM) dates
back to William James (1842-1910) who first introduced the dual memory concept.

This organization is based on the assumption that processing of information is treated
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in a short-term store which operates independently, but is in constant contact with the
knowledge stored in the long-term store. Also, new incoming information is used to
alter and enrich the content of the long-term store. The amount of information stored
in the STM is small compared to that in the LTM. Sir William Hamilton was the first
to have recorded evidence of the limited size of the STM. Amazingly, the capacity of
the STM seems to be independent of the type of data involved, or the length pf the
actual strings. Miller [Mil56] offered an explanation. He postulated chunking of data
into units which could occupy a slot in the STM. This increased the capacity of the
STM in what we would today call the physical capacity measured in bits and bytes.
We suggest a memory model that is inspired by cognitive psychology to solve the
space problem faced by Dudley as he reasons with active logics. A beliefs can be

roughly thought of as a chunk.

8.2 Litterbugs and parallelism

The space problem: As time advances, more knowledge is gathered as a result of
observations from the agent’s environment and as a result of the deduction processes
within. The knowledge base which is continuously expanding could potentially become
so formidable that it would be completely unrealistic to assume that the agent could
possibly apply all the inferences to this complete knowledge base. Usually, most of this
information is not directly relevant either to the development of the agent’s current
thread of reasoning. Active logics and our treatment of deadline-coupled planning so
far have disregarded the space problem in preference to dealing squarely with time-
related issues. The space issue deserves serious attention where the original number of
beliefs of the agent is large, and where very many new beliefs are added to the agent’s
knowledge base over time.

Unrealistic parallelism: A step is defined as the time required by the agent to
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perform one inference or one primitive physical action in the world. Actions can be
carried out in parallel if the sensors and effectors permit. For example, an agent can
walk and eat simultaneously. Active-logics planners treat ‘think’ actions within the
agent in the same spirit as physical actions and recognize that they sap precious time
resources. The original step-logic inference system assumed that during a given step
¢ the agent can apply all applicable inference rules in parallel, to the beliefs at step
t — 1. There are two problems with this. One is the unrealistic amount of parallelism
that potentially allows the agent to draw so many inferences in one time step that
the meaning of what constitutes a step begins to blur. Secondly, it is unreasonable to
expect that all inference rules would have the same time granularity. For example, it
is unlikely that a simple application of Modus Ponens will take just as long to fire as
an inference rule to refine a plan, to perform temporal projection using the suggested
algorithm or check for plan feasibility, especially as plans become very large. While the
representation is uniformly declarative, some rules have more procedural flavor than
others, and can be imagined to take more time. Just as there is a limit on the physical
capabilities of the agent as to how many physical actions can be done in parallel in the
same time step, there must be a limit to the parallel capacity of the inference engine

as well.

8.3 The step-logic meaning of a step and realism

In Elgot-Drapkin’s work [ED88a] the issue of space and computation bounds was
recognized partially while defining a step. She says “because there are a growing
number of inferences in later steps, there would not be a one-to-one correspondence
between steps and actual time elapsed in an implementation; the length of time taken
to make all deductions for a given step would in general grow in later steps.” A possible

way to deal with the space problem is to vary the duration of each step, as suggested
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above. There are several potential problems with this. All estimates in the framework
are made in terms of steps. If the step duration increases arbitrarily, these estimates
would go haywire. There would be no relation with the deadline which is an absolute
parameter in the framework. Secondly, the logic uses time parameters that quantify
the history in terms of “one step later”. If the step duration itself is variable, this
quantification in terms of incremental steps will be inaccurate, if the “plus one” has a
different meaning depending upon what step number the agent is reasoning with.

We suggest a solution that does not change the mapping between a step and real-
time (absolute time) as the reasoning progresses. Instead we follow another suggestion
made in [EDMP87] to keep the total number of beliefs in each step under check. We
also propose a means of addressing the parallelism and granularity of the inference
process.

A claim towards fully deadline-coupled reasoning would be a tall one if the model
depicts an agent with an infinite attention span and infinite think capacity. In this
chapter we propose an active logic extension of the original step-logic formalism to take
into consideration space and computation constraints. We revisit the fully deadline-

coupled planning problem in the light of this new framework.

8.4 A limited span of attention

We propose a solution to the space problem partially based on [EDMP87] as follows.
The agent’s current focus of attention is limited to a small fixed number of beliefs
forming the STM (short term memory), while the complete belief set is archived away
in a bigger associative store, namely, the LTM (long term memory). In addition, we
use a QTM which is a technical device to hold the conclusions that result in each step.

This is a temporary buffer that holds them since further inferencing with these must
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wait until the next time step. The size of the STM is a fixed number K1,

In the most simplistic model, the STM could be represented as a queue, in which
case the inference/retrieval algorithm reduces to a simple depth first or breadth first
strategy depending upon whether new observations and deductions are added to the
head or tail of the queue, respectively. It seems that choosing the STM elements
without focus consideration may lead the reasoning astray quite easily, and often
lead to incomplete threads of reasoning due to thrashing. We propose to maintain a
predicate called Focus(...) which keeps track of the current line of reasoning. This is
dynamically changed by the agent’s inference mechanism and is responsible for steering
the reasoning back to a particular thread even when a large number of seemingly
irrelevant inferences are drawn. Among the agent’s inference rules is a set of focus
changing (FC) rules, which when fired alter the focus. Those K beliefs from the
associative LTM which are most? relevant to the current focus are highlighted to form
the STM.

In short, the framework can be described as follows. The QT'M;/;,, is an in-
termediate store of formulae that holds theorems derived through the application of
inference rules to the formulae in ST M; (the STM at step i). They are candidates for
the STM at step ¢+ 1, although only K among them will be selected. Thus the results
of the inference rules, can be imagined to fall into QT M;/;;; and are available for
selection to form the STM at the next step®. The focus and Now which are crucial

to time-situated reasoning are always accessible to the agent.

"What is a realistic K for a commonsense reasoner? There is psychological basis that suggests that
human short-term memory holds seven-plus-or-minus-two ‘chunks’ of data at one time [Mil56].

2There is a ranking among the relevant formulae and the K at the top of the list are picked. In
our implementation, we select the K formulae at random from the candidate formulae.

3This has the feature that all thinking does not pass through the STM unless it is relevant to the

focus.
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FRAMEWORK:

i:STM;{...}, Now(i), Focus(i, ...), LTM;{...}
i+1:8TM;, ¢{.} Now(i+ 1), Focus(i+1,..), LTM; {...}

QTM;/4q holds B if § is an i-theorem. It includes relevant formulae which are
retrieved from the LTM using the retrieval rule. Step ¢ concludes by selecting K
formulae from Q7! ifit1 which are relevant to Focus; to form STM; 1. LT M;yq is
LT M; appended with QT M;/; ;.

The main problem in limiting the space of reasoning is to decide what should be
in the focus. Within our planning framework, we have developed a mechanism that
is at work to limit the focus to a single feasible plan at a given time step. A list of
actions, conditions and results from the plan that need further processing (we call it
the active list), form a list of keywords in the focus. We describe some details of this
mechanism in section 8.6. Heuristic rules are proposed to maximize the probability
of finding a solution within the deadline. This would correspond to a kind of best
first strategy or a beam search of width K in the general framework. Although these
heuristic rules are independent of the instance of the problem in question, they are
likely to be different depending upon the category of the problem being solved. A
deadline-coupled actor-planner is likely to maintain a much narrower focus than a
long-range ‘armchair’ planner. In section 8.6, we outline some of the specific heuristic

strategies employed for the tightly time-constrained planner.

8.4.1 A limited think capacity

Next, we address the bounded computation resource problem. An intelligent agent can
be expected to have a sizable reservoir of inference rules acquired during its lifetime.
Firing of an inference rule corresponds to a ‘think’ action. Without a bound on its
inferencing power, the agent could fire all the inference rules applicable (termed in

conventional production systems as the conflict set) simultaneously during a time
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step. We limit the inference capacity of the engine to I. Each inference rule j is
assigned a drain factor d;. This is a measure of the drain incurred by the inference
engine while firing an instance of this rule. For instance, Modus Ponens and the more
elaborate inference rule for plan refinement, would be given different drain factors to
reflect this difference in granularity 4.

Our limited-capacity inference engine fires only a subset of the applicable rules in
each time step. Among the various alternatives, it is possible to pick the inference
rules either completely nondeterministically up to the engine capacity I, or one could
again apply some heuristics to improve the agent’s chances. Several parameters, such
as agent attitudes, the uncertainty of the environment, or the urgency to act could
dictate this choice.

Thus, in effect, during each step, K beliefs are highlighted from the knowledge base
(LTM) to constitute the STM. From among the rules applicable to these K beliefs, a
subset of rules is chosen such that sum of the drain factors does not exceed the engine’s
inference capacity I. The results of the inferencing are put in the QTM. Finally, the

contents of the QTM are copied to the LTM.

8.5 On the adequacy of the limited memory model

Let SL(OBS,INF) denote a step-logic with an inference function INF, an observa-
tion function O BS and unlimited memory described in the original framework. Let
SLYET(OBS, IN F) denote the corresponding active logic with a limited short-term

memory of size K and an algorithm F'ET describing the strategy for fetching elements

*How to calibrate the inference rules for the assignment of these drain factors is a separate and
interesting issue, but we will not address it presently. Also, how thinking actions compare with physical
actions is a technical issue that could be resolved by trying to calibrate the system to check on the
relative speed of its inference cycle with that of its sensors and motors. We skip this implementation

sensitive issue.
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into the STM.

