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ABSTRACT

Title of Thesis: Finding a Temporal Comparison Function for the Metacognitive Loop

Dean Earl Wright III, Doctor of Philosophy, 2011

Dissertation directed by: Dr. Tim Oates, Associate Professor
Department of Computer Science and
Electrical Engineering

The field of Artificial Intelligence has seen steady advances in cognitive systems.

However, many of these systems perform poorly when faced with situations outside of

their training. Since the real world is dynamic, this brittleness is a major problem in the

field today. Adding metacognition to such systems can improve their operation in the face

of perturbations found in dynamic environments.

I developed a six-level taxonomy that divided metacognitive systems according to

their capabilities. This ranged from Level 0: Bereft that offered no metacognitive assis-

tance, to Level 5: Anticipating that would make suggestions before the agent needed assis-

tance. Using this taxonomy, I deconstructed an existing metacognitive system (MCL) so

that it could operate at any of the four lower levels of the taxonomy.

I added, to the Level 3: Temporal version of MCL, a number of comparison functions

designed to determine if the problem the agent is currently facing is similar to any previous

problem. I created functions to both establish baseline operation performance and to try to

optimize the agent’s performance in a perturbed environment.

I extended an existing Mars Rover domain simulation to add more problem and recov-

ery options. In this environment, I tested the temporal comparison functions to determine

how well they were able to distinguish on type of perturbation from another and how much

they helped (or hindered) the agents subjected to those perturbations. Several comparison

functions were able to aid the Rover in completing its tasks, although none were perfect.
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Chapter 1

INTRODUCTION

This chapter starts by describing some of the problems associated with deploying

Artificial Intelligence agents into the world. It then offers Metacognition as a domain-

neutral solution to those problems. A leveled taxonomy for the metacognition support

given to an agent is described. Within this setting, the dissertation’s main claim is made.

Then, a series of research questions are proposed which support and demonstrate the claim.

The chapter ends with an outline of the remainder of the dissertation and a listing of the

contributions of the research.

1.1 AI Agent Problems

The field of Artificial Intelligence has seen steady advances in cognitive systems. AI

has acquitted itself in one area after another: theorem proving, game playing, machine

learning, and more. While advances in computer speeds and memory sizes have certainly

helped, the majority of the achievements have come from new algorithms and experience

in applying them. However, many cognitive systems perform poorly when faced with situ-

ations outside of their training or in a dynamic environment. A robot trained to search out

a dark blue goal may or may not detect a light blue one. A robotic car trained to drive on

American roads will likely be a danger to itself and others if transported to a country with

1
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left-hand driving rules. A switch from an instrument reading in miles to one in kilometers

may doom a spacecraft (Stephenson 1999). Driverless vehicles in the DARPA Grand Chal-

lenge had mechanical failures and wandered into obstacles for which their programming

was not prepared (Hooper 2004).

The transition between laboratory training and successful real-world operation re-

mains a major challenge. To cope with possible future encounters, additional rules and/or

more training can be used, but this increases the cost and lengthens the time between con-

ception and deployment. Alternatively, greater ability can be given to the agent to explore,

learn, and reason about its environment letting it deal with the brittleness problem on its

own (Brachman 2006).

Adding more capabilities to an agent to cope with possible perturbations increases

the complexity of the agent and, except during periods of perturbation,1 may decrease

performance. Adding metacognition to such systems can improve their operation in the

face of such perturbations without sacrificing performance during normal operations. Only

when a problem has been noticed does the problem correction code need to be active.

Metacognition can monitor an agent’s performance and invoke corrective action only when

needed.

1.2 Metacognition

The philosophical origins of metacognition may be traced to the dictum of “know

thyself.” Metacognition is studied as part of developmental and other branches of psy-

chology. While there are several different approaches, one common model is a cognitive

process which is monitored and controlled by a metacognitive process as shown in Fig-

ure 1.1. Metacognition can be studied in conjunction with metaknowledge (knowledge

1A perturbation is an unexpected change in the environment.
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about knowledge) and metamemory (memory about memory) (Cox 2005b). Metacogni-

tion is also referred to as metareasoning (Russell & Wefald 1991).

Cognitive
Process

Metacognitive
Process

Monitor Control

FIG. 1.1. Metacognitive monitoring and control

The canonical depiction of a software agent (Russell & Norvig 1995; Cox & Raja

2011) (Figure 1.2(a)) has sensors to perceive the environment and activators with which

the agent tries to control it. Metacognition can be layered onto a software agent so that

the metacognitive process monitors and controls the cognitive process of the software

agent (Cox & Raja 2007; 2011), as shown in Figure 1.2(b), with metamemory and meta-

knowledge.

Metacognition can improve the performance of the agent in the environment by pro-

viding two control functions. The first is to inform the agent when a cognitive task (e.g.,

the selection of the next action to perform) has been satisfactorily achieved so that the agent

can move on to another task (such as performing the selected action). For some agents, the

test for task completion (or “good enough” performance) is built into the cognitive process

itself. For example, the cognitive task may be limited to selecting (based on a specified
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a b
Environment Environment

Cognitive
Agent

Cognitive
Agent

Sensor
Actuator

Sensor
Actuator

Meta-
cognition

Monitor
Control

FIG. 1.2. Software agent (a) without and (b) with metacognition

estimated utility) from anong a fixed number of choices. In such cases, there is little op-

portunity for metacognitive intervention.

The second metacognitive control function is to reflect on the performance of the

agent. Being able to detect when the agent’s goals are not being achieved is the first step to

being able to improve the agent’s performance (Brachman 2002). Reflection can be done

at the completion of a successful task, but is most often performed after a failure. Rather

than wait for a complete failure, reflection can also be invoked any time an expectation

of performance is not achieved. The reflective metacognitive process evaluates the agent’s

decisions to determine where a change would improve performance. The response may

suggest a change (or repair) to the agent’s current cognitive state such as invoking a learning

module. Repairs can be as simple as just trying again or may require more resources of the

agent to implement. It is the reflective metacognitive control function that will be examined
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in this dissertation.

1.3 Levels of Metacognition

The metacognition layer added to a software agent can be as simple or as complicated

as the designer wishes. I defined a hierarchy to help categorize and gauge the power of

different metacognition systems. This taxonomy focuses on capabilities rather than details

of the implementation. There are six levels (listed in Table 1.1), moving from having no

metacognitive capability to one that attempts to prevent future needs for corrective action.

0–Bereft The agent has no metacognitive system. This is the baseline case. The higher lev-

els have to improve the performance of this agent to justify the addition of metacog-

nition.

1–Instinctive The agent has a metacognitive system that directly maps exceptions to re-

pairs. When there is an exception that triggers metacognition, the response is deter-

mined solely and directly from the exception.

2–Evaluative The agent has a metacognitive system that evaluates the exceptions to deter-

mine the appropriate repairs. The evaluation can be done by any number of methods

(e.g., a neural network) but a Bayesian network will be used in the systems described

here.

3–Temporal The agent has a metacognitive system that evaluates the current exception(s)

as well as any past exceptions and repair attempts to determine the appropriate re-

sponse to be used. My research centers on providing functions that compare the

agent’s current state to previous problem states.

4–Evolving As in the temporal level, the agent’s metacognitive system evaluates the cur-

rent exception(s) as well as any past exceptions and repair attempts when choosing
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the appropriate response. Additionally, the metacognitive system adjusts its evalua-

tion procedure and/or parameters based on the successes and failures of the repairs.

5–Anticipating The agent’s metacognitive system attempts to avoid the precursors of the

conditions that lead to exceptions.

Table 1.1. Levels of Agent Metacognition

Level Name Short Description
0 Bereft No metacognitive component
1 Instinctive Exception dictates response
2 Evaluative Reasoned response
3 Temporal Past events included in reasoning
4 Evolving Reasoning process adjusted by events
5 Anticipating Guides agent to avoid exceptions

For example, suppose that an agent experiences a problem with a GPS sensor when-

ever the agent’s battery is nearly drained and then completely recharged. A level 0 agent

would receive no help in diagnosing and repairing the problem. A level 1 agent would have

a hard-coded response to a problem with the GPS sensor, such as reinitializing the sensor.

A level 2 agent would determine a response based on a rule base, neural network, or other

reasoned approach. It would choose the response that had the highest utility (incorporating

the cost to implement the response and the probability of success). A level 3 agent would

take into account past responses (and their success or failure) to similar problems when

determining the best repair to attempt. A level 4 agent would update its decision process

(rules added/deleted from the rule base, neural connections or activation values changed,

network links altered, etc.) as the result of each exception/response episode. Finally, a

level 5 agent would attempt to have the agent avoid situations which prompted the excep-

tion (e.g., by not letting the battery get nearly depleted or by recharging in stages). In my
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research on temporal comparison functions, I created agents using metacognition levels 0

through 3 (Figure 1.3). Levels 4 and 5 are an area of possible future work (Sections 12.3

and 12.4).

Levels

3 Temporal

2 Evaluative

1 Instinctive

0 Bereft

Domain
Specific

Domain
Neutral

MCL Level 3

MCL Level 2

Motivations
MCL Level 1

Mars Rover
w/Planning

FIG. 1.3. Metacognitive Levels for the Mars Rover agent systems

1.4 Claim

Adding memory of past problems to MCL Level 3: Temporal provides better assis-

tance to the agent than MCL Level 2: Evaluative without such memory when there are
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multiple perturbations. To effectively use the memory of past problems to guide the agent,

MCL has to determine, using a temporal comparison function, which of the previous prob-

lems (if any) are similar to the current problem.

1.5 Questions to be Answered

During the evaluation of temporal comparison functions for a level 3 metacognitive

system, I strived to answer a number of questions:

1. How does one determine that two problems are similar or different?

2. How can knowing if the current problem is the same or different from a previous

problem help an agent?

3. How does this determination alter the agent’s response to the problem?

4. How much does the correct determination help an agent?

5. How much does an incorrect determination hinder an agent?

1.6 Outline of Paper

This section describes the remainder of the dissertation and where each of the research

questions from the last section are answered.

A Q-Learner in a small grid world is used to demonstrate the uses of hard-coded,

domain-specific metacognition in Chapter 2. Agents for the Chippy grid world are defined

for metacognition levels from 0 to 3. Chapter 3 introduces the more interesting Mars Rover

domain with a planning agent that will be used for the remaining chapters. The next chapter

adds an instinctive (level 1) metacognition to the Mars Rover.
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The next three chapters, using my idea of multiple metacognitive levels, deconstruct

and explain a metacognitive system that I helped develop as part of a UMBC/UMCP re-

search team. The Motivated Mars Rover from Chapter 4 will receive assistance from

the Metacognitive Loop (MCL). This will be done at metacognitive Levels 1: Instinctive

(Chapter 5), 2:Evaluative (Chapter 6), and 3: Temporal (Chapter 7).

Chapter 8 describes additional temporal comparison functions that were added to the

existing Level 3: Temporal MCL. That chapter also contains an evaluation of how well

they would likely work in practice.

Chapter 9 describes an experiment that will test the MCL levels and comparison func-

tions. The chapter begins with a review of the Mars Rover simulation and the scenarios

that will be used in the experiments. Each experiment is run using metacognitive levels 0

through 3. The experiments are designed to show if there is an advantage for the agent to

use metacognitive level 3. Running these experiments with multiple temporal comparison

functions shows the effect on the agent’s performance of correctly and incorrectly deciding

if the current exception is related to a previous exception.

Chapter 10 provides details on the performance of the Mars Rover agent using

metacognitive levels 0 through 3. The results show that (a) the performance of the agent

using level 3 metacognition exceeds that of the other agents; (b) the benefit of correctly

determining that the current exception is similar to a previous one; and (c) the penalty for

making an incorrect determination can result in failure.

The remaining chapters describe related work (Chapter 11), future work (Chapter 12)

and final conclusions (Chapter 13).
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1.7 Research Contributions

My research contribution consists of three parts. First is the multi-level metacognition

taxonomy that provides a framework for examining and comparing different metacognition

systems. This allowed me to produce my second contribution: the deconstruction of the

operations of MCL and then the construction of versions of MCL that would operate on

the first four metacognitive levels (0 to 3). As my third contribution, I added, in addition

to the existing temporal comparison in MCL Level 3: Temporal, several new comparison

functions. Some of these functions were designed to establish baseline operational perfor-

mance. Most, however, were developed to improve the performance of a simulated Mars

Rover when faced with multiple perturbations.



Chapter 2

METACOGNITIVE LEVELS AND CHIPPY

This chapter shows how metacognition can be used with software agents. It uses

a Q-Learner in the simple Chippy Grid World. The Q-Learner is augmented with three

different levels of hard-coded, domain-specific metacognition from Level 0: Bereft to Level

3: Temporal.

2.1 The Chippy Grid World

This section examines the Chippy Grid World and a Q-Learning agent for exploring it.

A method for perturbing the world is given that will be used to see how well the Q-Learner

can recover from changes in the reward values. Other learnings such as SARSA (Rummery

& Niranjan 1994; Sutton & Barto 1995) and Prioritized Sweeping (Moore & Atkeson 1993)

could have also been used with Chippy with comparable results.

2.1.1 Q-Learning

Q-Learning (Watkins 1989; Watkins & Dayan 1992) is a reinforcement learning

method that uses the time discounted reward value for each action in each state. Learn-

ing occurs continuously while the agent is operating. For each action of each state the

11
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expected value of taking that action in that state (the Q value) is accumulated using

Q(s, a) = Q(s, a) + α(r + (γ max Q(s, ∗))−Q(s, a)),

where Q(s, a) is the expected value of taking action a in state s, and α is the learning rate

(typically around .5). Higher values place more emphasis on recent rewards while lower

values favor long-term information. r is the reward received from taking action a in state

s. τ is the discount rate for future rewards. Typical values are from .7 to .8. The higher the

value the more future rewards influence the Q value. Usually, Q-learner selects the action

in state s with the highest Q value. But, based on the exploration rate ε, the Q-learner will

select a random action.

2.1.2 Chippy Grid World

The Chippy Grid World (Anderson et al. 2006) is an 8 by 8 square matrix as shown

in Figure 2.1. An agent can move in the four cardinal directions from square to square.

The agent cannot leave the board as any attempt to leave from one of the edge squares just

keeps you in that square. The lower left (R1) and upper right (R2) squares provide rewards

and then transport the agent to the opposite corner. The values of R1 and R2 can be any

of several pairs. In the following example, R1 and R2 are initially 10 and -10. The agent

starts in one of the center squares and continues to move (and occasionally transport) until

the simulation is stopped.

Figure 2.2 shows the policy learned by a Q-Learner in a Chippy Grid World after

1,000 moves. Since only 2 of the 64 squares contain a reward, the Q-Learner makes many

moves (average = 98) before even seeing the first reward so that learning can begin. After

many more moves, a policy (direction) is learned so that most squares will direct the agent

toward the positive reward. Exceptions occur in the upper left and lower right quadrants of
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R2

Start

R2R2

StartStart

R1R1R1

FIG. 2.1. An 8x8 grid world with two rewards

the board, that are rarely traveled to once the diagonal path between R1 and R2 is learned.

The learning rates (α = 0.5, γ = 0.9, ε = 0.05) produce a policy that converges in

about 5000 steps. From that point onward, the agent gets a reward of 10 every 14 steps plus

an occasional exploratory move.

2.1.3 Perturbing the Chippy Grid World

Perturbations are introduced into the Chippy Grid World by changing the values of the

two goal squares (R1 and R2). In the Chippy experiments, the initial values for R1 and R2

are one of (10, -10), (25, 5), (35, 15), (19, 21), (15, 35), or (5, 25). After letting the agent

take 10,000 steps, the values for R1 and R2 are changed to a different pair of values from

one of the following: (-10, 10), (25, 5), (35, 15), (19, 21), (15, 35), or (5, 25). Additionally,

if the initial configuration is (19, 21), then an addition subsequent configuration of (21, 19)

is also tried, giving a total of 22 different combinations as shown in Table 2.1.
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FIG. 2.2. Chippy policy after 1,000 moves for rewards (10,-10)

One advantage of Q-Learning is that it continues to update the policy for each square.

Eventually, it will learn the reverse path to the new location of the positive reward. To be

successful, the addition of metacognition to the agent should help the agent learn the new

policy faster than it does without metacognition.
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FIG. 2.3. Chippy policy after 5,000 moves for rewards (10,-10)

Table 2.1. Chippy Initial and Subsequent Reward Values

Initial Subsequent
(10, -10) (-10, 10) (25, 5) (35, 15) (19, 21) X X
(25, 5) (-10, 10) X (35, 15) (19, 21) X (5, 25)
(35, 15) (-10, 10) (25, 5) X (19, 21) (15, 35) X
(19, 21) (-10, 10) (25, 5) (35, 15) (21, 19) X X
(15, 35) (-10, 10) (25, 5) X (19, 21) X X
(5, 25) (-10, 10) X (35, 15) (19, 21) X X
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2.2 Metacognition for Chippy

Metacognition can be added by the Chippy Q-Learner to help it respond to reward

perturbations. Several different metacognitive agents are described in this section. They

are at several different metacognitive levels but all were hardcoded to work in the Chippy

domain. The agents and thier metacognition levels are shown in Figure 2.4.

Levels

3 Temporal

2 Evaluative

1 Instinctive

0 Bereft

Domain
Specific

Domain
Neutral

3 Strikes

Difference

A: Reset
B: Learn

Q-Learner

FIG. 2.4. Metacognitive Levels for the Chippy demonstration systems
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2.2.1 Interfacing to Metacognition

After each move, the agent invokes the metacognition monitor, passing the location

to which the agent moved, the reward expected, and the reward received. The monitor can

return one of several responses: do nothing, reset the policy, and increase the learning rate.

If the response is do nothing, the agent need not take any action. If the response is reset

the policy, the value for the square/direction policy for all squares and directions is reset to

zero, effectively causing the agent to forget anything it learned. The response of increase

the learning rate means that the epsilon value for the Q-Learner should be increased. This

will allow more off-policy moves. The sensors monitored and the control suggestions are

shown in Figure 2.5.

The monitoring of the sensor and the generation of the control suggestions is hard-

coded and specific to the Chippy domain. A more domain-neutral metacognition system

will be described in the MCL background chapters.

2.2.2 Level 0: Bereft Chippy

Chippy with metacognition level 0 always receives do nothing as the suggestion. This

serves as the base case. Although the implementation does call the metacognition mon-

itor function, it always gets back do nothing and thus acts just like a Q-Learner with no

metacognition.

2.2.3 Level 1: Instinctive Chippy

There are two implementations of Chippy with metacognition 1. In both cases, if

the expected and actual reward for a square are equal (or if this is the first time visiting

the square), the suggestion will be do nothing. The first version (A) returns a suggestion

of reset the policy if the expected and actual rewards are different. Version B returns a
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FIG. 2.5. Chippy agent with metacognition

suggestion of increase the learning rate if the rewards are not equal.

2.2.4 Level 2: Evaluative Chippy

A Chippy Q-Learner with metacognition level 2 will return do nothing if the expected

and actual reward for a square are equal (or if this is the first time visiting the square). When

the expected and actual rewards are different, the magnitude of the difference is determined.

If the difference is small than a suggestion of do nothing is returned. For larger differences

where the reward is less than expected, a suggestion of increase the learning rate is given.

For even larger differences or when the reward has gone from positive to negative, the

suggestion of reset the policy is given.
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2.2.5 Level 3: Temporal Chippy

A Chippy Q-Learner with metacognition level 3 operates like level 2 in that the mag-

nitude of the reward difference is used to determine which response of do nothing, increase

the learning rate or reset the policy is returned. It also includes a counter that tracks the

number of times an unexpected reward has been received and, when it succeeds a preset

threshold (nominally 3), a response of reset the policy is returned and the counter is reset.

The counter of number of times an unexpected reward occurred is the temporal element in

the Chippy level 3 temporal metacognition.

2.3 Chippy Experimental Results

Using the 22 reward pairs given in Table 2.1, 20 experimental runs were done for

each of the five metacognitive agents outlined in the previous section. Table 2.2 shows the

average reward totals for the experiments. Rewards shown in italics indicate an average

reward that is higher than the average reward for the unaided Q-Learner. Rewards shown in

bold are the highest average reward for that reward pair. Thus, for experiment 1, where the

rewards start as (10,-10) and then change to (25,5), the agent using metacognition level 1

that always reset the policy when an exception was detected did the best, but all the agents

using metacognition did better than the agent which used none.

The last line of the table gives two numbers for each of the Chippy agents. The first

number is count of times that the agent had a higher average total reward than the unaided

Q-Learner. The second number is the count of times that the agent had the highest average

total reward. The agent using level 3 (temporal) metacognition had the highest total of

average scores that beat the unaided Q-Learner (14). The metacognitive level 1 agent that

instinctively reset the learner when there was an unexpected reward had the most high

scores (9).
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Experiment Metacognitive Level
Num Begin Final 0 1-Reset 1-Learn 2 3

1 10,-10 25,5 63743 74644 73059 65227 63774
2 10,-10 35,15 101728 120291 110561 100744 103465
3 10,-10 19,21 86853 96776 97116 88047 85545
4 10,-10 -10,10 9893 11058 9223 9653 10045
5 25,5 35,15 187830 182295 187893 187646 187604
6 25,5 19,21 163371 160407 163408 163959 163653
7 25,5 5,25 140128 137917 139433 139657 139396
8 25,5 -10,10 69029 73922 68281 68716 69068
9 35,15 25,5 184943 183851 186434 185474 185755

10 35,15 19,21 209281 206237 209579 209817 209899
11 35,15 15,35 232411 228773 232135 233696 232938
12 35,15 -10,10 114381 120489 113644 114513 114852
13 19,21 25,5 161476 160415 162537 162177 162568
14 19,21 35,15 210198 206124 209781 210084 210221
15 19,21 21,19 186685 184423 186228 186794 186182
16 19,21 -10,10 91907 97821 92128 91619 92179
17 15,35 25,5 185505 183554 185846 185474 185595
18 15,35 19,21 210274 206295 209791 209684 209632
19 15,35 -10,10 115471 120760 113341 114796 114588
20 5,25 35,15 187526 183462 187857 187220 187067
21 5,25 19,21 164027 159418 162980 162970 164058
22 5,25 -10,10 69660 74164 68625 69619 69022

Better / Best 2 / 2 9 / 8 11 / 5 9 / 3 14 / 4

Table 2.2. Average rewards for each Chippy Experiment by Runner

2.4 Chippy Summary

The Chippy Q-Learner was used to demonstrate the use of metacognition to aid an

agent. The metacognition component monitors the actual and expected rewards received

by the Q-Learner and returns one of three suggestions when the expectation that the ac-

tual and expected rewards values are equal was violated. The Q-Learner implements the

metacognition’s suggestion and, hopefully, obtains a higher total rewards then an unaided

Q-Learner.
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Different metacognition components for Chippy were presented at several different

metacognitive levels. They all shared the attribute of being hardcoded and domain-specific

in that they were designed to work only in the Chippy Domain. In upcoming chapters, a

metacognitive component (MCL) will be presented that, while having a domain-specific

portion, uses a domain-independent element in determining the response to an expectation

violation.



Chapter 3

MARS ROVER LEVEL 0: BEREFT

This chapter describes the Mars Rover domain that will be used throughout the re-

maining chapters for examples and experiments, as well as the first of several agents

that operate in the domain. Using a simple STRIPS planner (Fikes & Nilsson 1971;

1994), as was used in the early robot Shakey (Fikes 1971), the agent in this chapter can

develop and execute a plan to fulfill mission objectives given to the agent.

3.1 The Mars Rover Domain

The Mars Rover domain has been used as the experimental test bed by a number of

researchers (Dearden et al. 2004; Estlin et al. 2007). Coddington (2006) describes a sim-

plified Mars Rover Domain. The landscape consists of only eight locations (way-points),

and the Rover can execute just a few commands. However, the domain is rich enough

(especially with a few selected additions) to serve as a test bed for agents equipped with

multiple levels of metacognition. While based on the domain described in Coddington’s

papers, minor changes have been made to resolve inconsistencies, fill in omissions, and

expand the range of experimental scenarios.

22
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3.1.1 The Mars Rover

The agent in the Mars Rover domain is a small multi-wheeled vehicle. Its primary

purpose is to explore a limited portion of the Martian surface taking photographs. It oper-

ates under the direction of a mission specialist on Earth but is equipped with some systems

(e.g., planning) that let it operate somewhat independently.

3.1.2 Sensors

The Mars Rover is equipped with several sensors. These allow the Rover to determine

its present location (1-8), the current battery level, the amount of memory available for pho-

tographs, whether the movement subsystem is localized, and whether the image sensor has

been calibrated. The way-point is changed as the Rover moves from location to location.

Energy is used as the Rover executes commands. Energy is regained by waiting (using so-

lar panels) or by recharging at a recharge station. Memory is used by taking photos with the

Image (I) command or panoramic images with the Panoramic (P) command, and memory

is regained by transmitting the photos stored in memory back to Earth using the T com-

mand. Localization is True if the movement subsystem is localized. The Rover normally

starts in the localized state, but it needs to perform the Localization (L) command after

moving some distance (normally 500). Calibration is True if the Calibration (C) command

has been successfully performed. Calibration returns to False after successfully performing

an Image (I) command. The Rover normally starts with Calibration set to False.

The Rover also has an internal clock that measures elapsed time since the start of

the mission and a distance sensor that records total distance traveled. The total distance

traveled since the last successful Localization is also maintained, as is the time since the

last Image (I) and Panoramic (P) commands. The Zero sensor just provides a reference

point for a zero value. The Speed and Sleeping sensors show the Rover’s current speed
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Table 3.1. The Mars Rover Sensors

Sensor Minimum Maximum Type
Zero 0 0 Integer

Energy 0 100 Integer
Memory 0 30 Integer
Waypoint 1 8 Integer
Calibrated False True Boolean
Localized False True Boolean
Sleeping False True Boolean

Speed 0 2 Integer
TotalDistance 0 none Integer

TotalTime 0 none Integer
LocalDistance 0 none Integer

TimeSincePhoto 0 none Integer
TimeSincePanoramic 0 none Integer

setting (Fast=2, Medium=1, or Slow=0) and indicate whether the Rover is sleeping (True)

or operating (False), respectively. Table 3.1 shows the available sensors.

The units for the sensors are idealized and only the magnitudes are important in the

simulation. The distances could be either in feet or meters. The times are usually thought

of as seconds but could just as easily be minutes.

3.1.3 Actions

There are several actions that the Mars Rover can perform. Each command is listed

with a name, an initial, its purpose, and its pre- and post-conditions. An attempt to execute

a command whose pre-conditions are not met causes an error and a Wait (W) command

is executed instead. The actions in this first section are the same as those described by

Coddingtion (2006).

move (n) Cause the Rover to move to the specified adjacent way-point. The Rover must
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have enough energy to complete the movement. The energy cost to move varies

depending on the distance between the way-points and the speed of the Rover. There

is also a time cost for performing a move command. As with energy cost, the time

cost varies with the distance between the way-points and the speed of the Rover. At

medium speed, the energy cost is 8 or 10, and the time required is 16 or 20 seconds.

An attempt to move to a non-adjacent way-point or without sufficient energy will

cause an error and the Rover will remain in place.

image (I) This action causes the Rover to take a detailed photo image and store it in mem-

ory. Each image takes 5 memory storage units, costs 5 energy units, and takes 20 sec-

onds. In order to successfully take an image, the Rover must have sufficient energy

and memory storage available, be calibrated, and be at one of the three way-points

for imaging (1, 4, and 8).

calibrate (C) In order to take detailed photographic images, the Rover must calibrate its

image sensors. This can only be done at way-point 4. Calibration uses no image

memory and costs only 1 energy unit, but takes 20 seconds to complete.

recharge (R) Restores the Rover’s battery to full charge (recharging can be done at way-

points 1 and 5). The time to complete charging depends on the current level of the

battery.

panoramic (P) Take a panoramic image and store it in memory. Unlike detailed photo-

graphic images taken with the I command, a panoramic image does not need the

Rover to be calibrated and they can be take at all way-points. Like the I command,

the P command has an energy cost of 5 units and uses 5 memory storage units. It

takes longer (30 seconds versus 20) to take a panoramic image as the camera must

rotate 360 degrees.
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transmit (T) Send the photos in memory to Earth. This can only be done at way-points

1 and 2. The energy and time required depends on the amount of memory used

for photo and panoramic images. When the command is complete, all of the image

memory is available for new images.

localize (L) In order to move at normal speed, the Rover must reset its way-point sensor

periodically. Localization can only occur at way-point 3. Executing the L command

requires 5 energy units and takes 20 seconds.

The actions below are additions to the Mars Rover domain that I added to allow for addi-

tional scenarios.

wait (W) This is the zen of actions. The Rover remains in place. The energy level is

increased by one (up to but not beyond the maximum energy level) and it takes five

seconds of elapsed time to complete.

fast (F) Set the Rover’s speed to fast. This increases the energy to move between way-

points but decreases the time required. Fast speed can only be used when localized.