Theorem 8.1 If all the inference rules in INF are monotonic then it is possible
to describe a simple algorithm F'ET such that any theorem of SL(OBS,INF) will
eventually appear as a theorem of SLEFT(OBS,INF). Le. if b; a in SL (a was

proven at step i) then 35 such that -; a in SLEFT(OBS, INF).

Note: the requirement of monotonicity in particular entails that the “clock”-rule
for Now is left out. Thus the result applies only to Now-free inferences. We also

assume that new observations are consistent with previous facts and derivations.

Proof We begin by showing that the following dovetailing transformation on IN F
into Dove[IN F] yields an equivalent step-logic with unbounded memory in terms of
the final theorem set. We then show that SL(Dove[IN F],0BS) has the property that
SLEET(Dove[IN F],0BS) has the same final theorem set as SL(Dove[IN F],0BS)
for the algorithm FET described below.

Let all the rules in Dove[IN F] have at most two antecedent formulae. This is

achieved by transforming every rule in I N F’ which is of the form:

AT NAg NN A,

into n rules of the form:
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This can make the number of rules very large, but it allows us to have a very simple
algorithm FET to show that there is no net loss of theorems on account of limiting
the size of the STM. Let InfCh, denote the inference chain used to derive a theorem
a. The algorithm FET proposed uses dovetailing to ensure that STM cycles through
all possible combinations of beliefs, so that eventually whatever formulas are used in
InfCh, also occur in STM.

We want, first, to ensure that the algorithm has access to all logical axioms, so we
feed them in lexicographically. At each step, some more (finitely many) logical axioms
are added to the LTM; we feed in all formulas of length < 7 at step ¢, that use only the
first ¢ symbols of the language. FET forces STM to cycle through all combinations of
beliefs in LTM, all combinations of two at a time, to allow every rule that could fire
to actually fire.

As time goes on, more and more logical axioms are fed into LTM, and also new
inference results are being produced and going into LTM. FET is an algorithm that
gets every combination of two formulas, including new ones that come in by either
inference or feeding. We can conceptualize all formulas (in the entire language) to
be already in LTM but only those that occur in InfCh, to be marked in red. As
time goes on, more and more become red, due to inference and feeding. We also mark
each formulas with an index (a unique natural number), and bring into STM two at a
time, but only red ones, and never repeat a pair already brought in; we can imagine
each pair of formulas has a link that become blue when it is brought into STM; so we
never bring a blue-linked pair in again. At each step we bring in a non-blue pair and
apply all applicable rules to it. One could either bring in the pair with the smallest
index-sum, the pair with the largest index sum or pick a pair at random, among many
alternatives.

This simple algorithm FET will perform all possible inferences including those in

InfCh, eventually deriving a, although after many more time steps. m
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Remark 8.2 The inference rules used for deadline-coupled planning are nonmono-
tonic. The rules to calculate WET, to refine a plan, to revise the context of the plan
and to project the context set of the plan are the main nonmonotonic inferences drawn
in this system. In checking if a condition ¢ already appears in the context or the pro-
jection of a plan before the plan is refined, the rule for plan refinement is nonmonotonic
since ¢ may be absent when checked but present later. The nonmonotonicity of the
projections stems from applying the default of temporal persistence. The context set
revision rule is nonmonotonic since it withdraws from the context set formulae whose
basis is no longer true in the current projection. In SL(OBS, IN F) where there is no
limit on the memory, partial plans get refined whenever possible, and the context set
is revised at every time step, also, the projection in the latest context is recomputed
at every time step. With SL%ET(OBS, IN F) however, the order in which these rules
will get fired depends upon the simultaneous occurrence of the matching formulae in
the STM. If the refinement of the partial plan proceeds before the context set revision,
it is possible that redundant plans will be developed before the context set and the
projection will catch up to let the planner know that something is already true and
does not need to be planned for. As an example, consider a plan in which a condition
for a certain action requires that a certain high-rise building be pink. Dudley may have
an axiom which says that all high-rises are pink, but has not had a chance to apply
it to the context set in question to conclude that the high-rise building in question
is pink. Hence he formulates a (redundant) plan to paint the high-rise pink. Subse-
quently, as the context set is revised this condition is already true in the projection
and an inference rule needs to be fired to identify and eliminate this portion of the
plan.

We note here that redundant plans of this nature may be generated even in the
case of unlimited memory, if there is a long inference chain based on the facts required

to derive the condition in question. For example, if Dudley does not directly know that
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all high-rises are pink, but infers it from the fact that all high-rises are tall structures,
that all tall structures are made of concrete, that anything made of concrete is pink.
Since bringing in all these axioms and revising the context set may take quite a few
steps, it is likely that redundant plans are generated even in the case of unlimited

memory. A rule that corrects this situation is useful in both cases.

Remark 8.3 If the inference rules for plan refinement, for context set revision and
for computing projection compute all possible instances of PP, CS and Proj instead
of working on the latest instances alone, then all the partial plans generated by the
unlimited step-logic will also be generated by the bounded active logic.

When each instance of the partial plan, context set and projection is kept active,
the same combinations that occur in the unlimited step-logic will eventually cycle
through the STM, giving the same partial plans, in addition to several other plans

generated.

Remark 8.4 In some cases, where context-set revision precedes planning, in fact
efficient plans may be generated since the planner is in fact more informed about

extended effects and side effects prior to the planning®.

In the FET algorithm, bringing the lowest sum of indices corresponds to a breadth-first strategy.
Using highest sum of indices would correspond to a depth-first strategy. The former will ensure that
partial plan refinement will not get too far ahead of the context set revision. Once the partial plan is
refined, a context set revision rule must fire since its antecedents were already present in the LTM. In
the depth-first method, you will refine a plan as far as possible, then revise CS as much as possible,
then project as much as possible, and then alternate. It is interesting to explore how these will interact.
In a random strategy that exhaustively brings in all pairs, arbitrary speeds of the three chains need

to be considered to see its effects on the planning.
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8.6 Heuristic strategies for deadline-coupled planning

In the previous section we presented some formal results on the adequacy of an active-
logic to generate the required plans even when there is a bound on the size of the STM.
The algorithm FET was a simple breadth-first strategy used to demonstrate this. In
this section we present heuristic algorithms to be used in place of FET to improve the

chances that the formulae used in the derivation of the plan will appear sooner in the

STM.

8.6.1 Focus and keywords

As a general approach to limiting space, we proposed that beliefs be organized in the
LTM by association with some topics or keywords. When one or more of these topics
are in the focus, the related beliefs become candidates for retrieval into the STM,
as a result of a retrieval rule. Formulae in the STM are not automatically inherited
from one step to the next. Only when they are still relevant to the current focus do
they become candidates and must compete with other relevant formulae to fit into the
limited size STM.

The focus holds the keywords of current interest. It has similarities with the RTM
proposed in [EDMP87]. We imagine that in a more general framework the focus would
contain keywords arranged in a partial order according to priorities.® Beliefs related to
high priority topics are given preference for being brought into the STM. As mentioned
before, for our actor-planner Dudley we restrict the focus to equal priority keywords
related to a single plan at a given time step. Non-primitive actions that appear in
the triplets of a given plan, that still need to be refined are appropriate keywords for

goal-directed retrieval. Conditions of actions which are not yet satisfied, as well as, the

5The question is how to choose the “keywords” that are in the focus at a given time, and how to
assign priorities to them. Our ideas presented here are aimed at a commonsense agent engaged in

deadline-coupled planning.
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results that appear in the triplets of the plan serve as keywords to deduce the effects of
the plan. These are kept in the focus as the formula plan_in_focus(p, PKW L) where
p is the name of the partial plan and PKW L is the list of keywords for p.

Observations are put into the current focus at least for a few time steps, since it is
possible that they may be important, and may trigger some new threads of reasoning’.
Current observations are kept in the focus as the formula obs_in_focus(O BL) where
OBL is the list of observations that serve as keywords. Together, the focus is a
predicate Focus(7, plan_in_focus(p, PKW L), obs_in_focus(OBL)) at step 1.

When there are multiple options in the STM for achieving a goal, more than
one partial plan is spawned. All plans for achieving a certain goal may be given equal
priority at first, thus continuing to develop them in a time shared manner and bringing
them into focus sequentially. However, in a deadline situation, it may be advisable
to commit to a plan (to put it in focus and the others in a background queue for
backtracking) and continue with it unless it seems infeasible.

The development of an appropriate plan depends on three aspects: satisfying
(pre)conditions, refinement of general actions into more detailed ones, and using
the result of the plan for finding its effects.® To illustrate, given a triplet in the
Ppl[C4, A, R 4], the following axioms are used: axioms that produce C4 (i.e. Cy
appears in their conclusions), axioms that are used for refinement of A (again A ap-

pears in their conclusions) and axioms in which R4 appears in their antecedents (i.e.

"How to in fact select some crucial observations from all the stray input to the sensors remain
unaddressed, but it is not among the problems we will solve at present. A tutor or a human hint
to the automated agent that some observations are worthy of more consideration. In our example,
Dudley may first start to think about running to Nell to rescue her, when he suddenly sees a telephone.
This brings ‘calling’, and subsequently the related axiom of calling the driver to stop the train into
focus. This spawns the generation of a second plan.

8[WHRS89] have discussed the relative merits of refinement into lower levels v/s searching to greater

depth to find the right action.
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R4 — e€), to compute the extended effects. Therefore, if we make sure these types
of axioms are brought into the STM, we will increase the probability that a plan will
be found. Note, that other axioms should be used for finding indirect effects (i.e.,
e — el,el — €2...) which can’t be obtained by the agent’s action. Our heuristic

brings such axioms to the STM too.