Moving at this speed may clean the wheels of any accumulated dust. It takes three

energy units and two seconds to set the Rover’s speed.

medium (M) Set the Rover’s speed to medium. This is the optimal speed for the Rover as

it uses the least amount of energy. Medium speed can only be used when localized.

After localization, the Rover’s speed is set to medium. It takes three energy units and

two seconds to set the Rover’s speed.

slow (S) Set the Rover speed to slow. This speed uses slightly more energy than medium

and takes twice as long. It is the only speed available when the Rover is not localized.

The speed setting is automatically set to slow if the Rover is not localized. It takes

three energy units and two seconds to set the Rover’s speed.
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Table 3.2. The Mars Rover Actions

Action Code Energy Memory Time
move n varies 0 varies
image I 5 5 20
calibrate C 1 0 20
recharge R to max 0 varies
panoramic P 5 5 30
transmit T varies to max varies
localize L 5 0 20
wait W gain 1 0 5
slow S 3 0 2
medium M 3 0 2
fast F 3 0 2
blow B 20 0 10
diagnose D 20 0 10
sleep Z gains 0 varies

blow (B) Attempt to blow the dust from the Rover’s wheels and from the rotary mount for

the panoramic camera. This action can only be done at way-point 1. It requires 20

energy units and takes 10 seconds.

diagnose (D) Run a sensor diagnostic. This may correct problems with the energy, mem-

ory, distance, way-point or time sensors. If there were problems with multiple sen-

sors, zero, one, or more may be corrected. The D command can be done at any

way-point. It requires 20 energy units and takes 10 seconds.

sleep (Z) Enter sleep mode. The Rover stops all actions and waits for a command from

Mission Control. The battery recharges in sleep mode faster than during a wait (W)

command.

Table 3.2 shows the cost in energy, memory, and time to execute each action.
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Table 3.3. Actions that can only occur at particular locations

Location
Action 1 2 3 4 5 6 7 8
Image X X X
Calibrate X
Recharge X X
Transmit X X
Localize X
Blow X

Certain actions can only take place at specific locations. For example, there are only

two places where the Rover can recharge its batteries. Also, there are only two places

where the Rover can transmit to Earth and empty the photo memory. There are only single

locations for calibrating, localizing, and blowing dust from the Rover. Finally, the detailed

images for science experiments can only be taken at three locations, whereas panoramic

photographs can be taken anywhere. Table 3.3 details which actions can occur at which

way-point locations.

Only slow movement is allowed when the Rover is not localized. Taking an image

requires both available photo memory and that the image sensor be calibrated.

3.1.4 Commands

Mission Control (or the cognitive agent) can direct the Rover to execute one or more

actions using the letter codes from Table 3.2. Movement commands require the number of

the adjacent way-point. The Mars Rover simulator provides a point and click interface for

entering these basic commands. Commands that cannot be executed (not enough energy,

not at the proper way-point) are replaced by the wait (W) command. When the Rover has

no more commands to process, it gives itself the sleep (Z) command and waits for more
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Table 3.4. Base energy costs to move between way-points (elapsed time is twice the
energy cost)

To Way-point
From 1 2 3 4 5 6 7 8

1 8
2 8 10
3 10 10 10 8
4 10
5 10 10 8
6 8
7 10 10
8 8 10

commands to be sent.

3.1.5 The Landscape

The portion of Mars in which the Rover operates consists of eight connected locations

as shown in figure 3.1. The same information is presented in tabular form in table 3.4. The

number between connected way-points in figure 3.1 (and in table 3.4) is the energy cost

to travel between the two way-points when the Rover is running at medium speed and the

wheels are free of dust. The travel time is usually twice the energy cost when the Rover is

running at medium speed. When running at fast speed, the energy cost is doubled but the

travel time is halved. When the Rover is running at slow speed, the travel time is doubled

and it takes an additional 15% energy. Having dust on the wheels may add 15 or 30% to

the travel time.
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Table 3.5. Executing the commands "2354C538I" starting at way-point 1 and time 0

At WP CMD NRG MEM TIME DIST
0 1 2@1 8/92 0/30 16/16 8/8

16 2 3@2 10/82 0/30 20/36 10/18
36 3 5@3 10/72 0/30 20/56 10/28
56 5 4@5 10/62 0/30 20/76 10/38
76 4 C@4 1/61 0/30 20/96 0/38
96 4 5@4 10/51 0/30 20/116 10/48

116 5 3@5 10/41 0/30 20/136 10/58
136 3 8@3 10/31 0/30 20/156 10/68
156 8 I@8 5/26 5/25 20/176 0/68

3.1.6 Commanding the Basic Mars Rover

As a sample of the basic Mars Rover operation, the Rover is instructed to move from

way-point 1 to way-point 4 for calibration and from there to way-point 8 to take a scientific

image. The basic Mars Rover has to be given each instruction to move from each way-point

to the next. The command sequence is "2354C538I". Table 3.5 show the Rover information

at each step in the execution of these commands.

The first two columns have the time and way-point locations before the execution of

the command in the third column. The fourth and fifth columns have the energy and mem-

ory used (or gained) during execution of the command along with the amounts available

after the step. The final two columns have the time required for the command and the

distance traveled (if any) along with accumulating totals.
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FIG. 3.1. Waypoints and connections
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3.2 Mars Domain Perturbations

This section defines several perturbations in the context of software agents and gives

sample perturbations in the Mars Rover domain. The basic Rover is not well equipped to

handle most of the perturbations. The metacognition systems described later in this chapter

and in the next two will enable the Rover to cope with the majority of them.

3.2.1 Perturbations

The agent failures described in the introduction were not caused by a failure of the

designers or in the execution of that design. In all the cases, the agent encountered a

change in the environment that had not been provided for in the agent.

The following are some of the problems that the Rover might encounter in the Mars

Rover domain. This is not an exhaustive list of the things that could happen. A devious

mind with a little time could fill several pages with possible perturbations. Perturbations

used in the experiments for this dissertation are indicated with [Pn] where n is 1 to 9.

3.2.2 Recharging Problems

Loss of recharge station One (or both) of the two recharge points (way-points 1 and 5)

stops functioning. The Rover can attempt to recharge at the way-point, but after 10

time units, the charging ends with no energy restored.

Longer charging time One (or both) of the two recharge points (way-points 1 and 5) start

recharging at a slower rate. It takes twice as long to recharge as normal.

Partial charging [P1] One (or both) of the two recharge points (way-points 1 and 5) only

charges the Rover for 30 energy units before stopping. Each subsequent attempt to

recharge will charge an additional 30 energy units.
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Probabilistic charging [P4] The recharge action (R) only restores the Rover to full ca-

pacity a percentage of the time (75%). The remainder of the time it only partially

recharges the Rover’s battery.

3.2.3 Battery Problems

Reduced capacity [P2] The battery’s energy capacity is reduced to 75 from 100.1 Charg-

ing attempts can only restore the battery to 75 units.

Leakage The battery loses power at the rate of one unit per 10 minutes in addition to the

energy to implement the requested action.

3.2.4 Calibration Problems

Longer calibration time [P3] It takes twice as long to calibrate as expected.

Probabilistic calibration The calibration action (C) only sets calibration to True a per-

centage of the time (75%).

Recharge loses calibration [P5] Recharging the Rover causes it to reset calibration to

False.

3.2.5 Localization Problems

Longer localization time It takes twice as long to localize as expected.

Probabilistic localization The localization action (L) only sets localization to True a per-

centage of the time (90% or 75%).

Recharge loses localization Recharging the Rover causes it to reset localization to False.

1Some of the examples use a Rover with maximum energy of 200.
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3.2.6 Navigation Problems

Path energy change The energy required to travel between two specific way-points

changes.

Path time change [P6] The time required to travel between two specific way-points

changes.

Navigation energy change The energy required to travel between every two connected

way-points changes.

Navigation time change The time required to travel between every two connected way-

points changes.

Path blocked [P7] There is no longer a path between two specific way-points.

Dirty axle Movement takes longer and requires more energy until the axles are cleaned by

running at high speed or blowing them clean.

Speed requirement A specific speed (Fast, Medium, or Slow) is required to move between

two specific way-points.

3.2.7 Imaging Problems

Imaging energy change The energy required to take an image changes (generally more).

Imaging time change The time required to take an image changes (generally longer).

Probabilistic imaging change Some attempts to take an image fail to store the image in

memory. The energy cost is the same for a failing image command as it is for a

successful one.
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3.2.8 Panoramic Problems

Panoramic energy change The energy required to take a panoramic image changes.

Panoramic time change The time required to take a panoramic image changes.

Panoramic imaging change Some attempts to take a panoramic image fail to store the

image in memory. The energy cost is the same for a failing image command as it is

for a successful one.

Dirty panoramic rotator [P8] The camera rotator for the panoramic images gets clogged

with dirt and will not work until blown clean.

3.2.9 Sensor Problems

Noisy sensor [P9] A sensor provides a value +/- a small amount of the true value.

Probabilistic sensor A sensor provides the correct value only some of the time.

Fixed sensor A sensor provides only a single (usually incorrect) value.

3.3 Level 0 Bereft: Planning Agent Without Metacognition

Adding a goal-oriented planner to the basic Mars Rover allows Mission Control to

send higher-level requests to the Rover and have them executed. This section describes the

requests that the Rover can accept, how those requests are translated into actions, and gives

examples of successful and unsuccessful scenarios.

3.3.1 Commands

In addition to the single letter/number commands that the basic Rover knows how to

execute, the level 0 Mars Rover can also accept goals to be performed listed in the first
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column of the STRIPS Table 3.6. Goals that are to be achieved concurrently are separated

by commas. Goals that are to be achieved serially are separated by semi-colons. For

example, "TookImage2,TookImage3;Transmit" would first cause the Rover to generate and

execute a plan that would take images at way-points 4 and 8.2 After that, the Rover would

generate and execute a plan that transmitted the images back to Earth.

Once a plan to satisfy a goal or goals is generated, it is executed step by step until

its completion. As with the basic Rover, commands that cannot be executed (not enough

energy, not at the proper way-point) are replaced by the wait (W) command. When the

Rover has no more commands to process, it gives itself the sleep (Z) command and waits

for more commands to be sent.

The Mars Rover simulator I developed provides a command line and a point-and-click

interface for entering both the basic commands and the STRIPS goals. The command line

interface is the one used to command the Rover for the experiments. The point-and-click

graphic user interface is mainly for demonstrations.

3.3.2 Planner

The Rover uses a ground version of the classic STRIPS (Ghallab, Nau, & Traverso

2004). This planner is sufficient to take goals such as TakeImage1, Calibrate, etc. and turn

them into a sequence of actions that the Rover can execute.

The STRIPS operator table is shown in Figure 3.7. The top half of the table deals

with moving from way-point to way-point across the Martian terrain. The rest of it handles

the location and calibration preconditions for the operations that require them. The final

column in the table, Inverse, is used to keep plan generation from including an operation

and then trying to immediately use the inverse of that operation. For example, this prevents

2Image location 1 is at way-point 1, Image2 is at 4 and Image3 at 8.
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Table 3.6. Goals for the Mars Rover with planning

Goal Description
Scientific Images

TookImage1 Take a photo image at way-point 1
TookImage2 Take a photo image at way-point 4
TookImage3 Take a photo image at way-point 8

Panoramic Images
TookPanoramic1 Take a panoramic image at way-point 1
TookPanoramic2 Take a panoramic image at way-point 2
TookPanoramic3 Take a panoramic image at way-point 3
TookPanoramic4 Take a panoramic image at way-point 4
TookPanoramic5 Take a panoramic image at way-point 5
TookPanoramic6 Take a panoramic image at way-point 6
TookPanoramic7 Take a panoramic image at way-point 7
TookPanoramic8 Take a panoramic image at way-point 8

Navigation
Goto1 Move the Rover to way-point 1
Goto2 Move the Rover to way-point 2
Goto3 Move the Rover to way-point 3
Goto4 Move the Rover to way-point 4
Goto5 Move the Rover to way-point 5
Goto6 Move the Rover to way-point 6
Goto7 Move the Rover to way-point 7
Goto8 Move the Rover to way-point 8

Other
Transmitted Transmit images to Earth
Recharged Recharge the Rover’s battery
Localized Ensure that the Rover is localized
Calibrated Ensure that the Rover is calibrated

Extended
Fast Set movement speed to Fast
Medium Set movement speed to Medium
Slow Set movement speed to Slow
BlowCmplt Blow air to movement and panoramic motors
DiagCmplt Perform a sensor diagnosis
Wait Perform a wait action
Sleep Shutdown the Rover
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trying a plan that has "2@1" directly following "1@2". The loops "8@3,7@8,3@7" and

"7@3,8@7,3@8" are also deleted from any partial or generated plan. These little bits of

heuristics greatly reduce the time to generate a plan that has to move the Rover.

Note that energy, localization, and photo memory constraints are not modeled with this

simple STRIPS plan. Having enough energy is required for all commands except recharge

(R), wait (W), and sleep (Z) but the STRIPS planner doesn’t take this into account. Nor

does the planner ensure that there is enough available photographic memory before adding

a P or I command to the plan. It would be the responsibility of the Mission Controller not

to send goals that generate plans that exceed the capabilities of the Rover. Metacognition

will be offered later in this chapter as an alternate approach to handling the Rover’s limited

resources.

3.3.3 Sample Commands and Plans

If the Rover is at way-point 1, the command "TookImage2,TookImage3" could gen-

erate the plan: "2@1; 3@2; 5@3; 4@5; C@4; I@4; C@4; 5@4; 3@5; 8@3; I@8" if

it chooses to satisfy the "TookImage2" goal first. If the STRIPS planner were to non-

deterministically choose to satisfy "TookImage3" first, the plan would be longer as it would

have to go to way-point 4 for the initial calibration and then return there after taking the

image at way-point 8: "2@1; 3@2; 5@3; 4@5; C@4; 5@4; 3@5; 8@3; I@8; 3@8; 5@3;

4@5; C@4; I@4".

By default, the Rover tries several times to generate a working plan, keeping the short-

est plan generated for execution. While the difference in the two plans above is only two

steps, as more goals are specified, the differences in the best and worst plans generated

grow as well.
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3.3.4 Plan Execution

Having a Mars Rover that can translate goals into a series of commands allows Mis-

sion Control to issue more compact instructions but doesn’t relieve them of ensuring that

the Rover doesn’t exceed its memory or energy constraints. As the Rover is given more

goals, the plans generally get longer and the likelihood of draining the battery or filling

memory increases. This section has the Rover generating and executing plans for grand

photographic and panoramic tours which nearly or do exceed the Rover’s limited resources.