8.6.2 Some inference rules for resource limited reasoning

At each step, the agent reflects on its long term memory reservoir to pick out formulae
that are relevant to its current focus of reasoning using a retrieval rule. The LTM is
an associative store and hence this retrieval is fast.”

Focus directed retrieval rule (FDRR):

i, LTM{... 8, ..},

Focus(i, plan_in_focus(p, PKW L), obs_in_focus(OBL)), ..

QTM; i, 1{ 4. ..}

if @ is relevant to either p or a keyword in PKW L or OBL.

In our work on planning, the Focus includes keywords related to a feasible plan.
A (partial) plan is feasible if the sum of Now and the plan’s working estimate of time
is still within the deadline. A list of feasible partial plans is maintained. From among
these a subset of plans is selected to work on and is called the interleaving list (IL).
Dudley works on each plan in the interleaving list for a period number of steps, then
goes on to the next plan in the IL in round robin fashion. The interleaving rule (ILR)
serves this purpose by periodically selecting the next plan in the IL to put into the

focus. This is one of the focus changing (FC) rules in Dudley’s inference engine!®.

°The retrieval rule is a weak parallel of the inheritance rule in Elgot-Drapkin’s step logics, in the
sense that formulae in the STM at the previous step reappear in the STM at the current step provided
they are still relevant.

1%Probably, other scheduling procedures that were developed by operating Systems researchers can
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This rule time-shares between plans and always fires. A separate rule controls the

contents of IL.

Interleaving Rule (ILR):

i:Now(%), IL([pj,, ..., Pi.]), -
i+ 1:Focus(i+ 1, plan_in_focus(p;,, ...), ...), IL([p;,, ~~~7Pjn,pj1])

if i mod period = 0

When there are two or more plans in the IL, and when it is time to choose between
them, a rule fires to narrow the focus to only one plan. We stipulate that the difficult
problem of ‘when to decide to choose’ depends on mental states and attitudes of
agents [Sho91]. A more ‘cautious’ type of agent will skeptically continue to process
two alternatives, perhaps risking overshooting the deadline, but a more ‘dashing’ type
of agent will take the risk to pursue just one plan. We have developed a heuristic
rule under the following commonsense observation: An agent can continue to work on
several plans provided there is ample time ahead to try and pursue them one after
another in the interest of fault tolerance. For example, even after calling the driver
to stop the train, Dudley may want to run to the railroad track and attempt the
rescue Nell nevertheless, if there is enough residual time. An agent may do so as a
guard against possible failure of his own or other agents’ plans, or perhaps as an extra
precaution when the plans are not recognized to be mutually exclusive. We look then
at the sum of the WET’s of all the plans in the IL. as a measure of the overhead
planning time. When the sum of the WET’s and Now exceeds the deadline, he drops
a plan from the IL. We currently have the simple heuristic of dropping the plan with
the highest WET, but recognize that this may very well be the most refined plan as

111

well**. Additional bookkeeping is necessary to ensure that two rules do not alter the IL

be used here,but it is beyond the scope of our paper. We only demonstrate how such procedures can
be used in time.

111f one can find a way to include good estimation of the planning time (and probably decision time)
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or the focus simultaneously. We skip these implementation details in this description.

Reduce IL rule (RILR):

i:Now(7),IL(L), wet_ordering([p;,,...]), ...
i+ 1:IL(L — p;,)

if> e WET,, +Now > Deadline.

An agent may be forced into a decision if two or more plans are ripe for action
and the actions are mutually exclusive. The agent must evaluate the relative merits
of the plans before making the decision, if acting on one will commit the agent to one
plan. Although we do allow planning and acting to be interleaved, we allow the agent
to act on a plan if it is the only one in IL. This is to avoid the complex interactions
between plans as the result of the changed state of the world following the execution

of one plan. We continue to examine this issue in ongoing work.

8.6.3 Capacity of the inference engine

As mentioned earlier, we suggested a limited capacity inference engine that would fire
a cumulative set of inference rules to not exceed its inference capacity in each time
step. In the simplistic examples that we present, there is a very limited number of
rules firing at each step. Furthermore, if the plan length is within a reasonable bound,
drain factors of the rules are also quite small and as a first approximation we postulate
them to each take roughly the same time and fire in parallel in a single step whenever
applicable. It should be noted that the meta rules for resource limited reasoning which

were described above fire alongside the other object level inferencing at each step as

into the WET it seems that more refined plans will have less planning time than other plans. Maybe,
the three parts of the WET should not be combined and the decision whether to knock out a plan
from the IL should be made using some sort of multi attribute decision rule (i.e., based on executing

time, planning time and decision time).
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part of a uniform framework. If we limit the capacity of the engine, the meta rules

that are fired will limit the number of planning rules that are fired in each step.

8.6.4 Some illustrations from two plans

Dudley begins to formulate a plan save to get Nell Out_of_danger. Initially, the focus
consists of Focus(j, plan_in_focus(save,[Out_of danger(...)]),...), and the interleav-
ing list is I L([save]). Here, save is the name of the partial plan and is used to retrieve
formulae related to the plan such as its WET, its context set, projection etc. The
list of keywords for this plan contains Out_of _danger. It is used to retrieve axioms
from the LTM whose right hand side matches the keyword. At step i, the plan save
bifurcates into save; and saves based on the following axioms which are retrieved from
the LTM:

Pull(T:T+1,Y,X,L)— Out_of danger(T +1,X, L)

Stop_train(T : T + 2,driver) — Out_of danger(T + 2,nell,r)

Plan 1: Pull her away from the tracks
—Tied(t1,n,r)
Ppl(i, savel, Pull(ty :t2,d,n,r) )s

Out_of _danger(toe— Deadline, n,r)
CS(l,savel,_{...,tg < Deadline,t; = t2 — 1}) i

Plan 2: Stop the train
Knows_about(ry,n,dr)

Ppl(i, saves, Stop_train(r : 1o, dr) ),

Out_of _danger(roe— Deadline,n,r)
CS(i, scwe?,_{. .., 72 < Deadline, 71 = 15 — 2}) i

The interleaving list is expanded to contain both save; and save; and Dudley con-
tinues to work on both feasible plans in a time-shared fashion. The focus thus contains
savey for an interleaving period during which axioms for untying Nell and running to

her are progressively retrieved from the LTM. Other facts of no relevance to the plan
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such as color_of_eyes(...) or that are relevant to the other plan such as the axioms
about dialing to get a connection are left alone in the LTM. After the period expires,
saveg is brought into focus and worked on in a similar fashion. It is later, at step j,
that Dudley realizes that the sum of the WET’s of both plans and Now is going to
overshoot the deadline, and he must restrict the IL using the RILR rule. We show a

snapshot of the two plans when this happens:

At(te, d, home)
Run(ts : t7,d, home : 7)
At(tre—tq,d,7)
At(ts 1 ta,d,r)
Ppl(j, savey, Release(ts :t4,d,n, 1) )
—Tied(tq0— t1,n,7)
—Tied(t1,n,r)
Pull(ty :t2,d,n, 1)

Out_of _danger(tae— Deadline, n,r)
At(r9,d, nh) \
Run(re : Tg,d,nh : 1)
At(rge—~ 17,d, nh)
At(rs : 77,d,nh)
Ppl(j, saves, Dial(s : T7,d,dr) )
In_contact(rre— 14,d, dr)
In_contact(rs : T4,d, dr)

Warn(rs : Ta,d, dr,n)

Knows_about(rse— 1, n,dr)

Dudley develops two alternative plans in a time-shared fashion. Suppose the pa-
rameters in the problem (namely, the deadline, Dudley’s speed of running, the distance
to the railroad track and to the neighbor’s house, etc.) are such, that at step j shown

above, the sum of the WET’s of the two plans is no longer within the deadline. Dudley
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exercises a choice through the rule RILR which reduces the interleaving list to the plan
to call the driver of the train. (Abbreviations used are: n=nell, d=dudley, r=railroad
track, nh=neighbor’s house, and dr=driver of the train.)

Suppose savel is the plan with the higher WET. Using this heuristic, Dudley gives
up the plan to run to Nell, and executes the plan to go to the neighbor’s house to call
the driver to stop the train. With the sum of the WET’s exceeding the Deadline, Dud-
ley starts to run in the direction of the neighbor’s house and removes save; from the
IL, still retaining it in the list of feasible plans to be available in case of unanticipated

run-time failure.

8.7 Summary

In this chapter we have presented a revised formalism for planning with active logics
that incorporates concerns of limited time, space, and computation. We have shown
the adequacy of this model in deriving the same set of theorems as the model without
space limitations. We have developed some heuristics for the deadline-coupled planner

that will allow it to function within tight resource limitations.
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Chapter 9

A modal semantics for active logics

Most formal approaches do not have an appropriate representational framework to
tackle time-situated reasoning problems such as the ones we have mentioned in this
dissertation. They assume that an agent is able to reason forever in a timeless present
as if the world had stopped for the agent’s benefit. Resource limitations have been of
some concern in formal work. In particular, the problem of logical omniscience has
received attention in the epistemic logic literature. It concerns the difficulty with the
classical Hintikka possible world semantics [Hin62] that the agent always knows the
logical consequences of her beliefs. However, no existing works provide a semantics
addressing the issue of how the reasoning progresses vis a vis the passage of time.
Although work in temporal logic involves reasoning about time (e.g., [All84, McD82,
MS87]), time is not treated as a crucial resource that must be carefully rationed by
the agent, as it is spent in every step of reasoning.