The photographic tours require visiting the three way-points of scientific interest, tak-

ing photographic images there, and transmitting them back to Earth. The Rover is given

the goals in two parts to ensure that the transmission of the images is done after all three

images are taken: "TookPhoto1,TookPhoto2,TookPhoto3;Transmitted". Table 3.8 traces

the Rover’s successful execution of the twenty-one step plan. In taking three photographic

images, the Rover used half of its 30 units of memory. But taking those images ran down

the battery to only 5% (39 units of 200 total). Luckily the Rover had enough power to

complete the photo tour by transmitting the images back to Earth.

The second example for the level 0 Rover has it going to each of the eight way-

points and taking a panoramic image at each. The eight first goals (TookPanoramic1,

TookPanoramic2, TookPanoramic3, TookPanoramic4, TookPanoramic5, TookPanoramic6,

TookPanoramic7, TookPanoramic8) requires an eighteen step plan: P@1; 2@1; P@2;

3@2; 5@3; 4@5; P@4; 5@4; P@5; 6@5; P@6; 5@6; 3@5; P@3; 7@3; P@7; 8@7;

P@8.

The first fifteen actions were executed successfully as shown in Table 3.9. The taking

of the first six panoramic images exhausted the Rover’s image memory and caused it to fail

on the sixteenth step (P@7) with the error: "Insufficient memory: had 0 needed 5". If the

Rover had been outfitted with more memory (40 units instead of 30), it could have taken the
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panoramic image at way-point 7, and traveled to way-point 8 for the final image. But even

with the extra memory, the Rover wouldn’t have enough energy to transmit the panoramic

images back to Earth.

3.3.5 Resource Aware Planning

The Mars Rover operating at MCL level 0 (Bereft) can fail if it is given a string of

commands that tax its limited energy or photograph memory storage. Its only recourse is

to wait and receive further orders from its controllers. A more robust planner that takes

into consideration the energy and memory limitations could generate plans that include

sufficient recharges and transmits. Such resource-aware planners can be found in Ghallab,

Nau, and Traverso (2004). The execution of a plan with additional actions to recharge

the battery and transmit the images as necessary to free photographic memory is shown in

Table 3.10.

3.3.6 Resource Aware Planning with Perturbations

The carefully crafted plan shown in Table 3.10 can fail in a perturbed Martian envi-

ronment. For example, assume that the recharging circuit has been damaged and stops the

recharging cycle prematurely. It will only replenish the battery a maximum of 30 energy

units.3 When such a perturbation is added to the environment, the panoramic tour now fails

as seen in Table 3.11. The plan fails even sooner (Table 3.12) with a perturbation which

limits the capacity of the battery to 75 units instead of the usual 100 energy units.4

3This is perturbation 1 (P1) of the experiments.
4P2 of the experiments.
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3.3.7 Limitations and Improvements

With a planner that doesn’t account for resources, the level 0 Mars Rover agent is

limited to goals that can be quickly achieved before resources (in this case, memory and

energy) are depleted. A more robust planner can overcome this limitation by inserting

actions that replenish the resources. However, these augmented plans can’t handle situa-

tions where the environment is perturbed beyond the environment model that governed the

planning.

The next section will explore adding Instinctive Metacognition to allow the simple

planner used in the Rover to handle the energy and memory resource limitations. The

Instinctive Metacognition is also capable of handling some of the perturbations that cause

purely plan-based (Metacognition level 0) Rovers to fail.
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Table 3.7. The STRIPS table for the Mars Rover
OP Preconditions Add Delete Inverse
1@2 AtWP2 AtWP1,Goto1 AtWP2 2@1
2@1 AtWP1 AtWP2,Goto2 AtWP1 1@2
2@3 AtWP3 AtWP2,Goto2 AtWP3 3@2
3@2 AtWP2 AtWP3,Goto3 AtWP2 2@3
3@5 AtWP5 AtWP3,Goto3 AtWP5 5@3
3@7 AtWP7 AtWP3,Goto3 AtWP7 7@3
3@8 AtWP8 AtWP3,Goto3 AtWP8 8@3
4@5 AtWP5 AtWP4,Goto4 AtWP5 5@4
5@3 AtWP3 AtWP5,Goto5 AtWP3 3@5
5@4 AtWP4 AtWP5,Goto5 AtWP4 4@5
5@6 AtWP6 AtWP5,Goto5 AtWP6 6@5
6@5 AtWP5 AtWP6,Goto6 AtWP5 5@6
7@3 AtWP3 AtWP7,Goto7 AtWP3 3@7
7@8 AtWP8 AtWP7,Goto7 AtWP8 8@7
8@3 AtWP3 AtWP8,Goto8 AtWP3 3@8
8@7 AtWP7 AtWP8,Goto8 AtWP7 7@8
I@1 AtWP1,Calibrated TookImage1 Calibrated
I@4 AtWP4,Calibrated TookImage2 Calibrated
I@8 AtWP8,Calibrated TookImage3 Calibrated
P@1 AtWP1 TookPanoramic1
P@2 AtWP2 TookPanoramic2
P@3 AtWP3 TookPanoramic3
P@4 AtWP4 TookPanoramic4
P@5 AtWP5 TookPanoramic5
P@6 AtWP6 TookPanoramic6
P@7 AtWP7 TookPanoramic7
P@8 AtWP8 TookPanoramic8
R@1 AtWP1 Recharged R@1
R@5 AtWP5 Recharged R@5
T@1 AtWP1 Transmitted T@1
T@2 AtWP2 Transmitted T@2
C@4 AtWP4 Calibrated C@4
L@3 AtWP3 Relocalized L@3
F Fast Slow,Medium
M Medium Fast,Slow
S Slow Fast,Medium
B@1 AtWP1 BlowCmplt
D DiagCmplt
W Wait
Z Sleep
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Table 3.8. Executing the plan for photo tour (TookPhoto1, TookPhoto2, TookPhoto3;
Transmitted)

At WP CMD NRG MEM TIME DIST
Rover with extra energy: 200

0 1 2@1 8/192 0/30 16/16 8/8
16 2 3@2 10/182 0/30 20/36 10/18
36 3 5@3 10/172 0/30 20/56 10/28
56 5 4@5 10/162 0/30 20/76 10/38
76 4 C@4 1/161 0/30 20/96 0/38
96 4 5@4 10/151 0/30 20/116 10/48

116 5 3@5 10/141 0/30 20/136 10/58
136 3 8@3 10/131 0/30 20/156 10/68
156 8 I@8 5/126 5/25 20/176 0/68
176 8 3@8 10/116 0/25 20/196 10/78
196 3 5@3 10/106 0/25 20/216 10/88
216 5 4@5 10/96 0/25 20/236 10/98
236 4 C@4 1/95 0/25 20/256 0/98
256 4 I@4 5/90 5/20 20/276 0/98
276 4 C@4 1/89 0/20 20/296 0/98
296 4 5@4 10/79 0/20 20/316 10/108
316 5 3@5 10/69 0/20 20/336 10/118
336 3 2@3 10/59 0/20 20/356 10/128
356 2 1@2 8/51 0/20 16/372 8/136
372 1 I@1 5/46 5/15 20/392 0/136
392 1 T@1 7/39 +15/30 15/407 0/136
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Table 3.9. Executing (partially) the plan for panoramic tour (TookPanoramic1, Took-
Panoramic2, TookPanoramic3, TookPanoramic4, TookPanoramic5, TookPanoramic6,
TookPanoramic7, TookPanoramic8; Transmitted)

At WP CMD NRG MEM TIME DIST
Rover with extra energy: 200

0 1 P@1 5/195 5/25 30/30 0/0
30 1 2@1 8/187 0/25 16/46 8/8
46 2 P@2 5/182 5/20 30/76 0/8
76 2 3@2 10/172 0/20 20/96 10/18
96 3 5@3 10/162 0/20 20/116 10/28

116 5 4@5 10/152 0/20 20/136 10/38
136 4 P@4 5/147 5/15 30/166 0/38
166 4 5@4 10/137 0/15 20/186 10/48
186 5 P@5 5/132 5/10 30/216 0/48
216 5 6@5 8/124 0/10 16/232 8/56
232 6 P@6 5/119 5/5 30/262 0/56
262 6 5@6 8/111 0/5 16/278 8/64
278 5 3@5 10/101 0/5 20/298 10/74
298 3 P@3 5/96 5/0 30/328 0/74
328 3 7@3 10/86 0/0 20/348 10/84
348 7 P@7 +1/87 0/0 5/353 0/84

Insufficient memory: had 0 needed 5
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Table 3.10. Executing a panoramic tour plan that handles limited memory and energy.

At WP CMD NRG MEM TIME DIST
0 1 P@1 5/95 5/25 30/30 0/0

30 1 2@1 8/87 0/25 16/46 8/8
46 2 P@2 5/82 5/20 30/76 0/8
76 2 3@2 10/72 0/20 20/96 10/18
96 3 5@3 10/62 0/20 20/116 10/28

116 5 4@5 10/52 0/20 20/136 10/38
136 4 P@4 5/47 5/15 30/166 0/38
166 4 5@4 10/37 0/15 20/186 10/48
186 5 P@5 5/32 5/10 30/216 0/48
216 5 6@5 8/24 0/10 16/232 8/56
232 6 P@6 5/19 5/5 30/262 0/56
262 6 5@6 8/11 0/5 16/278 8/64
278 5 R@5 +89/100 0/5 89/367 0/64
367 5 3@5 10/90 0/5 20/387 10/74
387 3 P@3 5/85 5/0 30/417 0/74
417 3 2@3 10/75 0/0 20/437 10/84
437 2 1@2 8/67 0/0 16/453 8/92
453 1 R@1 +33/100 0/0 33/486 0/92
486 1 T@1 15/85 +30/30 30/516 0/92
516 1 2@1 8/77 0/30 16/532 8/100
532 2 3@2 10/67 0/30 20/552 10/110
552 3 8@3 10/57 0/30 20/572 10/120
572 8 P@8 5/52 5/25 30/602 0/120
602 8 7@8 8/44 0/25 16/618 8/128
618 7 P@7 5/39 5/20 30/648 0/128
648 7 3@7 10/29 0/20 20/668 10/138
668 3 2@3 10/19 0/20 20/688 10/148
688 2 T@2 5/14 +10/30 10/698 0/148
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Table 3.11. Execution of a panoramic tour plan that handles limited memory and energy
that cannot handle a damaged recharger which only adds a maximum of 30 energy units.

At WP CMD NRG MEM TIME DIST
0 1 P@1 5/95 5/25 30/30 0/0

30 1 2@1 8/87 0/25 16/46 8/8
46 2 P@2 5/82 5/20 30/76 0/8
76 2 3@2 10/72 0/20 20/96 10/18
96 3 5@3 10/62 0/20 20/116 10/28

116 5 4@5 10/52 0/20 20/136 10/38
136 4 P@4 5/47 5/15 30/166 0/38
166 4 5@4 10/37 0/15 20/186 10/48
186 5 P@5 5/32 5/10 30/216 0/48
216 5 6@5 8/24 0/10 16/232 8/56
232 6 P@6 5/19 5/5 30/262 0/56
262 6 5@6 8/11 0/5 16/278 8/64
278 5 R@5 +30/41 0/5 89/367 0/64
367 5 3@5 10/31 0/5 20/387 10/74
387 3 P@3 5/26 5/0 30/417 0/74
417 3 2@3 10/16 0/0 20/437 10/84
437 2 1@2 8/8 0/0 16/453 8/92
453 1 R@1 +30/38 0/0 92/545 0/92

P1 limits recharging to 30 per attempt
545 1 T@1 15/23 +30/30 30/575 0/92
575 1 2@1 8/15 0/30 16/591 8/100
591 2 3@2 10/5 0/30 20/611 10/110
611 3 8@3 0/5 0/30 0/611 0/110

Insufficient energy: had 5 needed 10
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Table 3.12. Execution of a panoramic tour plan that handles limited memory and energy
that cannot handle a weakened battery which can only store 75 energy units.

At WP CMD NRG MEM TIME DIST
P2 limits battery to maximum of 75

0 1 P@1 5/75 5/25 30/30 0/0
30 1 2@1 8/67 0/25 16/46 8/8
46 2 P@2 5/62 5/20 30/76 0/8
76 2 3@2 10/52 0/20 20/96 10/18
96 3 5@3 10/42 0/20 20/116 10/28

116 5 4@5 10/32 0/20 20/136 10/38
136 4 P@4 5/27 5/15 30/166 0/38
166 4 5@4 10/17 0/15 20/186 10/48
186 5 P@5 5/12 5/10 30/216 0/48
216 5 6@5 8/4 0/10 16/232 8/56
232 6 P@6 0/4 0/10 0/232 0/56

Insufficient energy: had 4 needed 5



Chapter 4

MARS ROVER LEVEL 1: INSTINCTIVE

A hard-coded, instinctive metacognition is added to the Mars Rover presented in the

previous chapter. This will allow the Level 1: Instinctive Mars Rover to operate inde-

pendently and to successfully handle a wider range of problems. The general technique

describe herein can be applied to a variety of domains but each implementation will be

domain-specific.

4.1 Level 1 Instinctive: Planning Agent with Hard-coded Metacognition

Metacognition can be added to the Level 0: Bereft Mars Rover of the last chapter to

overcome the limitations of its simple planning system and to help it deal with perturbations

in the environment. There are multiple ways to accomplish this. One approach would be

to use a state machine and have exceptions cause changes in state. The approach described

in the following pages is both simple to describe and rich enough to show both the gains in

using it and its limitations.

Coddington (2007b; 2007a) describes a Mars Rover that uses metacognition to add

goals to the planner when the sensors cross preset thresholds. Each of these sensor expec-

tations are derived from ascribing motivations to the Rover: the desire to recharge when

energy is low, etc. To handle conflicts between motivations, multiple goal levels are added

48
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to the planner with a plan only being generated for goals at highest non-empty level. The

sensors, thresholds, goals and goal levels are all domain-specific. The next two sections

describe the motivations of the Mars Rover and how they are used.

4.2 Motivations

If the Mars Rover were alive, it would likely have a desire to remain alive.1 For the

Rover, this would translate into a desire to keep its energy level above zero. Actually, the

Rover would like to keep its energy level higher so that it would still have enough energy to

reach a recharge way-point before the energy level was depleted to zero. The Rover would

have the expectation that the energy sensor would always be above 40 or so.2 The value

threshold for this motivation (and for all of the motivations) are domain-specific.