Step-logics [EDP90, PEDM] as a formal apparatus to model an agent’s ongoing
process of reasoning were described in Chapter 2. We have thus far described an
active logic based fully deadline-coupled planning and reasoning mechanism which is
a combination of declarative and procedural approaches. Although active logics have
been characterized and implemented, only limited attempts have been made to give a

formal semantics for the step-like reasoning process.

112



This chapter is intended to bridge the gap between previous modal approaches to
knowledge and belief and time-situated frameworks such as step-logics which have a
means for attributing time to the reasoning process. We discuss the various aspects
of logical omniscience and their treatment in section 9.1. In section 9.3 we present
a modal active-logic that is step-like in spirit and motivated by the work on step-
logics, but for which, unlike the former, we can provide a sound and complete modal
semantics in section 9.4. In section 9.5 we examine how our approach addresses the

logical omniscience problem and summarize our contribution.

9.1 The various aspects of omniscience and its treat-

ment

Fagin and Halpern [FH88] have analyzed what is meant by the notion of logical om-
niscience. They define an agent to be logically omniscient if whenever he believes
formulas in a set 3, and X logically implies the formula ¢, then the agent also believes
¢. They further identify three cases of special interest: (a) closure under implication,
namely, whenever both ¢ and ¢ — 1 are believed then 1 is believed, (b) closure under
valid implication, namely, if ¢ — 1 is valid and ¢ is believed then % is believed and
(c) belief of valid formulas, namely, if ¢ is valid, then ¢ is believed.

The agent in the classical model of knowledge [Hin62] has all the undesirable
properties (a), (b) and (c) above. Several improvements have been suggested, and they
have been broadly classified as “syntactic” and “semantic” approaches. In the syntactic
approach e.g. [Ebe74, MH79], what the agent knows is represented by a set of formulas
and hence is not constrained under consequence. But such approaches are difficult to
analyze, since they are not guided by knowledge-based principles. A commendable
syntactic approach is presented by Konolige in his deduction model [Kon86a] which

gives a formal characterization of explicit beliefs and captures how agents syntactically
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derive new beliefs, possibly with an incomplete set of inference rules.

In contrast, semantic approaches attempt to give semantics similar in most cases to
the possible world semantics, but with “fixes”. Levesque [Lev84] gives a semantic ac-
count of implicit and explicit belief where implicit beliefs are the logical consequences
of explicit belief. A solution to (a) and the possibility of having contradictory be-
liefs is achieved by introducing an artificial notion of incoherent or impossible worlds.
Levesque’s approach was subject to the criticism that an agent in the logic is a perfect
reasoner in relevance logic. Levesque’s ideas have been extended in [PS85] and [Lak86].
Montague has given a possible world semantics that gets around problem (a) of logical
consequence. We use the main idea in this model, namely, to define knowledge as a
relation between a world and a set of sets of possible worlds. However, we provide the
distinction of incorporating time-situatedness. Vardi [Var86] provides a co-relation be-
tween restrictions on models in the Montague semantics and the corresponding agent
properties that they characterize.

Fagin and Halpern [FH88] have presented a series of interesting approaches to
limited reasoning that marry the syntactic and semantic approaches. They provide
an extension to Levesque’s approach for the multi-agent case, and introduce a notion
of awareness. They also provide an approach to local reasoning that they call a
society of minds approach. Fagin and Halpern’s awareness notion, in their logic of
general awareness acts like a filter on semantic formulations. It has been evaluated and
criticized in [Kon86b]. One of the criticisms is that the model is unintuitive, since it is
unlikely that an agent can compute all logical consequences, discarding the one’s that
it is not aware of, say, because of memory limitations, because in fact, agents are also
affected by time limitations. There are a number of works that have considered logics
of knowledge and time e.g. [Sat77, Leh84, KL.88, LR86, Ash88]. Fagin and Halpern
discuss the possibility of capturing bounded and situated reasoning by letting the

awareness set vary over time. However, no attempt has been made to systematically
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study and model situations where the passage of time is a critical issue.

9.2 Step-logics and the omniscience problem

As described in 2, Elgot-Drapkin characterized an array of eight step-logics in increas-
ing order of sophistication with respect to three mechanisms : self-knowledge (S), time
(T) and retraction (R)'. According to this classification, SLs is the simplest dynamic
deductive logic with time and self-knowledge capability, but no retraction mechanism
(no ability to handle contradictions). An SL; logic is a triple (£,0BS,IN F) where
L consists of propositions (with the addition of time), O BSS is an observation function
describing inputs from the world at each step. For simplicity we first consider an agent
who does not acquire any new beliefs through observations. I'N F'is a set of inference
rules. We describe an S L5 step-logic to which we provide a modal active-logic analog.
The set I N F for it is shown in in figure 9.1.

We have chosen the simplest S L5 since our main interest is in the treatment of time
and in modeling agents with nested beliefs. We will impose an additional constraint

on models that does not allow for contradictions in the agent’s beliefs?.

9.3 A modal active-logic for reasoning in time

With 5 L5 as the motivation, we provide a time-situated modal logic. This modal logic
is based on Montague’s intensional logic of belief [Mon70], that uses structures referred

to in the literature as neighborhood structures or minimal structures [Che80]. They

1SLo:mone; SL1:S; SLo:T; SLs:R; SLy:S,R; SLs:S,T; SLe: R, T; and SL7:S,T,R.

2However, this condition may be relaxed if for example, we desire to model an agent with default
reasoning capability. Step-logics are inherently nonmonotonic and allow for implicit and explicit
contradictions in the agent’s reasoning. The modal logic approach which is motivated by the step-

logic work is powerful enough to deal with contradictions.
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Figure 9.1: Inference rules for an S'Ls logic

were first used in [Mon68] and in [Sco70]. Montague gives a possible world semantics to
epistemic logic where, unlike in the classical model®, knowledge is defined as a relation
between a world and a set of sets of worlds. An intension of a formula ¢ denoted by
||¢|| is the set of worlds w such that w |= ¢.

We prefer to use timelines instead of possible worlds, since this gives us a way
to naturally incorporate time into our framework. I denotes the set of timelines
[TSSK91]. We consider time lines that are restricted to be finite from one side and
infinite from the other (i.e., are rays). At every time point in each timeline some
propositions are true and the rest are false. In particular, there is one timeline of most
interest, that captures the real history of occurrences in the world. We call this line

I, € L the history timeline.

3The classical possible-worlds model is based on the idea that besides the true world, there are
other possible worlds, some of which may be indistinguishable to the agent from the true world. An
agent is said to believe a fact ¢ if ¢ is true in all the worlds that she thinks possible. A semantics
based on Kripke structures for this classical model suffers from the well known drawback from the

point of view of logical omniscience that K¢ A K (¢ — ¢) — K4 is an inherent axiom.
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9.3.1 Syntax and semantics

In the logic proposed, the agent reasons in a propositional language with time. The
interest is in sentences such as:

p: Nell is tied to the railroad tracks at 3 pm.

q: Dudley is at home at 3:30 pm.

Formally, we assume that there is a set P of atomic propositions. Let A denote
the set of numerals, namely, “17, “2”7, “3”, etc. The relation “<” denotes the normal
total order on the set N'. We define PT = P x N as the set of propositions extended
to include time constant arguments. The elements of PT are the atomic formulas of
our language, and we will denote them as p(7) where p € P and 7 € A/. The language
G is the smallest set that contains PT, and is closed under the =, A, V, — connectives,
and contains B¢ whenever ¢ is in the language and 7 € A/. The B operator denotes
belief .* This language can easily be extended to include multiple agents, by the use
of an additional parameter 7, so that Bia denotes “at time 7 agent 7 believes in a”,
where a may include beliefs of other agents.

A structure in the proposed time-embedded active logic is: M = (L, N, v, <,7,B)

where
e [ is a set of timelines.
e v(n € N) = n is the interpretation function for time point constants.

o m:PT x L — {true, false} is a truth assignment to the formula p(t) € PT for
each timeline [,/ € L at the time point ¢ € A/. Thus 7 defines the intensions of

the atomic formulas of our language.

*In this language one can express formulas such as p and ¢ above, belief formulas such as B;, p(m2)
to mean “at time 7 the agent believes that p is true at time m”, or nested beliefs formulas such as
B, (Bry42p(72) V Br,42q(73)) to mean “at time 7 the agent believes that two time points later she

will believe p(72) or she will believe g(73)”.
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Figure 9.2: Neighborhood structures for the belief operator

o B: L xN — 2% is a belief accessibility relation, defined for each timeline, time

point pair (/,t),l € L,t € N.

We will use By(l) to denote B(l,t), which is the set of sets of time lines related to /
at time ¢ through the B relation. Note the use of the pair (/,¢). We are interested in
epistemic behavior over time, and this is depicted by the evolution of beliefs (and the
corresponding accessibility relations) from (I1,) to ({5, 4 1) in the real timeline.

Analogous to the Montague intensional logic, we define B.¢ to denote that an
agent “believes a formula ¢ at time 7”7 and define a satisfiability relation for timelines
based on intensions. An intension of a formula ¢ in a structure M denoted by ||¢|| is
{I|leL, M,l = ¢}.

Figure 9.2 illustrates the neighborhood structures for our modal logic®.

5We comment here that is is possible to extend the modal active-logics to multiple agents reasoning

in time. A structure for an active logic with multiple agents is M = (L, N, v, 7, A, B',... B"). Lis
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We impose restrictions on models to reflect the step-like reasoning behavior be-
tween successive time instances. These restrictions make certain axioms sound in our
system. We further characterize the modal active-logic by a sound and complete set
of axioms and inference rules. Time is an essential resource in this framework and
is consumed in the reasoning process. This logic captures the reasoning process of a
non-omniscient resource-limited agent.