The level 1: Instinctive Mars Rover has six motivations that strive to keep the Rover

recharged, localized, and transmitting information back to Earth. The first one, Conserve

Energy, causes the Rover to seek a recharge point when the battery is getting low. Acquire

Data 1 and Acquire Data 2 have the Rover taking photo and panoramic images. When

the photo memory is getting full, Communicate Image Data has the Rover transmitting

the images back to Earth. The fifth motivation, Relocalize, keeps the Rover localized by

sending the Rover back to the re-localization point after traveling too long. The sixth and

last motivation, Slow Down, switches the Rover into slow speed if it loses localization. This

is done because the Rover can still move at slow speed when not localized. Table 4.1 lists

the motivations.

Each motivation has a test to determine when the associated expectation is violated

and the new goal to be added if it is. If the Rover already has the goal that is to be added,

1Issac Asimov would formulate this motivation as the third rule of robotics.
2If the Rover kept track of the amount of energy needed to reach a recharge point, the expectation value

could be dynamically determined. However, using a constant is simpler and works for the Mars Rover
simulation given here.
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Name Expectation Test Added Goal Goal Level
Conserve Energy energy < 40 Recharged Emergency
Acquire Data 1 time since image > 250 TookImagen Suggestion

n is 1 to 3
Acquire Data 2 time since panoramic > 100 Panoramicn Background

n is 1 to 8
Communicate Image Data memory < 6 Transmitted Immediate

Relocalize distance traveled > 400 Relocalized Immediate
Slow Down ¬localized & speed 6= slow Slow Emergency

Table 4.1. Motivations for the Mars Rover

no additional goal is added.

The tests for distance traveled [since last localization], time since [last] image, and

the time since [last] panoramic can be handled by adding sensors to track these values. Or

the values needed by the expectation tests can be synthesized from monitoring successful

command execution and the distance traveled and mission time. This can either be done in

the Rover, in the metacognition system, or in the communication layer between the two.

For Acquire Data 1 and Acquire Data 2, one of a set of possible goals is randomly

selected. For Acquire Data 1 it will be TookImage1, TookImage2, or TookImage3. The

goal for Acquire Data 2 will be one of Panoramic1 through Panoramic8. If the Rover

already has a TookImagen or Panoramicn goal then an additional one isn’t assigned.

The last column, Goal Level, will be discussed in the next section.

4.3 Goal Hierarchies

Intrinsically, the various motivations of the Mars Rover are in conflict with each other:

• The energy level remains high if no activity is performed.

• The Rover stays localized if it doesn’t move.

• Taking a scientific image or a panoramic photo uses memory.
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Importance Level Name
Highest 0 Emergency

1 Immediate
Middle 2 Command

3 Suggestion
Lowest 4 Background

Table 4.2. Goal Hierarchy for Mars Rover

• The Rover’s motivations can be in conflict with the instructions received from Earth.

These conflicts can become explicit when the Rover has to execute a long-running plan

involving multiple goals.

To resolve these conflicts, the Rover has multiple goal levels. The Rover only gener-

ates a plan using the goals at the highest non-empty level.

The Conserve Energy motivation, which attempts to keep the Rover supplied with

energy, adds its goal, Recharged, at the highest level, Emergency. Also added at the Emer-

gency level is the Slow goal of Slow Down. The motivations for transmitting back to Earth

(Communicate Image Data) and Localization (Relocalize) add their goals at the Immediate

level. Instructions from Earth are placed in the middle Command Goals level. Goals from

the Rover motivations to take detailed photographic images (Acquire Data 1) are added at

the Suggestion level. The Acquire Data 2 adds goals for taking panoramic images at the

lowest, Background level. Such goals will only be used to generate a plan for the Rover if

there are no goals at the four higher levels.

4.4 Instinctive Metacognition Plan Execution

The photographic grand tour (TookPhoto1, TookPhoto2, TookPhoto3; Transmitted) is

executed by the Level 1: Instinctive Rover exactly the same as the Level 0: Bereft Rover.

This is by design in that, unless there is a problem, the agent’s metacognition need not be
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invoked. However, while the Level 0 Rover was unsuccessful in completing the panoramic

tour (see Table 3.9), the Level 1 Rover successfully takes all eight panoramic images and

transmits them to earth.

Table 4.3 shows the execution of the panoramic tour and the addition of new goals

at various levels as the test for different motivations becomes True. The motivated Rover

starts out at the same as the level 0 Rover but after executing 3@8 at time 232, the Acquire

Data 1 motivation adds the TakeImagen (in this case TakeImage1) goal at the Suggestion

level. Since this goal is at a higher (less important) level, the Rover continues with the

Panoramic Tour. After taking a panoramic image at way-point 3, the memory is less than

6, so the Communicate Image Data motivation adds a “Transmitted” goal at the Immediate

level. This goal is at a lower (more important) level than the remaining TakePanoramicn

goals (4, 5, and 6) so the Rover generates and starts executing a plan to move to a transmit

location and execute a T command. After the T@2 command at time 302 satisfies the

Transmitted goal, the Rover resumes the tour, creating a plan to satisfy the remaining goals

at the command level (TookPanoramic4, TookPanoramic5, and TookPanoramic6). The

Rover is ready to take the last panoramic image at way-point 4 at time 479 but the energy

level is less than 40, triggering the Conserve Energy motivation to add a Recharged goal

at the Emergency level. Once recharged, the Rover continues on the tour, taking the last

panoramic image at way-point 4 at time 698. Since all of the goals at the Command level

have been satisfied, the deferred goal of Transmitted is now active. The Rover moves to

way-point 2 and executes the T@2 command at time 788. At this point, the Panoramic

Tour with the deferred Transmit is complete. The Rover goes on to now starts to handle the

Suggestion level goal of TakeImage1 that was added back at time 252. With the maximum

energy set to 100 (much less than is needed to complete a panoramic tour) the instinctive

Rover is still able to complete the tour, needing an additional two recharges.
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Table 4.3. Executing (partially) the plan for panoramic tour (TookPanoramic1, Took-
Panoramic2, TookPanoramic3, TookPanoramic4, TookPanoramic5, TookPanoramic6,
TookPanoramic7, TookPanoramic8; Transmitted)

At WP CMD NRG MEM TIME DIST
Rover with extra energy: 200

0 1 P@1 5/195 5/25 30/30 0/0
30 1 2@1 8/187 0/25 16/46 8/8
46 2 P@2 5/182 5/20 30/76 0/8
76 2 3@2 10/172 0/20 20/96 10/18
96 3 8@3 10/162 0/20 20/116 10/28

116 8 7@8 8/154 0/20 16/132 8/36
132 7 P@7 5/149 5/15 30/162 0/36
162 7 3@7 10/139 0/15 20/182 10/46
182 3 8@3 10/129 0/15 20/202 10/56
202 8 P@8 5/124 5/10 30/232 0/56
232 8 3@8 10/114 0/10 20/252 10/66

Time since last Image > 250, add Sug:TookImagen
252 3 P@3 5/109 5/5 30/282 0/66

Memory < 6, add Imm:Transmitted
282 3 2@3 10/99 0/5 20/302 10/76
302 2 T@2 12/87 +25/30 25/327 0/76

Transmitted, resume panoramic tour
327 2 3@2 10/77 0/30 20/347 10/86
347 3 5@3 10/67 0/30 20/367 10/96
367 5 P@5 5/62 5/25 30/397 0/96
397 5 6@5 8/54 0/25 16/413 8/104
413 6 P@6 5/49 5/20 30/443 0/104
443 6 5@6 8/41 0/20 16/459 8/112
459 5 4@5 10/31 0/20 20/479 10/122

Energy below 40, add Imm:Recharged
479 4 5@4 10/21 0/20 20/499 10/132
499 5 R@5 +179/200 0/20 179/678 0/132

Recharged complete, resume Tour
678 5 4@5 10/190 0/20 20/698 10/142
698 4 P@4 5/185 5/15 30/728 0/142

Panoramic Tour complete, add cmd:Transmitted
728 4 5@4 10/175 0/15 20/748 10/152
748 5 3@5 10/165 0/15 20/768 10/162
768 3 2@3 10/155 0/15 20/788 10/172
788 2 T@2 7/148 +15/30 15/803 0/172

Transmitted complete, continue with TakeImagen ...
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4.5 Instinctive Metacognition with Perturbation

When either perturbation P1 (recharging limited to 30 units) or P2 (battery capacity

limited to 75 units) were added to the environment, the Rover with no metacognitive as-

sistance failed to complete the panoramic tour. This occurred even when a more robust,

resource-cognizant, planner was used. An instinctive Mars Rover equipped with some mo-

tivation rules can complete the tour with the P2 perturbation which reduced the memory

capacity to 75. Several additional recharges are needed and it takes about 20% longer than

with no perturbations, but it does succeed.

The story is not as bright when P1 (partial charging) is introduced into the environ-

ment. The Rover starts out fine, but after the first of three images of the photographic tour,

it finds itself in the position where it does not have sufficient energy to travel to the next

image location before needing to recharge again. A trace of the Rover failure to complete

a photographic tour with the P1 perturbation is shown in Table 4.4.

There are several ways to improve the instinctive Rover’s performance with the P1

perturbation.

• Instead of adding a single Recharge goal, the Conserve Energy motivation could add

two Recharge goals.

• A second Conserve Energy motivation could be added, that adds a Recharge goal, if

you are at a recharge way-point and the energy level is less than 100.

The first one adds a needless recharge action when there is no P1 perturbation but is mostly

harmless. The additional motivation would not hurt in the unperturbed case, would fix the

problem with the P1 perturbation, but would cause the Rover to remain forever at a recharge

way-point if the P2, reduced capacity, perturbation was active.

The cycle of deploy, fail, patch, and re-deploy is a familiar one in computer science
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Table 4.4. Rover with Level 1: Instinctive metacognition failing to execute a photographic
tour with perturbation P1: Partial charging

At WP CMD NRG MEM TIME DIST
0 1 2@1 8/92 0/30 16/16 8/8
16 2 3@2 10/82 0/30 20/36 10/18
36 3 5@3 10/72 0/30 20/56 10/28
56 5 4@5 10/62 0/30 20/76 10/38
76 4 C@4 1/61 0/30 20/96 0/38
96 4 I@4 5/56 5/25 20/116 0/38
116 4 C@4 1/55 0/25 20/136 0/38
136 4 5@4 10/45 0/25 20/156 10/48
156 5 3@5 10/35 0/25 20/176 10/58

Energy below 40, added Recharged goal
176 3 5@3 10/25 0/25 20/196 10/68
196 5 R@5 +30/55 0/25 75/271 0/68

Partial recharge to 55
271 5 3@5 10/45 0/25 20/291 10/78
291 3 8@3 10/35 0/25 20/311 10/88

Needs another recharge
311 8 3@8 10/25 0/25 20/331 10/98
331 3 5@3 10/15 0/25 20/351 10/108
351 5 R@5 +30/45 0/25 85/436 0/108
436 5 3@5 10/35 0/25 20/456 10/118
456 3 5@3 10/25 0/25 20/476 10/128
476 5 R@5 +30/55 0/25 75/551 0/128

In loop recharging and moving but never
moving far enough to take another image
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and robotics. Adding instinctive metacognition to an agent is a small step in improving its

autonomous capabilities; however, it is limited to the pre-programmed responses that the

agent’s designer includes. The next chapter explores a richer form of metacognition that

will, hopefully, enable the agent to function successfully in a broader range of perturbed

environments.



Chapter 5

MCL LEVEL 1: INSTINCTIVE

This is the first of three chapters, that takes my idea of multiple metacognitive levels,

to deconstruct and explain the existing MCL system that I will be modifying in Chapter 8.

The previous chapter described how a Level 1: Instinctive metacognition can be added

to an agent using motivations. Each motivation consisted of an expectation and a repair

to invoke if the expectation was violated. This chapter describes a level 1 metacognition

based on the Metacognitive Loop (MCL) (Schmill et al. 2007). As originally defined, MCL

was operating Level 3: Temporal system. It can be manipulated into operating at several

metacognitive levels. MCL operating at Level 1: Instinctive will be presented here. It will

instinctively suggest that the Rover discard its existing action plan and create a new plan

based on the current conditions. Using MCL at Level 2: Evaluative and Level 3: Temporal

will be presented in the next two chapters, respectively.

5.1 Note, Access and Guide (The NAG Cycle)

MCL consists of three phases that implement its metacognitive knowledge about prob-

lem detection, fault isolation, and corrective action for cognitive agents. These three phases

correspond to the process often used by humans in which we (1) notice that something is

not working, (2) make decisions about it (whether the problem is important, how likely it is

57
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to get worse in the future, if it is fixable, etc.), and then (3) implement a response based on

the decisions that were made (ignore the problem, ask for help, attempt to fix the problem

using trial-and-error, etc.)

MCL Note Phase The MCL process starts with the Note phase that provides the

host system with a “self-awareness” component. MCL monitors the host system to detect

a difference between expectations and observations. An expectation is a statement about

the allowable values for a sensor. Statements such as “the mixing vat temperature will not

exceed 170 degrees” and “the flow in the coolant pipe will be between 80 and 90 gallons

per second” are expectations made about external sensors. An anomaly occurs when an

expectation is violated. Anomalies can also be about internal host processes such as “a

new plan will be generated no more than 5 seconds after a new subgoal has been made the

current subgoal.” When sensor information is at odds with expected values, an anomaly is

noted and MCL moves to the assess phase.

For the Chippy agent, once it found a reward, it would have an expectation that it

would always find a reward with the same value at that square. After the rewards were

switched, the next time the agent reached the old reward square the expectation would be

violated and MCL would then try to assess the problem.

MCL Assess Phase In the Assess state, MCL attempts to determine the cause of the

problem that led to the anomaly and the severity of the problem. The computation done

in this phase need not be excessive. Indeed, it is the philosophy of MCL that lightweight,

efficient problem analysis is better than ignoring the problem, attempting to design out

every conceivable problem, or to attempt to model and monitor large portions of the world.

In a Level 1: Instinctive implementation of MCL, this phase is almost nonexistent with a

direct connection between the exception and the corrective action.
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MCL Guide Phase The third phase of the Metacognitive Loop is Guide, where

MCL attempts to guide the host system back to proper operation by offering a suggestion

as to what action(s) will return the sensor values to within the limits set by the expectations.

The suggestions available in this phase vary depending on the features of the host system.

A Chippy agent with MCL 1 whose reward expectation had been violated would re-

ceive (as in the hard-coded, domain-specific implementation described in Chapter 2) a

predetermined suggestion such as reset the policy.

Once the suggestion has been made, MCL returns to the exception monitoring state.

Any new exceptions will cause MCL to again enter the Note, Assess, and Guide phases of

the NAG cycle.

5.2 Sensors and Observations

MCL does not observe the environment directly but has to rely on the agent to provide

sensor information. The agent does not need to provide all of its sensor information to

MCL. Only those sensors that are tied to expectations actually need to be defined. Even

then, the agent can decided not to provide MCL with all of the observations for the defined

sensors. There is little benefit of withholding information from MCL, and MCL should be

given access to all of the sensor information that the agent has. In this section, the concepts

of sensors and observations as used by MCL are defined.

5.2.1 Sensor Nomenclature

A “sensor” is anything that provides the agent “observations” about the agent or the

environment. MCL allows the agent to define two kinds of sensors. Sensors that are native

to the agent are called “self” sensors. Sensors that describe properties of objects in the

world external to the agent are called “object” sensors. The main difference between these
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two kinds of sensors is that the observations for self sensors are always obtainable but

objects may not always be observable by the agent.

As an example, consider a robot that moves from room to room. A self sensor can

tell the robot which room it is in so that information is always available. But the contents

(objects) of a room, observable while the robot is in the room, are not observable when the

robot leaves the room and enters another room. It is likely that the objects stay in the same

place and retain their size, color, etc., but this can no longer be determined by direct sensor

observation.

Each sensor defined to MCL needs to be given a unique name so that the sensor and

its observations can be uniquely identified.

Sensor Noise Sensors may or may not provide accurate observations for the item

they are monitoring. Often, a certain leeway is allowed. For example, a weight sensor may

only be accurate within two pounds.

Observations At any time, the agent can explicitly report the current observation

for one or more of the sensors. Observations are also provided when closing an expectation

group (defined in the next section) or invoking the NAG cycle using the MCL monitor call.

Explicit legal values or ranges of legal values may be associated with a sensor. If there

is an observation for the sensor outside of the legal values or range (taking any noise profile

into account) an exception is noted for the next monitor/NAG cycle.

5.3 Expectations and Exceptions

MCL only becomes active when there is a deviation between what should be and what

is. “What is” is obtained from the sensor observations. “What should be” is expressed as

expectations about sensor observations. Legal values and ranges for observations are one
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way to express expectations (see previous section).

For purposes of organizing expectations that share common characteristics (e.g., that

are about the same external object) and to control when the expectations are tested for va-

lidity, expectations are assigned to expectation groups. Any number of expectation groups

can be defined, each containing one or more expectations.1 An expectation group can be

related to another group in a parent:child relationship. An expectation group can be main-

tained for the entire life of the agent or created and closed as needed.

There are four types of expectations, based on when the expectation tests are per-

formed.

Effect Checked only when the expectation group is closed normally. An expectation group

can also be “aborted”, which closes it without checking the group’s expectations.

Maintenance Checked when the agent requests that MCL compare the sensor values to

the expectations but not when the expectation’s group is closed.

Delayed Maintenance Like Maintenance, but checking only starts after the specified time

has elapsed, thus defining an expectation that should be true in the future but is not

necessarily true now.

Temporal The exception is triggered if the time specified expires before the expectation’s

group is closed.

Expectation groups are terminated by either abortion or completion. Aborted expecta-

tion groups do not have their expectations checked. Completed expectation groups evaluate

their expectations tests using the latest observations.

1Actually, expectation groups don’t have to contain any expectations but such groups aren’t very interest-
ing or useful.
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When the test in an expectation fails, it causes an exception. If the exception is the

result of a failing maintenance expectation detected in monitor processing, the MCL NAG

cycle is initiated. If the exception is caused by an effect expectation (e.g., one defined with

EC_TAKE_VALUE) failing during the expectation group completion checks, the exception

is held pending until the next monitor processing.

The Chippy agent would set an expectation that the integer value of the “RE-

WARD_1_VALUE” would maintain its value.

5.4 MCL Implementation

The most recent implementation of MCL (MCL2) was developed for Linux in C++

by Matt Schmill and ported to Mac OS X by this author. The MCL Application Program

Interface information (e.g., Tables 5.1 through 5.4) was derived from the C++ code and

the API documentation in (Schmill 2009). MCL2 was designed to support metacognition

level 3, Temporal. Using MCL2 as metacognition level 1, Instinctive required some minor

changes to mask out the higher level MCL2 features.

5.4.1 Sensor Properties

MCL associates three properties with each sensor: data type, class, and noise profile.

Optionally, legal values or ranges can also be specified.

Sensor Data Type MCL uses floating point numbers for the observation values.

Integers and other discrete values will need to be mapped to floating point numbers when

using MCL. The actual sensor format should be defined to MCL using the sensor data

type (PROP_DT) codes given in Table 5.1. All of the Chippy sensors would be defined as

DT_INTEGER as the contain location values (0-63) or reward values.
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Table 5.1. Sensor data types (PROP_DT) and descriptions

Code Value Description
DT_INTEGER 0 Integer values (including negative)
DT_RATIONAL 1 Floating point numbers
DT_BINARY 2 Integer values (always positive)
DT_BITFIELD 3 Multiple values in one number
DT_SYMBOL 4 Discrete values

Explicit legal values or ranges of legal values may be specified for a sensor. The

Chippy reward location sensors could be defined to only have a legal range of 0 to 63. Any

other value would indicate a problem with the agent’s location detection.

Sensor Class How the sensor is used by the agent or the origin of sensor information

can be used in MCL when evaluating exceptions involving the sensors. Table 5.2 lists the

values for the sensor class (PROP_SCLASS) property. The Chippy agent’s reward location

would be defined as SC_SPATIAL and the value sensors as SC_REWARD.

Table 5.2. Sensor classes (PROP_SCLASS) and descriptions

Code Value Description
SC_STATE 0 Agent condition
SC_CONTROL 1 Agent actuator
SC_SPATIAL 2 Location
SC_TEMPORAL 3 Time based
SC_RESOURCE 4 Consumable
SC_REWARD 5 Feedback
SC_AMBIENT 6 Environmental
SC_OBJECTPROP 7 Object property
SC_MESSAGE 8 Message
SC_COUNTER 9 Incrementing value
SC_UNSPEC 10 Unknown / Not specified
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Sensor Noise Sensors may or may not provide accurate observations for the item

they are monitoring. Often, a certain leeway is allowed. For example, a weight sensor may

only be accurate within two pounds. MCL allows associating with each sensor a profile

of how accurate the sensor’s observations will be. Table 5.3 lists the values for the sensor

class (PROP_NOISEPROFILE) property.

Table 5.3. Sensor noise profiles (PROP_NOISEPROFILE)

Code Value Description
MCL_NP_NO_PROFILE 0 No profile specified
MCL_NP_PERFECT 1 No error
MCL_NP_UNIFORM 2 Uniform error
MCL_NP_AUTOMATIC 0xFF Error calculated

Expectations The list of expectation tests is given in Table 5.4.

5.5 Mars Rover Integration

To use MCL2, an agent establishes a connection either through the C++ API or using

the socket/telnet interface. For demonstration purposes, the Mars Rover simulation de-

scribed in the previous chapter invokes MCL2 over a TCP/IP interface.2 An actual Mars

Rover would use the direct C++ interface. The TCP/IP interface is text-based for both the

requests and responses. This section shows the initialization of interface, the definition of

the sensors, creating an expectation, and monitoring expectations.

2The default port number is 5150 (the model number of the original IBM Personal Computer).
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Table 5.4. Expectations Codes and the tests

Maintenance
Code Num Test
EC_STAYUNDER 0 o < v
EC_STAYOVER 1 o > v
EC_MAINTAINVALUE 2 o = v
EC_WITHINNORMAL 3 vmin < o < vmax

Temporal
Code Num Test
EC_REALTIME 4 tclock < v
EC_TICKTIME 5 ttick < v

Effect
Code Num Test
EC_GO_UP 6 oe > o0

EC_GO_DOWN 7 oe < o0

EC_NET_ZERO 8 oe = o0

EC_ANY_CHANGE 9 oe <> o0

EC_NET_RANGE 10 vmin < oe < vmax

EC_TAKE_VALUE 11 oe = v
EC_DONT_CARE 12 none
EC_BE_LEGAL 13 oe ∈ {values}

5.5.1 Initialization

The first few interactions with MCL2, shown in Figure 5.1, establish a name for the

agent (mr), the name of the ontology to be used (DW_MCL_ROVER.ont, Appendix B),

and the directory for configuration files (DW_MCL_ROVER). The ontology is effectively

ignored by the level 1 MCL but the interface requires that one be defined. The discussion

of the ontologies is deferred to section 6.1 in the next chapter.
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send initialize(mr)
recv ok(initialized ’mr’.)
send ontology(mr,DW_MCL_ROVER)
recv ok(ontology for mr set to DW_MCL_ROVER)
send configure(mr,DW_MCL_MARS)
recv ok(configured mr with DW_MCL_MARS.)

FIG. 5.1. Initializing MCL connection specifying ontology and domain

Sensor Default MCL SC Type MinMax Expectation
Zero 0 Counter Yes General

Energy 100 Resource Yes Action
Memory 30 Resource Yes Action
Waypoint 1 Spatial Yes Action
Calibrated 0 State Yes Action
Localized 1 State Yes Action
Sleeping 0 State Yes General

Speed 1 State Yes Action
TotalDistance 0 Counter No Action

TotalTime 0 Counter No Action
LocalDistance 0 Resource No Action

TimeSincePhoto 0 Temporal No General
TimeSincePanoramic 0 Temporal No General

Table 5.5. The Mars Rover Sensors

5.5.2 Defining Sensors

The Rover’s available sensors were described in Section 3.1.2 and are listed in Ta-

ble 5.5. Sensors are defined to MCL by name and given an initial value as shown in

Figure 5.2. Next, the class for each sensor is defined with a setObsPropSelf command

(Figure 5.3). For those sensors that have a minimum and maximum value, a setObsLe-

galRangeSelf command tells MCL to monitor for values outside of the acceptable range

(Figure 5.4). As the last step in defining the sensors, we tell MCL the current (initial)

values using updateOvservables() as shown in Figure 5.5.
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5.5.3 Defining Expectations

The Mars Rover uses two expectation groups. Group 1 is for general expectations

about the Rover that will be true during an entire simulation run. Expectation Group 2 is

used for each action. It is created and completed as each action is performed. Figure 5.6

shows the creation of the two expectation groups.

The definition of the Group 1 expectations is shown in Figure 5.7. There is an ex-

pectation defined that should keep the time between Photographic or Panoramic Images

below 1,000 seconds. In normal operation, the Rover should never go into a sleep state, nor

should the Zero sensor have any value other than 0.

The action expectations are different for each action and the current state of the Rover.

The costs (time, energy, and memory) for the actions are given in tables 3.2 and 3.4. Fig-

ure 5.8 shows the declaration of expectations for the initial 2@1 action. The WayPoint

sensor should change to 2. The Calibration and Localization sensors should maintain their

current values. The action costs 8 energy units so the Energy sensor should drop from

200 to 192. The Memory sensor should not change. The distance moved is 8 and the

time required is 16 so the TotalDistance and TotalTime sensors should become 8 and 16,

respectively. The last expectation is that the Rover’s speed should not change.

5.5.4 Monitoring and Responses

After every action, the Rover interacts with MCL to

1. indicate that the action is done using EGComplete,

2. ask MCL to evaluate the Rover’s situation, and

3. (if needed) respond to any MCL suggestions.
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Figure 5.9 shows the interaction when MCL does not have a suggestion to make. The

sensor values in EGComplete are the same ones for the monitor call. When MCL doesn’t

have anything to suggest it returns an empty response. When MCL detects an expectation

violation, it can return one or more of the concrete suggestions listed in table 6.3 in the next

chapter. The Instinctive Mars Rover will only be getting back a single possible concrete

suggestion, CRC_NOOP. Figure 5.10 shows the interaction when MCL makes a suggestion

which the Rover will use to trigger replanning.

5.5.5 Rover Response to MCL Concrete Suggestions

This section lists the responses that the Rover will make to the MCL’s suggestions.

For this MCL level 1 implementation, only a single NOOP suggestion will be returned to

any and all expectation violations.

CRC_NOOP The Rover deletes the existing queue of planner actions to perform. This

will cause the Rover to invoke the STRIPS planner to create a new plan using the

current goals and sensor values. The Rover always returns “SuggestionImplemented”

to MCL.
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send declareObservableSelf(mr,Zero,0)
recv ok(declared ’Zero’.)
send declareObservableSelf(mr,Energy,200)
recv ok(declared ’Energy’.)
send declareObservableSelf(mr,Memory,30)
recv ok(declared ’Memory’.)
send declareObservableSelf(mr,WayPoint,1)
recv ok(declared ’WayPoint’.)
send declareObservableSelf(mr,Calibrated,0)
recv ok(declared ’Calibrated’.)
send declareObservableSelf(mr,Localized,1)
recv ok(declared ’Localized’.)
send declareObservableSelf(mr,Sleeping,0)
recv ok(declared ’Sleeping’.)
send declareObservableSelf(mr,Speed,1)
recv ok(declared ’Speed’.)
send declareObservableSelf(mr,TotalDistance,0)
recv ok(declared ’TotalDistance’.)
send declareObservableSelf(mr,TotalTime,0)
recv ok(declared ’TotalTime’.)
send declareObservableSelf(mr,LocalDistance,0)
recv ok(declared ’LocalDistance’.)
send declareObservableSelf(mr,TimeSincePhoto,0)
recv ok(declared ’TimeSincePhoto’.)
send declareObservableSelf(mr,TimeSincePanoramic,0)
recv ok(declared ’TimeSincePanoramic’.)

FIG. 5.2. Defining the names and initial values of the Rover’s sensors to MCL
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send setObsPropSelf(mr,Zero,prop_sclass,sc_counter)
recv ok(set prop for ’Zero’.)
send setObsPropSelf(mr,Energy,prop_sclass,sc_resource)
recv ok(set prop for ’Energy’.)
send setObsPropSelf(mr,Memory,prop_sclass,sc_resource)
recv ok(set prop for ’Memory’.)
send setObsPropSelf(mr,WayPoint,prop_sclass,sc_spatial)
recv ok(set prop for ’WayPoint’.)
send setObsPropSelf(mr,Calibrated,prop_sclass,sc_state)
recv ok(set prop for ’Calibrated’.)
send setObsPropSelf(mr,Localized,prop_sclass,sc_state)
recv ok(set prop for ’Localized’.)
send setObsPropSelf(mr,Sleeping,prop_sclass,sc_state)
recv ok(set prop for ’Sleeping’.)
send setObsPropSelf(mr,Speed,prop_sclass,sc_state)
recv ok(set prop for ’Speed’.)
send setObsPropSelf(mr,TotalDistance,prop_sclass,

sc_counter)
recv ok(set prop for ’TotalDistance’.)
send setObsPropSelf(mr,TotalTime,prop_sclass,sc_counter)
recv ok(set prop for ’TotalTime’.)
send setObsPropSelf(mr,LocalDistance,prop_sclass,

sc_resource)
recv ok(set prop for ’LocalDistance’.)
send setObsPropSelf(mr,TimeSincePhoto,prop_sclass,

sc_temporal)
recv ok(set prop for ’TimeSincePhoto’.)
send setObsPropSelf(mr,TimeSincePanoramic,prop_sclass,

sc_temporal)
recv ok(set prop for ’TimeSincePanoramic’.)