We formally define |= for the structure M = (L, N, v, <,w, B) described above as

follows:

1. This defines satisfiability of the atomic formulas of our language.

M, 1= p(r) if ©(p(7),1) = true.

2. This defines satisfiability of negated formulas.
M.l = ¢ iff M1~ ¢.

3. This defines satisfiability of formulas formed with the A connective.

Ml = (pAp)iff M,l|= ¢ and M,l = .

4. This defines the satisfiability of the belief formulas.

M.l |: B¢ iff ||¢|| € BT(Z)

The satisfiability of V and — is defined accordingly. We impose the following restric-
tions on our models to describe an agent who reasons in a step-like fashion like its

motivating step-logic agent described by SLs.

e (CO) Vie L, ||truel| =L € By(l).

the set of time lines and = is the truth assignments to base formulas as before. A is the set of agents
{1,...,n}, and each of B',i =1,...,n associates with a timeline, time point pair (1,t), a set of set of
timelines that are belief-accessible from ! at time ¢ from the perspective of agent i € .A. In problems
such as the three wise men problem mentioned in the introduction, a multi-agent logic where the time

of all agents increments synchronously can provide an elegant solution to the problem.
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Since the set A is ordered under <, and timelines are defined as rays, we can
define a start point 0. This restriction says that the agent believes in true at the
beginning of time. We note here that this restriction makes the axiom AO (to
be described) sound in the system. It also dictates that the agent always has a

nonempty set of beliefs.

e (C1) VieLVteN, {}¢&B:().

This says that the agent’s belief set is consistent at every time point. As ex-
plained before, we introduce this restriction to model a simple agent without

contradictory beliefs and without any mechanisms for retraction®.

e (C2) Vie L,\Vte N, if sy € By(l), and sg D sy then sy € By(1).

This restriction says that a detachment of a belief is necessarily also a belief
at the same time step (since supersets correspond to detachments in the step

logic).

[} (03) vl € L,Vt € N, if 81,82 € Bt(l), then 81 M sy € Bt_}_l(l).

This restriction constrains models at successive time points to be one step richer
than their predecessors, in the sense that the agent has added all possible pairwise
conjunctions of previous beliefs to the current step, but each pair participates

just once’.

8This restriction can be relaxed if the intent is to model a fallible agent who does default reasoning
and may be permitted to have contradictory beliefs at any given time. Without the above restriction
the neighborhood structures possibly allow for both M,! |= B;¢ and M,l |= B,—¢, since both ||¢|]
and ||=¢|| could belong to B-(1).

"For example, if M,l = Bro, M,l |= B,f and M,l |= B,y then M,l |= Bry1i(a A ), M,l =
Bryi(aAy)and M, |= B;11(BAY) but M,l = Bry1(a AB A7) does not follow from this restriction,

however M,l |= Bry2(a A S A y) does.
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Azioms :
(A0) Botrue.

(A1) All tautologies of propositional logic.

(A2) -B; false. Consistency
(A3)

A3) B;¢ A B:Yp — Bryi(p A ). Conjunction®

Inference Rules :

(R1) If - ¢ and - ¢ — % then - 2 Modus Ponens
(R2) If - ¢ — ¢ then - B.¢ — B, Closure under valid consequence
(R3) If - ¢ then F B;¢ Belief in tautologies

“Inheritance follows from (A3) when ¢ = 9.

Figure 9.3: Characterization of the modal active-logic

9.4 Soundness and completeness proof for the modal

active logic

Theorem 9.1 : The set of axioms (A0-A3) and inference rules (R1-R3) in Figure 9.3
provide a sound and complete axiomatization of the modal active-logic for reasoning

in time.

Proof (sketch) : Soundness follows in a straightforward fashion from the interpre-
tation of A and = in the definition of |= and from the restrictions on the models
described. The proof of completeness hinges on the definition of a canonical model
M?¢ in which every consistent® formula is satisfiable.

In M€ we have a timeline [y corresponding to every mazimal consistent set V. For

definition and properties of maximal consistent sets we refer to [HY92]. Let I, denote

8 A formula ¢ is provableif ¢ is one of the axioms or follows from provable formulas by application

of one or more inference rules. A formula ¢ is consistentif —¢ is not provable.
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the set { Iy | ¥» € W }. The canonical model is defined as: M° = (L°, N, v, <, 7, B)
where
L*={ly : V is a maximal consistent set },

T(p(7),lv) = true iff p(7) € V, and

Fort e NV, By(ly) =
{Iy | BipeV 3 IU{S|5258,8e{ly|BypeV }andV,ve§G— 5 #I1y}.

We then prove using induction that M€ [y | ¢ iff ¢ € V, which proves that all
consistent formulas are satisfiable in this structure. We provide the details of the proof

in the appendix.

9.5 Summary and discussion

Active logics capture the process of reasoning of a resource-limited agent as it goes on
in time. As time progresses, the agent draws more inferences (new beliefs) at each time
step. Thus, an agent does not draw all the consequences of its current set of beliefs
Y all at once, but continues to add conclusions to this set in accordance with a set of
inference rules. This is reflected by the increasing size of B(lx,t), where [;, denotes the
real history of occurrences in the world, and B(/j, ) reflects what the agent believes in
time ¢. The agent is certainly not guilty of omniscience under (a) logical consequence?
since it is trivial to provide a counter-model to B,a B.;(a — ), - B.3. By virtue
of a description that is based on intensions of formulas, it is difficult to distinguish

between semantically equivalent beliefs. As such, (c) belief of valid formulas and (b)

closure under valid consequence follows.

°The agent may eventually compute all logical consequences of its belief set if it has a set of

complete agent inference rules.
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However, it is possible to modify our logic by providing a syntactic way to curtail
the size of the belief set by introducing an additional element G to the structure M.
G C G is defined as the agent’s language and is closed under subformulas. An agent
believes in 1 (i.e., B;®) only if » € G. For this new structure, the set of axioms and
inference rules are suitably modified to capture this change (e.g.,in (A3) pA® € G and
in (R3) ¢ € Gis added) and appropriate restrictions are placed on M. In essence, B()
sets are filtered by GG for all ¢ and [. It can be proven that the modified set of axioms and
inferences are sound and complete with respect to the modified structure. If the model
includes more than one agent, each of them may have a different language G. This
restricts an agent who believes in ¢, to only that subset of [¢] (the equivalence class
of ¢) which is in the agent’s language. The agent also believes only those tautologies
that are in (G. Hence the scope of (b) and (c) is reduced in the modified structure.
The agent’s language G has similarities to the awareness set concept of [FH88]. If one
considers multiagent belief operators B° without a time parameter then a modified
version of Axiom (A2), and rule (R3) from figure 9.3 are true in the model of local
reasoning of [I'H88], (without modalities for implicit belief). Note, that we have only
explicit beliefs, and there is no notion of implicit beliefs. In [FH88] the models are
still static, in that even though they suggest incorporating reasoning about time, and
changing awareness functions, there is no way to account for inference time in their

models.
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Chapter 10

Conclusions and future directions

We have designed a declarative planning framework based on active logics that treats
planning as an action, and can account for all the time taken to plan, making it suitable
for deadline situations. This effort led to a novel treatment of temporal projection and
other frame problems, in a real-time setting; a modal semantics for active logics; and
other results in reasoning under resource limitations. Some aspects of the design were
implemented and tested in prolog.

The active-logic approach of accounting for all the time spent in acting and de-
liberating is innovative, and opens up many interesting agendas for future research.

Following are some of the research directions that we have identified.

10.1 Future directions

1. Failures in the physical world

While our formalism has room for fallibility in the agent’s thinking (default
conclusions are constantly withdrawn in the face of contradictory observations
or more informed reasoning); mechanisms to monitor the success of the agent’s
actions in the real world are yet to be incorporated. This is extremely important

for a real-world implementation integrated with the appropriate sensor/motor
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actions.

. Soft deadlines and timing faults

We have dealt with an agent in a tight (hard) deadline setting. We wish to
supplement this research with a treatment of soft deadlines, where not everything
is lost if the deadline is overshot, but rather, the agent must evaluate the negative
cost of doing so in the decision making. He/She may formulate a plan to stretch
the deadline, but this formulation is also subject to the same time constraints

as other efforts to meet the deadline.

. Multi-agent and distributed reasoning

In a time-situated setting, where several agents may need to interact from time-
to-time, an agent may find it necessary to keep an account of others’ time of
reasoning in addition to his/her own. There are many interesting planning prob-
lems that evolve when actions of other agents must be interleaved in an agent’s

own plans.

. Deadlines and space-limitations

Deadline-coupled planning with the goal of keeping the available memory for
plans within a fixed bound opens up an area for interesting experimentation.
Experimenting with the value of the parameter used for the size of the short
term memory and the associated heuristics for bringing “relevant” information
from long-term memory for current plan refinement, could give us insight into

the size of an STM for an automated agent that gives desirable behaviors.

. Perceptual reasoning

It would be desirable to extend the existing work in temporal reasoning to include
perceptual reasoning, spatial reasoning and to aspects of planning that involve

planning to acquire more information.
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6. Learning aspects and case based real-time planning

An agent who can keep track of the planning process employed in a novel deadline
situation in a manner which will enable its efficient reuse at a later time can
be said to learn. Omne possibility is to distill this knowledge into cases. Plan
reuse and repair can then be explored for a deadline-coupled reasoner with this

capability.