FIG. 5.3. Defining the property class of each of the Rover’s sensors to MCL



71

send setObsLegalRangeSelf(mr,Zero,0,0)
recv ok(Added Zero range.)
send setObsLegalRangeSelf(mr,Energy,0,100)
recv ok(Added Energy range.)
send setObsLegalRangeSelf(mr,Memory,0,30)
recv ok(Added Memory range.)
send setObsLegalRangeSelf(mr,WayPoint,1,8)
recv ok(Added WayPoint range.)
send setObsLegalRangeSelf(mr,Calibrated,0,1)
recv ok(Added Calibrated range.)
send setObsLegalRangeSelf(mr,Localized,0,1)
recv ok(Added Localized range.)
send setObsLegalRangeSelf(mr,Sleeping,0,1)
recv ok(Added Sleeping range.)
send setObsLegalRangeSelf(mr,Speed,0,3)
recv ok(Added Speed range.)

FIG. 5.4. Defining the range of legal values of the Rover’s sensors to MCL

send updateObservables(mr,{Zero=0,Energy=200,Memory=30,
WayPoint=1,Calibrated=0,Localized=1,Sleeping=0,Speed=1,
TotalDistance=0,TotalTime=0,LocalDistance=0,
TimeSincePhoto=0,TimeSincePanoramic=0})

recv ok(update success.)

FIG. 5.5. Setting the initial values for the sensors

send declareEG(mr,1)
recv ok(expectation group declared (no parent/ref).)
send declareEG(mr,2,1,NULL)
recv ok(expectation group declared (with parent/ref).

FIG. 5.6. Declaring MCL expectation groups



72

send declareSelfExp(mr,1,TimeSincePhoto,ec_stayunder,1000)
recv ok(self expectation declared (1-arg).)
send declareSelfExp(mr,1,TimeSincePanoramic,

ec_stayunder,1000)
recv ok(self expectation declared (1-arg).)
send declareSelfExp(mr,1,LocalDistance,ec_stayunder,600)
recv ok(self expectation declared (1-arg).)
send declareSelfExp(mr,1,Sleeping,ec_stayunder,1)
recv ok(self expectation declared (1-arg).)
send declareSelfExp(mr,1,Zero,ec_maintainvalue)
recv ok(self expectation declared (0-arg).)

FIG. 5.7. Specifying general expectations to MCL

send declareSelfExp(mr,2,WayPoint,ec_take_value,2)
recv ok(self expectation declared (1-arg).)
send declareSelfExp(mr,2,Calibrated,ec_maintainvalue)
recv ok(self expectation declared (0-arg).)
send declareSelfExp(mr,2,Localized,ec_maintainvalue)
recv ok(self expectation declared (0-arg).)
send declareSelfExp(mr,2,Energy,ec_take_value,192)
recv ok(self expectation declared (1-arg).)
send declareSelfExp(mr,2,Memory,ec_maintainvalue)
recv ok(self expectation declared (0-arg).)
send declareSelfExp(mr,2,TotalTime,ec_take_value,16)
recv ok(self expectation declared (1-arg).)
send declareSelfExp(mr,2,TotalDistance,ec_take_value,8)
recv ok(self expectation declared (1-arg).)
send declareSelfExp(mr,2,Speed,ec_maintainvalue)
recv ok(self expectation declared (0-arg).)

FIG. 5.8. Specifying expectations for 2@1 action
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send EGcomplete(mr,2,{Zero=0,Energy=192,Memory=30,
WayPoint=2,Calibrated=0,Localized=1,Sleeping=0,
Speed=1,TotalDistance=8,TotalTime=16,LocalDistance=8,
TimeSincePhoto=16,TimeSincePanoramic=16})

recv ok(EG 2 Completed.)
send monitor(mr,{Zero=0,Energy=192,Memory=30,
WayPoint=2,Calibrated=0,Localized=1,Sleeping=0,Speed=1,
TotalDistance=8,TotalTime=16,LocalDistance=8,
TimeSincePhoto=16,TimeSincePanoramic=16})

recv ok([])

FIG. 5.9. Action expectation group completion and monitor with no suggestions

send monitor(mr,{Zero=0,Energy=67,Memory=15,
WayPoint=5,Calibrated=1,Localized=1,Sleeping=0,Speed=1,
TotalDistance=184,TotalTime=1045,LocalDistance=184,
TimeSincePhoto=813,TimeSincePanoramic=707})

recv ok([response(type=suggestion,ref=0x00000001,
code=crc_sensor_diag,action=true,abort=true,
text="MCL response = (2,noop,crc_noop)")]

send suggestionImplemented(mr,1)
recv ok(Suggestion 1 Implemented.)

FIG. 5.10. Monitor suggestion to create a new plan (crc_noop) with the Rover responding
that the suggestion was successful.
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5.6 Demonstration with Perturbations

Tables 5.6 and 5.7 show a MCL Level 1 Rover coping with longer than expected

calibration times (P3).

The MCL process starts when the calibration command expectation group is com-

pleted with the Rover sending:

send EGComplete(mr,2,{Zero=0, Energy=61, Memory=30,
WayPoint=4, Calibrated=1, Localized=1, Sleeping=0,
Speed=1, TotalDistance=38, TotalTime=116,
LocalDistance=38, TimeSincePhoto=116,
TimeSincePanoramic=116})

MCL compares the observations given with the expectations for the expectation group.

After a calibration, the Energy decreases by 1, Memory should not increase or decrease,

TotalTime should increase by 20, and Calibration should stay at 1. But since the previous

TotalTime was 76, the new TotalTime should be 96, not 116. This violates the expectation

declared with:

declareSelfExp(mr,2,TotalTime,ec_take_value,96)

The violation is recorded for further processing in the next MCL monitor call. It is

recorded by creating a MCLFrame which contains information about the violation includ-

ing a copy of the MCL Bayes network with the concrete indication of the exception inserted

into the Indications ontology. A new node, provenance:self is linked to the resource and

long-of-target nodes. This linkage was selected because the TotalTime sensor was given

the resource property and the TotalTime value of 116 was larger than the target level 96

specified in the expectation. The probabilities of these three nodes are set to 1.

The Rover completes the action execution cycle by calling the MCL monitor with:
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send monitor(mr,{Zero=0, Energy=61, Memory=30, WayPoint=4,
Calibrated=1, Localized=1, Sleeping=0, Speed=1,
TotalDistance=38, TotalTime=116, LocalDistance=38,
TimeSincePhoto=116, TimeSincePanoramic=116})

MCL will analyze the problem, and provide guidance in the form of the “CRC_NOOP”

suggestion.

For the longer calibration time perturbation (P3), replanning is sufficient to complete

the tour. A MCL Level 1 Rover has less success when the perturbation is reduced recharg-

ing (P1) as shown in Table 5.8 et al..
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At WP CMD NRG MEM TIME DIST
Initial plan of 2354CIC538I354C5321I

0 1 2@1 8/92 0/30 16/16 8/8
16 2 3@2 10/82 0/30 20/36 10/18
36 3 5@3 10/72 0/30 20/56 10/28
56 5 4@5 10/62 0/30 20/76 10/38
76 4 C@4 1/61 0/30 40/116 0/38

Calibration took long
MCL suggests 1:crc_noop

Setting plan to IC538I354C5321I
116 4 I@4 5/56 5/25 20/136 0/38
136 4 C@4 1/55 0/25 40/176 0/38

Calibration took long
MCL suggests 1:crc_noop

Setting plan to 538I354C5321I
176 4 5@4 10/45 0/25 20/196 10/48
196 5 3@5 10/35 0/25 20/216 10/58

Energy below 40, added Recharged goal
Setting plan to 5R

216 3 5@3 10/25 0/25 20/236 10/68
236 5 R@5 +75/100 0/25 75/311 0/68

Recharged, resuming previous goals
Setting plan to 38I354C5321I

311 5 3@5 10/90 0/25 20/331 10/78
331 3 8@3 10/80 0/25 20/351 10/88
351 8 I@8 5/75 5/20 20/371 0/88
371 8 3@8 10/65 0/20 20/391 10/98
391 3 5@3 10/55 0/20 20/411 10/108
411 5 4@5 10/45 0/20 20/431 10/118
431 4 C@4 1/44 0/20 40/471 0/118

Calibration took too long
MCL suggests 1:crc_noop

Setting plan to 5321I
471 4 5@4 10/34 0/20 20/491 10/128

Energy below 40, added Recharged goal
Setting plan to R

491 5 R@5 +66/100 0/20 66/557 0/128
Continued in Table 5.7

Table 5.6. MCL Level 1 Rover executing a photographic tour with perturbation P3 (longer
calibration time) with replanning (Part 1).
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At WP CMD NRG MEM TIME DIST
Recharged, resuming previous goals

Setting plan to 321I
557 5 3@5 10/90 0/20 20/577 10/138
577 3 2@3 10/80 0/20 20/597 10/148
597 2 1@2 8/72 0/20 16/613 8/156
613 1 I@1 5/67 5/15 20/633 0/156

All images taken, adding Transmitted goal
Setting plan to T

633 1 T@1 7/60 +15/30 15/648 0/156
Only remaining goal is TookPanoramic8

Setting plan to 238P
648 1 2@1 8/52 0/30 16/664 8/164
664 2 3@2 10/42 0/30 20/684 10/174
684 3 8@3 10/32 0/30 20/704 10/184

Energy below 40, added Recharged goal
Setting plan to 35R

704 8 3@8 10/22 0/30 20/724 10/194
724 3 5@3 10/12 0/30 20/744 10/204
744 5 R@5 +88/100 0/30 88/832 0/204

Recharged, resuming previous goals
Setting plan to 38P

832 5 3@5 10/90 0/30 20/852 10/214
852 3 8@3 10/80 0/30 20/872 10/224
872 8 P@8 5/75 5/25 30/902 0/224
Completed photographic tour with added panoramic goal

Table 5.7. MCL Level 1 Rover executing a photographic tour with perturbation P3 (longer
calibration time) with replanning (Part 2).
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5.7 Limitations

While an instinctive MCL can handle some problems, there are situations where an in-

stinctive MCL (that can make only a single suggestion) cannot provide adequate assistance

to the host system. Tables 5.8 and 5.9 show a MCL Level 1 Rover attempting to complete

a three photo tour with the reduced recharge (P1) perturbation. Each time the energy level

drops below 40, the Rover adds a Recharged goal. The perturbed R action only adds 30

energy units so the Rover’s energy level is below the 100 energy units specified in the MCL

expectation. MCL always makes the ’NOOP’ suggestion and then the Rover replans. The

Rover is never able to take any of the three photos before getting into a state where it is not

able to accumulate enough energy to move to the next photographic location.
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Table 5.8. MCL Level 1: Instinctive Rover executing a photographic tour with
perturbation P1: Partial recharge with replanning (Part 1).

At WP CMD NRG MEM TIME DIST
Setting initial plan to 2354C538I354CIC5321I

0 1 2@1 8/92 0/30 16/16 8/8
16 2 3@2 10/82 0/30 20/36 10/18
36 3 5@3 10/72 0/30 20/56 10/28
56 5 4@5 10/62 0/30 20/76 10/38
76 4 C@4 1/61 0/30 20/96 0/38
96 4 5@4 10/51 0/30 20/116 10/48

116 5 3@5 10/41 0/30 20/136 10/58
136 3 8@3 10/31 0/30 20/156 10/68

Energy below 40, added Recharged goal
Setting plan to 35R

156 8 3@8 10/21 0/30 20/176 10/78
176 3 5@3 10/11 0/30 20/196 10/88
196 5 R@5 +30/41 0/30 89/285 0/88

Recharge only added 30 units
MCL suggests 1:crc_noop

New plan is 38I354CIC5321I
285 5 3@5 10/31 0/30 20/305 10/98

Energy below 40, added Recharged goal
Setting plan to 5R

305 3 5@3 10/21 0/30 20/325 10/108
325 5 R@5 +30/51 0/30 79/404 0/108

Recharge only added 30 units
MCL suggests 1:crc_noop

Setting plan to 38I354CIC5321I
404 5 3@5 10/41 0/30 20/424 10/118
424 3 8@3 10/31 0/30 20/444 10/128

Energy below 40, added Recharged goal
Setting plan to 35R

444 8 3@8 10/21 0/30 20/464 10/138
464 3 5@3 10/11 0/30 20/484 10/148
484 5 R@5 +30/41 0/30 89/573 0/148

Continued in Table 5.9
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Table 5.9. MCL Level 1: Instinctive Rover executing a photographic tour with
perturbation P1: Partial recharge with replanning (Part 2).

At WP CMD NRG MEM TIME DIST
Recharge only added 30 units

MCL suggests 1:crc_noop
Setting plan to 38I354CIC5321I

573 5 3@5 10/31 0/30 20/593 10/158
Energy below 40, added Recharged goal

Setting plan to 5R
593 3 5@3 10/21 0/30 20/613 10/168
613 5 R@5 +30/51 0/30 79/692 0/168

Recharge only added 30 units
MCL suggests 1:crc_noop

Setting plan to 38I354CIC5321I
692 5 3@5 10/41 0/30 20/712 10/178
712 3 8@3 10/31 0/30 20/732 10/188

Energy below 40, added Recharged goal
Setting plan to 35R

732 8 3@8 10/21 0/30 20/752 10/198
752 3 5@3 10/11 0/30 20/772 10/208
772 5 R@5 +30/41 0/30 89/861 0/208

Recharge only added 30 units
MCL suggests 1:crc_noop

Setting plan to 38I354CIC5321I
861 5 3@5 10/31 0/30 20/881 10/218

Energy below 40, added Recharged goal
Setting plan to 5R

881 3 5@3 10/21 0/30 20/901 10/228
901 5 R@5 +30/51 0/30 79/980 0/228

Recharge only added 30 units
MCL suggests 1:crc_noop

Setting plan to 38I354CIC5321I
980 5 3@5 10/41 0/30 20/1000 10/238

1000 3 8@3 10/31 0/30 20/1020 10/248
Energy below 40, added Recharged goal

Setting plan to 35R
And so on and so on and so on ...



Chapter 6

MCL LEVEL 2: EVALUATIVE

This is the second of three chapters, that takes my idea of multiple metacognitive lev-

els, to deconstruct and explain the existing MCL system that I will be modifying in Chap-

ter 8. This chapter describes the Level 2: Evaluative version of MCL, that uses Bayesian

inference when analyzing the reasoning for an expectation failure and the appropriate sug-

gestion to make.