7. Design of an integrated agent with diverse capabilities

A long term goal is to add breadth and depth to our existing development of time-
situated formalisms: to design and implement an integrated time-situated system
which would be able to reason effectively across various problems and domains,
and to combine planning and non-planning problem solving. Eventually, we
would like to see “active logics” strengthened to investigate realistic problems
that demand a treatment of time, space, and other forms of embeddedness, not
merely as external entities to be reasoned about, but rather as features guiding

their inferences.

10.2 Implementations

Portions of the active-logic planning and temporal reasoning framework have been
implemented in Prolog. The implementation served two purposes in this research: it
helped to confirm that the inference engine indeed performs the desired sequence of
deliberation and execution, and secondly it gave us the opportunity to enhance the
design in an incremental fashion. The implementation also brought to our attention
the glaring need to address other problems such as space and computation limitations
that we had set aside initially in the interest of providing a treatment of time and
deadline issues. We recognized some inherent difficulties with the original step-logic

framework by observing the behaviors of the inference engine as we incrementally
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added more capabilities to it. Qur work in space and computation resource limitations

has addressed some of these concerns.
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Appendix A

Examples of sample scenarios

This appendix contains examples of Dudley’s reasoning during some variations of the
Nell and Dudley scenario. The next section gives some sample axioms that encode the

domain specific knowledge. The inference rules were described in Chapter 6.

A.1 Sample axioms

Relevant to moving:
o Run(Ty:Ty,Y,Ly: Ly)— At(T2,Y, L) To =T1 + (Ly — L)/ vy?
o condition(Run(Ty : Ty,Y, Ly : Ly), At(Ty,Y, Ly))
o result(Run(T) : Ta,Y, Ly : Ly), At(Ta,Y, Ly))
Relevant to untying and releasing:
o Pull(T:T+1,X,L)— Out-of _danger(T +1,X,1L)
e condition(Pull(T : T +1,X, L),-Tied(T, X, L))

o result(Pull(T:T+1,X,L), Out_of danger(T +1,X, L))

Tyy is Y's speed while running.

128



o Pickaup(T:T+1,Y,X)— Have(T +1,Y,X)
o result(Pickup(T : T+ 1,Y,X), Have(T: T 4+ 1,Y, X))

o condition(Pickup(T : T +1,Y,X),

AT : T+ 1,X,L)A AT : T +1,Y, L))
Relevant to telephones and warning:
o condition(Warn(S : T, X,Y), In_contact(S : T, X,Y))
o result(Repeat_Until(S : T, Dial,Get_connection, X,Y ), In_contact(X,Y))

o condition((Dial, At(S: T, X, L) N At(S : T, phone, L))

A.2 Dudley, Nell and the rushing train

To give a flavor of the deadline-coupled reasoning, we first consider a very simple
scenario and show some steps from Dudley’s real-time reasoning.? Here Nell is a
distance of 30 ‘paces’ from Dudley when he first realizes (step 0) that the train will
reach her in 50 time units. He begins to form a plan, seen below in step 1 as Ppl
(partial plan), and refines the plan in subsequent steps. deadline is 50 in this example,
dis Dudley, n is Nell, h denotes home and r the railtrack. Subscripted t’s indicate times
(step numbers). Proj stands for projection; save, that appears as argument to Ppl,
Proj and Feasible in step 1, is a label naming the plan he is forming. X (5 :7,...)
denotes that the predicate X holds over the interval S : T. A point interval T : T is
written simply as 7. The e— as it appears in X (S5 : Te— R,...) denotes that X is

intended to hold beyond S : T up to R (by default). Its use in a result of an action

2For fuller details see [KNP90, NKP91].
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indicates that the result must be preserved for use in a later segment of the plan. The

number at the right bottom corner of a triplet denotes its place in the plan sequence.
Step O:

CS(0,null, {..., At(0,d, h)ops, Tied(0, 1, 7)ops}),

Proj(0, null{}),

Goal(save, Out_of danger(50,n,r),50),

Unsolved(0, Out_of danger(50,n,r)), ...

Step 1:

CS(1,null {..., At(0,d, h)ops, Tied(0,n, r)ops}),

Proj(1, null, {At(1 : co,d, h),Tied(1: co,n,7)}),

CS(1, save, {..., At(0,d, h)ops, Tied(0, 7, 7)obs } ),
—Tied(t1,n,r)

Ppl(1, save, Pull(ty :t2,d,n,r) ),

Out_of danger(tye— 50,n,r)
Proj(1, save, {}),

WET(1, save, 0),
Feasible(1, save), ...

Step 2:

CS(2, save, {..., At(0,d, h)ops, Tied(0,n,7)ops, Pull(ty : ta,d,n,7), 15 < 50,11 =5 — 1}),
At(ts 1 ts,d,r) —Tied(ty,n,r)

Ppl(2, save, Release(ts :ta,d,n, 1) Pull(ty :t2,d,n,r) ),

—Tied(tyo—t1,n,7) . Out_of danger(tye— 50,n, 1)
Proj(2, save, { At(1 : 0o, d, h),Tied(1:00,n,7)}),

WET|(2, save, 1),
Feasible(2, save), ...

Step 3:
CS(3, save, {..., At(0,d, h)ops, Tied(0, n, 7)ops, Pull(ty : T2,d,n,7), Outof danger.(t2,n,r),

Release(tg Zf4,d, n,r),tg S 50,t1 = tg - 1,t3 = t4 - 3,t4 S tl}),
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At(t6,d, L) At(tg Zt4,d7 7‘)
Ppl(3, save, Run(ts : t7,d, L : 1) Release(ts : ta,d,n, 1) )

At(tre—t3,d,r) ) —Tied(tqe— t1,n,7)
Proj(3, save, {At(1 : 0o, d, h),Tied(1: c0,n,7)}),

WET|(3, save, 4),
Feasible(3, save), ...

Step 4:
CS(4, save, {..., At(0,d, h)ops, Tied(0,n,7)ops, Pull(ty : t2,d,n, ), Out of danger.(t2,n,r),
Release(ts : ta,d,n,r), Run(ts : t7,d, L : r), = Tied.(ts,n,7),

1o < 50,81 =ty — 1,13 =t4 — 3,14 < 11,6 < tr,t7 < t3}),

At(tG,d, h) At(tg Zt4,d, T’)
Ppl(4, save, Run(te : t7,d,h: 1) Release(ts :ta,d,n,r) ,
At(tre—t3,d,r) ) —Tied(tyo—t1,n,71)

Proj(4, save, { At(1 : 0o, d, h),Tied(1 : co,n,r),Out_of danger(ts + 1 : oo, m, r), 1),
WET|(s4, save, 4),
Feasible(4, save), ...

Step 5:
CS(5, save, {..., At(0,d, h)ops, At.(t7,d,r), Run(ts : t7,d, h : 7), Tied(0, n, 7)ops,
Pull(ty :t2,d,n,7), Out of danger.(ta2,n,r), Release(ts : 14,d,n,r)~Tied.(ts,n,7),

1y <50ty =ty — 1,83 =14 — 3,84 < t1,t6 = t7 — 30,17 < t3)}),

At(t6,d, h) At(tg Zt4,d, T’)
Ppl(5, save, Run(ts : t7,d,h : 1) Release(ts :ta,d,n,7) ,
At(tre—t3,d,r) ) —Tied(tqo—t1,n,7)

Proj(5, save, {At(1 : 0o, d, h), Out of _danger(ta + 1 : 0o, n,r),
Tied(l :ty — 1,n,r),~Tied(ts+ 1 : 00,n,7),}),

WET(5, save, 34),

Feasible(5, save), ...
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Step 6:
CS(6, save, {..., At(0,d, h)ops, Atc(t7,d,7), Run(ts : t7,d, h : r), Tied(0,n, 7)ops,
Pull(ty :13,d,n,r),Out of danger.(ts,n,r), Release(ts : ta,d,n,r)=Tied.(ta,n,r),
1y < 50,1 =ty — 1,45 =ty — 3,14 < t1,t6 = t7 — 30,17 < t3)}),
At(ts, d, h) ]
Pace(ts 116+ 1,d,h: h+ 1)

At(te +1,d, h+ 1)

At(te +1,d, h+ 1)
Pace(te+1:ts+2,d,h+1:h+2)

Ppl(6, save, ,
At(te + 2t3,d, h + 2)

At(te +29,d, h + 29)
Pace(ts +29 116 +30,d,h+ 29 : r)

At(tre— t3,d, h + 30) I
Proj(6, save, {At(1 : t7 — 1,d, h), At(t7 + 1 : 00,d, r), Out_éf_danger(tz +1:00,n,7),

Tied(l :ty — 1,n,r),~Tied(ts+ 1 : 00,n,7),}),
WET(6, save, 34),
Feasible(6, save), ...

Step 7:

CS(7, save, {..., At(0,d, h)ops, Atc(t7,d,r), Run(ts : t7,d, h :

r), Tied(0,n, 7)ops, "Tied (ta, n,7),

Pull(ty :13,d,n,r),Out of danger.(ts,n,r),

Pace(ts :ts+ 1,d,h: h 4+ 1),... Pace(ts + 29 : ts + 30,d, h : h + 30),
Release(ts :ta,d,n,r),ty < 50,81 =15 — 1,

t3 =14 —3,ta <t1,t6 = 8,ts =ty — 30,7 < t3)}),
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At(7,d, h)
Pace(7:8,d,h: h+1)
At(8,d,h + 1)
Ppl(7, save, . )
At(36,d, h+ 29)
Pace(36:37,d,h+29 : r)

At(3T7e—t3,d, h + 30) .
Proj(7,save, {At(1 : t7 — 1,d, h), At(tz + 1: oo,d',ur), Out of danger(tz + 1 : 00, n,7r),

Tied(l :ty — 1,n,r),~Tied(ts+ 1 : 00,n,7), }),
WET(7, save, 34),
Feasible(7, save), ...

Step 8:
CS(8, save, {..., At(0,d, h)ops, Atc(8,d, R+ 1), ..., At.(37,d,r),
Run(8:38,d,h:r), Tied(0,n,7)ops, " Tied.(ta,n, 1),
Pull(ty :t2,d,n, ), Out of danger.(t2,n,r),
Pace(7:8,d,h:h+1),...Pace(36 : 37,d,h : h + 30), Release(ts : t4,d,n, 1),
ty <50, =1y — 1,t5 = ts — 3,14 < 1,16 = T,15 = t7 — 30,17 < 13)}),
AY(8,d,h+ 1) \
Pace(8:9,d,h+1:h+2)
At(9,d,h + 2)
PpI(s, save. Y
At(36,d, h + 29)
Pace(36:37,d,h +29 : r)

At(3Te—t3,d, h+ 30) o )
Proj(8, save, {At(1 : 36,d, h), At(38 : 00, d, 7), Oad't'_of_danger(tg +1:00,n,r),

Tied(l :ty — 1,n,r),~Tied(ts+ 1 : 00,n,7), }),
WET(8, save, 34),
Feasible(8, save), ...

Dudley’s planning and acting continues, he refines the Release(ts : 3 + 3,d, n,r) into its
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primitive (known) components. The following gives an idea of the rest of his time-situated

reasoning until he has saved Nell:

Step number First action in Ppl WET

Step9 : Pace(9:10,d,h+2:h+3) WET(9,save, 33)
Step36 : Pace(36 :37,d,h+29 :r) W ET(36, save, 6)
Step37 : Releasey (3 : i3+ 1,d,n,r) WET(37,save,5)
Step38 : Release1(38 :39,d,n,r) W ET(38, save, 4)
Step39 : Releases (39 :40,d,n,r) W ET(39, save, 4)
Step40 : Releases(40 : 41,d,n,r) W ET(40, save, 3)
Step4l : Pull(ty :t1+ 1,d,n,7) WET(41, save, 2)
Stepd2 : Pull(42: 43,d,n,r) W ET(42, save, 1)
Stepd3 : Null W ET(43, save, 1)

A.3 The knots may be too tight, a knife may be needed

In this research, we incrementally consider more complex scenarios, so that by ab-
stracting from them we can identify more critical issues and enhance the framework
with additional time-situated planning capability. Suppose that Dudley thinks that

a knife may be required to cut the difficult knots around Nell, and plans for that
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contingency. He knows of a knife in the house, he projects it to be there when he
needs to use it. Requiring a knife corresponds to a compound condition for the action
Cut_ropes(S : F,...), namely, At(S : F,d,r) A\ Have(S : F,d,knife). The inference
rule whereby Dudley can subsequently formulate two plans, one in which he plans to
satisfy Have(...) before At(...) and the other in which this order is reversed, fires.
Both conditions, must however hold up to the time they are needed for the C'ut_ropes
action. This is where the e~ comes in use. It enables Dudley to notice that when the
result of an action is expected to be preserved up to the time when it is to be used,
a plan in which it must be undone in order to satisfy the condition for a subsequent

action, is in fact inefficient, and can be frozen in favor of another plan.

This inferencing, though domain independent, does not claim to handle every
situation involving conjunctive goals. It can be thought of as one heuristic aid used
by commonsense reasoners in limited time to help in plan selection. In the second
plan, picking up the knife requires Dudley to be at home (the same location as the
knife), and this violates his attempt to achieve A#(t11,d,r) and preserve it until the
time ¢4 when he will finish untying Nell. This rule fires and he chooses to proceed
with the first plan in favor of the second. We demonstrate below a few key steps in
this reasoning.

3: CS(3,save, {At(0,d, h)ops, At(0, knife, h), Tied(0,n,7)oss}),
At(ts 1 ta,d,r) A Have(ts : ta,d, knife)
Ppl(save, 3, Cut_ropes(ts : ta,d,n,r) ),

—Tied(t4e— t1,n,7)
CS(3,save, {...,t3=1t4—3,...})

1.

Proj(3, save, {At(1 : co,d, h), At(1: co, knife, h), Tied(1l :t4— 1,n,7), ...})...
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At(t(g, d, Ll) A At(t6, knife, Ll)
Pickup(ts : t7,d, knife)
Have(tre— tq,d, knife)

5: Ppl(5, savel, L3y,
At(ts,d, L)

Run(tg :tg,d, Ly : 1)

At(toe—stq,d, )
CS(5,savel, {...;ts =t7 —1,...})

At(tlo, d,L4)
Run(tw : flla d, L4 . T’)
At(tllH t4, d, 7“)
Ppl(5, save2, 1 ),
At(tlz, d, Lg) A At(t6, knife, Lg)

Pick_up(ti2 : 113,d, knife)

Have(tize— tq,d, knife)
CS(5, 8[11762, { . .,t12 = t13 — 1, .. })

2.

Proj(5, savel, {At(1 : 0o, d, h), At(l : 0o, knife, h),Tied(l :t4 — 1,n,7), ...})

Proj(5, save2, {At(1 : 0o, d, h), At(l: oo, knife, h),Tied(l :t4 — 1,n,7), ...})...

N

At(ts, d, h) A At(ts, knife, h)
Pick_up(ts : t7,d, knife)
Have(tre— tq,d, knife)

6: Ppl(6, savel, Lo,

At(ts, d, h)

Run(ts : t9,d,h: 1)

At(tge—t4,d, 7)
CS(6,savel, {...;ts =t7 —1,...})

At(ti0,d, h)
Run(tig : t11,d,h:7)
At(tllHt4,d, 7“)
Ppl(6, save2, 1 ),
At(tlz,d,h) /\At(t&kﬂif&‘,h)

Pick_up(tis : T13,d, knife)

Have(tize—tq,d, knife)
CS(6, 8(11}62, { . ~7t12 = t13 - 1, .. }) -

7: Freeze(7,save2), ...
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A.4 Another alternative: stop the train!

The examples above was kept as simple as possible to elucidate the workings of the
active-logic planner. Now suppose we enhance Dudley’s set of axioms so that he
knows about stopping trains, warning drivers and making telephone calls. Then, as he
synthesizes the above obvious plan to ‘run to Nell and untie her’, he can simultaneously
plan for another alternative — he could get the driver to stop the train in time! But how
does he establish contact with the driver? One way is to go to the nearest telephone
and call the train station. Dudley knows that it is is 50 time steps until the deadline.
Where is the nearest telephone? His neighbor has one, and the neighbor lives only 5
paces away. How long will it take Dudley until he can get the connection? His previous
experience with telephones tells him he must allow a good 5 steps, he possibly may
have to redial several times (perform a Repeat_until type of action® ). How long will
it take him to warn the train driver? Perhaps 5 steps seems adequate. Dudley plans
for this ‘stop the train’ alternative in parallel with the ‘run to Nell and untie her’ plan.
Below, we illustrate some of the steps in the formation of this plan, the step numbers
correspond to the matching numbers in the earlier plan. The two should be visualized
to be generated in parallel, although they are shown separately here for the sake of
simplicity and readability.

This plan involves a dimension that we have not alluded to before; it involves
the action of another agent. Unlike in the earlier plan, where all actions were under
Dudley’s control, this plan depends on an action Stop_train which has to be performed
by an agent other than Dudley, in this case, the train driver. How can Dudley plan

for this? Dudley has the following two axioms:

3As a planner, Dudley must reason about various types of actions vis-a-vis his deadline. These
include conditional actions, and repeat-until type of actions. A repeat-until type of action is charac-
terized by the appearance of a signaling condition to mark its end. Appropriate rules in Appendix B

show Dudley’s inference rules to this effect.
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Stoptrain(T : T + 2,driver) — Out_of danger(T + 2, nell, railtrack)

Warn(S : T,dudley, driver) — Stop_train(T : T + 2,driver)

The second axiom hints at an unknown in the plan: Can Dudley trust the driver to
stop the train? What if the villain is driving the train himself? Suppose that Dudley
does believe, that by warning the driver he can get him to stop the train, then his
plan must include the action Warn, and his total time estimate must allow for the
time taken by the driver in performing the stop. He can not attempt to satisfy the
conditions for Stop_train since they are not within his control, but he must proceed
with his bit of the plan i.e. with warning the driver. The following steps illustrate the

simultaneous formulation of this plan. The abbreviation dr denotes the train driver.

0: CS(0,null, {At(0,d, h)ops, Tied(0,n,7)ops}), Goal(stop, Out_of _danger(50,n,r),50), ...

1: CS(1,null, {At(0,d, h)ops, Tied(0,n,7)0ps } ), Goal(stop, Out_of _danger(50,n,r), 50),
.. Ppl(1, stop, Stop_train(r : 1o, dr) ),
Out_of danger(rge—50,n,71)
{Tg S 5 = T9 — 2}

WET(0, stop,0), estimate(Stop_train(r : T2, dr), 2),Feasible(1 stop),

N

In_contact(rs : T4,d, dr)
Warn(rs : 14,d, dr)
Knows_about(rye—~ 11,1, dr)

2: Ppl(2, stop, 1),

Stop_train(ry : Ta,dr)

Out_of danger(roe— 50,n, 1)

{r<b0,m=mn—-1m=n-3n<7}

WET|(2, stop, 2), estimate(Warn(rs : T4, d, dr), 5),Feasible(2 stop), ...
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At(rs : m7,phone, L1) A At(rs : 77,d, L1)
Repeat_until(rs : 77, Dial, Get_connection, d, dr)
In_contact(rre— 14,d, dr)

3: Ppl(stop, 4, T3,

In_contact(rs : T4,d, dr)

Warn(rs : T4,d, dr)

Knows_about(rye— 11,1, dr)
2

e 7/
{r<h,nm=n—1,m=n—-3,nu<n r6<m1m <13} WET(3,stop, 7),

estimate( Repeat_until(te : 77, Dial, Get_connection, d, dr),b), Feasible(3, stop), ...

In Section 8.6, we discussed heuristics for choosing between possible (partial) plans,

while taking the time for choosing also into account within the same framework.
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Appendix B

Soundness and completeness of the active

modal logic

In this appendix we give a detailed proof of Theorem 9.1. We restate the theorem here:

Theorem 9.1: The set of axioms (A0—-A3) and inference rules (R1-R3) in Figure 9.3
provide a sound and complete axiomatization of the modal active-logic for reasoning

in time.

B.1 Proof of Theorem 9.1

B.1.1 Soundness

To show soundness is to show that all the axioms are sound, and that the inference
rules preserve the soundness.

The axioms hold as a result of the restrictions (constraints CO thru C3) that we have
imposed in the semantics on M, the class of structures that satisfy these constraints.

Let M € M be a structure in this class. We first show that each axiom is sound.
e AO0: Truth of Bgtrue follows directly from restriction CO on the models.

e Al: If ¢ is an instance of a propositional tautology then M,[ |= ¢. This fol-
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lows from the interpretation of A and — in our semantics being the same as in

propositional logic.

e A2: Restriction C1 states that VI,Vt, {} ¢ B(l,t). From this, it directly follows

that —=B; false is true in every model.

e A3: This holds as a result of the restriction C3 on the intersections of sets that

we impose on our structure between consecutive time points.

Next, we show that R1 thru R3 preserve soundness.

¢ R1: Soundness of R1 follows similar to that of propositional logic.

¢ R2: To show that R2 is sound, we must show that if = ¢ — ¢ and M,[ |= B¢
then M,l |= By. If M,l|= B¢ then ||¢|| € Bi(l). Since = ¢ — ¥, ||¢p — ¢|| =
L. Since = ¢ — ¥, ||¢ — || = L, ||¢|| is a superset of ||¢||. By restriction C2

on models, ||| € By(l). Thus, we have M, |= By.

¢ R3: R3 is sound since from constraint CO, ||[true|| = L is in By(l) for all time

lines [, and ¢ means that ||¢|| = ||[true|.

Thus the axioms are sound, and that the inference rules preserve the soundness. O

B.1.2 Completeness

To prove that the modal active logic is complete, we first prove the following lemma:

Lemma B.1 There exist maximal consistent sets satisfying the following properties
for each max. consistent set F:
(1) for every formula ¢ either ¢ € F or —¢ € I
(2)pNnp e Fiff g€ Fand ¢ € F;
(3)If ¢ € Fand ¢ — ¥ € F then ¢ € F'; and
(4)

4) If ¢ is provable then ¢ € F.
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Furthermore, every consistent formula is contained in some maximal consistent set.

Proof (of Lemma B.1)

The first three are straightforward to prove, for proof refer to [HY92]. For part (4), we
need to show that every ¢ which is provable is in F. Suppose this is not the case. From
property (1), =¢ € F. Thus every model of I’ is a model of —¢. But ¢ is provable,
and hence by the soundness part that we just showed, it is valid. so, every model is a

model of ¢, hence a contradiction. This proves the lemma. a
Lemma B.2 Every maximal consistent set has a (canonical) model.

Remark B.3 Completeness follows from the above lemma. To show completeness
means to show that every valid formula is provable. It is sufficient to show Lemma
B.2. Suppose ¢ is valid. Suppose Lemma B.2 holds, and that ¢ is not provable. Then,
neither is —=—¢, and thus —¢ is consistent. Thus —¢ is contained in some maximal
consistent set. But every consistent set has a model by Lemma B.2. Thus —¢ has a
model. This model must model ¢, a contradiction. Thus ¢ must be provable. Thus
if Lemma B.2 holds then if ¢ is valid, then ¢ is provable. This is the completeness

theorem.

Proof(of Lemma B.2):

We construct a canonical structure M°® = (L°, N, v, <, 7, B) as follows:
This canonical structure contains a set of time lines L° that has a time line [y for

every maximal consistent set V.

o [° = {ly|V is a maximal consistent set}.

e [y is the structure

({{¢|¢ is of the form p(7) or B;3p , where p(i) € PT, v € G, € V}:i € N}, <).
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e v(neN)=n.
o w(p(7),lv) = trueiff p(t) € V.

o Tort e N, By(ly) =
{Iy | Bip e VIU{S|5D8,8c{Il;|BpeV }and Vo, 0 € G — 5 # Iy }.

To prove B.2 is to show that every maximal consistent set V' has a model, which
amounts to showing that

Mely ¢ iff g V.

We prove this by induction on the length of formula ¢.
Base case: lLet ¢ = p(f). By definition of the canonical model, p(t) € V iff
7(p(t),lv) = true. Thus, by the truth definition, M¢,ly = p(t).
Inductive Hypothesis (I.H) For formulas ¢ shorter than ¢,
Mely Eyiff e V.
INDUCTIVE STEP:
Negation: Let ¢ = —.
eV
$ (V is max. consis.)
YeEV
¢ (L H.)
Me,ly 9
$  ( truth defn)
Me,ly = =2.

Similarly we can show the result for other forms of ¢ involving A etc. The interesting

case is the following.
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Belief: Let ¢ = By,

B eV

$ ( M€ construction)

{lw v e W} e B(ly,t)

¢ (I H.)

{lw : M¢,lw = 9} € B(lv, 1)
T (defn of [[¢]])

191 € B(lv,1)

$  (truth defn)

Me ly = By
And thus we have proven Lemma B.2 which in turn proves the completeness

theorem. O

We will find it useful to state the following corollary that follows directly from the

above result
Corollary B4 ||9|| ={lw : M lw E ¢} ={lw : p € W}. O
We also prove the following simple Lemma:

Lemma B.5 For every set S € By(ly) in the canonical model, there is some set

S" € By(ly) such that S O 5" and 5" = ||¢|| for some formula ¢ € G .

Proof (of Lemma B.5): By the construction of the canonical model, if S € B(ly),
then either S is the intension of some formula or it is the superset of some set which

itself is an intension. O

B.2 The canonical structure satisfies CO0 — C3

We need to show that the canonical structure M° defined above indeed satisfies all

the constraints CO0 — C3 that we have imposed on the models.
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e CO: To show that: |[|true|| € B(ly,0).
From axiom AO, - Bgtrue. Since V is a maximal consistent set, Botrue € V.
From the definition of the canonical model it follows that ||true|| € B(ly,0).

e C1: To show that: V¢,VV,{} & B(ly,t) in the structure M°.

Suppose, for some V and ¢, {} € B(lv,t). {} = {lw|false € W}. By the
definition of the structure M¢, This means that B;false € V. By axiom A2,
F —B;false, therefore = B; false € V, since V is a maximal consistent set. This

is a contradiction since V is a maximal consistent set.

Therefore, Vt,VV,{} & B(lv,1).

e C2: To show that: If s; € B(ly,t) and sg D 31, then s; € B(ly,1).
Let s1 € B(ly,t) and s3 D s1. There are two cases:
Case (i)
Set s is not the intension of any formula in G. Whether or not s is an intension,

by Lemma B.5, sy D 51/, where 51’ is an intension, and s;" € B;(ly). Thus, s3 D

s1', and by construction of the canonical model, since s1" € By(ly), s2 € Bi(ly).

Case (ii)
Set sg is itself an intension of some formula . i.e. s; = ||¢||. By Lemma B.5,
$1 2 s1’, where s1’ is an intension of some formula ¢, and s1" = ||¢|] € B:(lv).

Thus, By Corollory B4, {lw : ¢ € W} € By(ly), and by the canonical model

construction, Byp € V.

Since s3 D i, [|¥]| 2 ||¢]]. We claim that - ¢ — . Suppose I/ ¢ — . Then
¢ A -1 is consistent, and there is some maximal consistent set W such that

¢ € W,and ¢ ¢ W. Thus lw € ||¢]|, and lw & |[¢||. But, this contradicts
121 2 1[4]1-
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Thus, F ¢ — . Thus, by R2, + B;¢ — By, Thus By¢p — By € V.. But Byo €
V, and V is a maximal consistent set. Therefore, By¢p € V. It then follows by

Corollary B.4 and the the canonical model construction that sy = ||9|| € B:(Iv).

o C3: To show that: If s1,s9 € B(ly,t), then sy Nsy € B(ly,t+ 1).

By Lemma B.5, there exist sets s;’ and sy’ in By(ly), such that s; O s;/, and
$9 D s, and such that both s’ and sy’ are intensions of some formulas. Then
s1" =|¢|| and s’ = ||9|| for some ¢, € G. By Corollory B.4, and the canonical
model construction,

B;p €V and By € V.

By Axiom A3, Biy1(¢ A ¢) € V. Once again, by Corollary B.4,

¢ A Dl € Bryally).
But ||[¢ A || = 51/ N sa’. Thus 81" N s’ € Bipi(ly). Now, s1 Nsg D 51/ N sy,
and we have just shown that the canonical model satisfies restriction C2. Thus,

S1 N S9 € Bt—}—l(lV)-

This shows that the canonical model indeed satisfies all the constraints that we

have imposed on our models.
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