6.1 Ontologies (Indication, Failure, and Response)

For MCL to serve as a general-purpose tool for the brittleness problem for cognitive

systems, it should be able to perform its Note, Assess, and Guide phases without needing

extensive tailoring for each domain (Schmill et al. 2008; 2011). MCL should be able to

reason using mainly abstract, domain-neutral concepts to determine why a system is failing

and how to cope with the problem. To support this, three ontologies were created. Each of

the three ontologies is used by a different phase of MCL (see Table 6.1).

The Indications ontology is used in the Note phase when sensor input shows that an

expectation has been violated. The Assess phase uses the Failure ontology to determine

likely causes of the violated expectations. Once likely causes of the failure have been

identified, the Guide phase uses the Response ontology to determine appropriate response

81
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to the failure.

Table 6.1. Ontologies used with NAG cycle

Phase Ontology
Note Indications

Assess Failure
Guide Response

Elements within each ontology are linked to others in the ontology to show an “is-a”

relationship. For example, the “sensor not responding” node in the Failure ontology is con-

nected to the “sensor failure” node to show that “sensor not responding” is a type of “sensor

failure.” Elements in one ontology may also be linked to elements in a different ontology

to show a possible “cause-and-effect” or “problem-solution” relationship. The general pat-

tern of ontology linkage is shown in Figure 6.1. This figure also shows how expectations

are linked to the Indications ontology elements and the elements of the Response ontology

lead to suggestions that MCL gives to the host system.

The sensors and expectations are part of the “concrete” realm of the host system.

Processing by MCL moves from the concrete expectations to the Indications, Failure, and

Response ontologies, and then back to the concrete suggestions implemented by the host

system. Figure 6.1 shows the division between the concrete and abstract processing. The

next sections expand on this process, going into each of the three ontologies in greater

detail.

6.1.1 Indications

The Indications ontology is comprised of three types of nodes (core, sensor, and di-

vergence) arranged in concrete and abstract sections. The purely abstract Indication nodes
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FIG. 6.1. Ontological Linkages

support concepts that cross multiple domains. These make up the core of the Indications

ontology. These nodes represent concepts such as “deadline missed,” “failed to change

state” and “reward not received.”

The sensor nodes of the Indications ontology model the sensors of the host system and

their attributes. When the sensors of the host system are defined, sensor nodes are added to

the Indications ontology.

The third set of nodes in the Indications ontology forms a linkage from the concrete

sensor and expectations nodes and the abstract, core nodes of the ontology. The divergence

nodes define how expectations has been violated. This part of the Indications ontology is

show in Figure 6.2.

It is the violation of expectations that starts the MCL NAG cycle. The type of violation

and the type of sensor are linked together to a core indications ontology node. Table 6.2

shows sensor and divergence nodes linked to core nodes.
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Table 6.2. Sensor, Divergence and Core Node Indications Ontology Linkages

Core Node Sensor Divergence Node
Deadline missed temporal late
Reward not received reward under
Resource overflow resource over
Resource deficit resource under
Failed state change state missed-unchanged
Unanticipated state change state aberration
Asserted control unchanged control missed-unchanged

6.1.2 Failure

Once the violated expectations have been evaluated in the Note phase, MCL proceeds

to evaluate the problem indications to determine the cause in the Assess phase. The Failure

ontology is used in the problem determination. This phase is used (rather than mapping

indications directly to responses) because of the ambiguous nature of failures and their in-

dications: two different failures which need different responses might have the same initial

problem indications and a single problem might manifest itself with multiple indications.

The Failure ontology (Figure 6.3) is a catalog of the various problems that befall cog-

nitive systems. This includes problems with sensors, effectors, resources, and the domain

model (or models). The links in the Failure ontology are all of the is-a variety. Thus a “Sen-

sor Malfunction” is-a “Sensor Error” is-a “Knowledge Error” is-a “Failure”. The “Failure”

node is the root of the Failure ontology and all Failure ontology nodes eventually lead to it.

6.1.3 Response

As the Failure ontology was an itemized list of everything that can go wrong with a

cognitive system, the Response ontology (Figure 6.4) is a list of everything that can be done

about it. There are two types of nodes in the Response ontology: abstract and concrete.
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The abstract nodes represent general problem-solving techniques and the concrete nodes

represent specific suggestions that MCL can send to the host system. The links within

the response ontology are for “is-a” relationships. For example, “Strategic Change” is-

a “System Response” is-a “Internal Response” which is-a “Response.” The “Response”

node is the root of the Response ontology.

6.1.4 Inter-ontology linkages

The three ontologies (Indications, Failure, and Response) are connected by inter-

ontology links. Core nodes in the Indications ontology connect to nodes in the Failure

ontology. Many nodes of the Failure ontology are connected to nodes in the Response

ontology. The linkages form a chain of reasoning from the violated expectation to a sug-

gestion that may correct the problem.

Figure 6.5 shows such a path through the ontology linkages that Chippy Q-learner

faced when it returned to what had been the positive reward square and received a negative

reward instead. Note that this is a very simplified diagram with most of the nodes and links

removed. When the Q-learner moves to the grid square that no longer contains the ex-

pected reward, the maintenance expectation of getting the reward in that square is violated.

This activates the “Reward not received” node in the Indications ontology. That node is

connected (via an inter-ontology link) to the “Model error” node of the Failure ontology.

The “Model error” node has two children, “Procedure model error” and “Predictive model

error” that are connected with intra-ontology links. The “Predictive model error” node has

an inter-ontology link to the “Modify predictive response” node of the Response ontology.

The “Modify predictive response” has a child node of “Rebuild model response” that is a

concrete node for generating the “Rebuild model” suggestion. This set of inter- and intra-

ontology linkages allows reasoning from the failed expectation of obtaining a reward to

rebuilding of the Chippy agent’s Q-table.
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FIG. 6.5. Example Ontology Connections
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6.2 Bayesian Conditional Probability Tables

For each problem indication, MCL needs to be able to determine the most likely cause

or causes of the failure. For each failure, the responses that are the most likely to correct the

failure need to be selected. Thus, given the sensors and the violated expectations, MCL will

try to find the responses with the highest probability of working. Actually, MCL should find

the response with the highest utility. For this discussion, all the costs will be the same, so

the response with the highest probability will also be the response with the highest utility.

The three ontologies and their inter-ontology linkages (which form a directed graph) can

be viewed as a Bayes net. Direct observation can be made of the sensors. By associating

conditional probability tables (CPTs) with each node in the three ontologies, MCL can use

Bayesian inference to compute the needed probabilities for the responses. Figure 6.6 shows

the addition of CPTs to a small section of the Response ontology.

6.3 MCL Implementation

This section adds to the agent developer’s view of MCL2 that was started in

Section 5.4. The Bayesian inference for MCL was initially implemented using the

Intel-contributed open source Probabilistic Network Library (PNL).1 MCL2 uses Smile2

(Druzdzel 1999) from the Decision Systems Laboratory at the University of Pittsburgh.

Smile is supported on Mac OS X computers, which allowed the port of MCL2 to that

platform.

Ontology Definitions The three ontologies (Indications, Failure, and Response) and

the linkages between them are defined in one or more text files using a declarative language.

1http://www.sourceforge.net/projects/openpnl
2http://genie.sis.pitt.edu/wiki/SMILE_Documentation



91

FIG. 6.6. Conditional probability tables for portion of MCL Response ontology

See Listing 6.1 for a short sample and Appendix B for a complete ontology.

Listing 6.1. Portion of MCL Failure Ontology
o n t o l og y f a i l u r e s (

node f a i l u r e ( name= f a i l u r e ,
doc=" t h e c l a s s o f a l l f a i l u r e s . " )

node f a i l u r e ( name= knowledgeEr ro r ,
doc=" c l a s s o f f a i l u r e s p e r t a i n i n g t o i n t e r n a l ↘

knowledge and r e p r e s e n t a t i o n s . " )

node f a i l u r e ( name= p l a n t E r r o r ,
doc=" c l a s s o f f a i l u r e s p e r t a i n i n g t o t h e p h y s i c a l↘

a g e n t . " )
)

l i n k a g e a l l (
l i n k a b s t r a c t i o n ( s r c = knowledgeEr ro r , d s t = f a i l u r e )
l i n k a b s t r a c t i o n ( s r c = p l a n t E r r o r , d s t = f a i l u r e )
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Suggestions MCL assigns a Concrete Response Code for all suggestions that it re-

turns. The codes are listed in Table 6.3 below. The repairs that an agent initiates (if any)

upon receiving one of these codes in the monitor response from MCL depends on the agent.

The responses made by the Mars Rover are discussed in the next section.

Table 6.3. MCL Concrete Responses Code

Concrete Response Code Concrete Node Abstract Node
CRC_SOLICIT_HELP Solicit suggestion Ask for help
CRC_RELINQUISH_CONTROL Relinquish control Ask for help
CRC_SENSOR_DIAG Run sensor diagnostic Run diagnostic
CRC_EFFECTOR_DIAG Run effector diagnostic Run diagnostic
CRC_SENSOR_DIAG Activate Learning Modify Predictive Model
CRC_EFFECTOR_RESET Rebuild Models Modify Predictive Model
CRC_ACTIVATE_LEARNING Adjust Parameters Modify Procedure Model
CRC_REVISIT_ASSUMPTIONS Revisit Assumptions Modify Procedure Model
CRC_REVISE_EXPECTATIONS Revise Expectations Modify Avoid
CRC_ALG_SWAP Algorithm Swap Strategic Change
CRC_CHANGE_HLC Change HLC Strategic Change
CRC_TRY_AGAIN Try Again System

6.4 Mars Rover Integration

This section describes additions to the integration of MCL with the Mars Rover be-

yond what was described for the MCL Level 1: Instinctive in Section 5.5. The initialization

of MCL, the definition of the sensors and expectations, and the monitor interface remain

the same. The only change to the Rover is to handle the longer list of possible concrete

responses shown in the table below.

CRC_IGNORE The Rover will immediately return “SuggestionIgnored.” This is an in-

ternal MCL2 code that should never be suggested to an agent.
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CRC_NOOP The Rover deletes the existing queue of planner actions to perform. This

will cause the Rover to invoke the STRIPS planner to create a new plan using the

current goals and sensor values. The Rover always returns “SuggestionImplemented”

to MCL.

CRC_TRY_AGAIN The Rover will repeat the last action and then send “Suggestion-

Implemented.” If the Rover cannot repeat the action (for example, it doesn’t have

enough energy), it will send “SuggestionIgnored.”

CRC_SOLICIT_HELP The Rover will add a “Sleep” goal to await instructions from

ground control. Other agents might ask for human assistance or from another

metacognitive resource.

CRC_RELINQUISH_CONTROL As with CRC_SOLICIT_HELP, the Rover will add a

“Sleep” goal to await instructions from ground control. For other agents, this sug-

gestion may result in releasing the auto-pilot so that a human can take over.

CRC_SENSOR_DIAG The Rover will add a “DiagCmplt” goal (to execute a Diagnos-

tic(D) command) at the immediate level. It will respond with “Suggestion Imple-

mented” when the goal is achieved regardless of the initial or final state of the sen-

sors. The Rover’s sensor diagnostic action is more like a sensor reset as it tries to

restore the sensors to the factory-calibrated state rather than providing a report of the

operating state of the sensors.

CRC_EFFECTOR_DIAG The Rover will add a “BlowCmplt” goal (to execute a Blow

(B) command) at the immediate level. It will respond with “Suggestion Imple-

mented” when the goal is achieved regardless of the initial or final state of the motors.

The Rover’s blow action is more like an effector reset as it tries to clean the motors
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so that they can work correctly rather than providing a report of the operating state

of the motors.

CRC_SENSOR_RESET The Rover will add a “DiagCmplt” goal (to execute a Diag-

nostic (D) command) at the immediate level. It will respond with “Suggestion Im-

plemented” when the goal is achieved regardless of the initial or final state of the

sensors.

CRC_EFFECTOR_RESET The Rover will add a “BlowCmplt” goal (to execute a Blow

(B) command) at the immediate level. It will respond with “Suggestion Imple-

mented” when the goal is achieved regardless of the initial or final state of the motors.

CRC_ACTIVATE_LEARNING The Rover is currently returning “SuggestionIgnored”

as it does not have a learning subsystem.

CRC_ADJ_PARAMS As the Rover does for CRC_ACTIVATE_LEARNING, it will re-

turn “SuggestionIgnored” as the agent has no learning subsystem.

CRC_REBUILD_MODELS Depending on the last action the Rover performed, it would

adjust the STRIPS action table or the action cost table and return “SuggestionImple-

mented.” If changing the tables is not possible (e.g., they had already been changed),

the Rover would ignore the suggestion and return “SuggestionIgnored.”

CRC_REVISIT_ASSUMPTIONS The Rover returns “SuggestionIgnored.”

CRC_AMEND_CONTROLLER The Rover returns “SuggestionIgnored.”

CRC_REVISE_EXPECTATIONS The Rover returns “SuggestionIgnored.”

CRC_ALG_SWAP The Rover returns “SuggestionIgnored.”
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CRC_CHANGE_HLC The Rover returns “SuggestionIgnored.” As the Rover only has a

single High Level Controller (Motivations) there is no other HLC to change to.

CRC_RESCUE As with CRC_RELINQUISH_CONTROL and others, the Rover will add

a “Sleep” goal to await instructions from ground control. Other agents could use this

suggestion to completly start over.

CRC_GIVE_UP If MCL offers this suggestion, it is because MCL has determined that

no other suggestion could possibly provide any assistance and that the best course of

action at this point is to admit defeat. The Rover will just add a “Sleep” goal to await

instructions from Mission Control.

6.5 Demonstration with Perturbations

Section 4.5 has a trace (Table 4.4) of the Motivated Mars Rover attempting to do a

Photo Tour but failing when the recharge action only partially recharges the Rover (Per-

turbation P1). Also unable to complete a Photo Tour was the Rover with MCL Level 1:

Instinctive that always suggested replanning (NOOP) when there was an expectation vi-

olation. The addition of an Evaluative MCL to the Rover allows it to recover from this

problem. In this case, the MCL response of TRY AGAIN is sufficient for the Rover to

complete the tour, as shown in Tables 6.4 and 6.5.
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Table 6.4. MCL Rover able to execute a photographic tour with perturbation P1: Partial
charging by retrying the recharge action. (Part 1)

At WP CMD NRG MEM TIME DIST
0 1 2@1 8/92 0/30 16/16 8/8

16 2 3@2 10/82 0/30 20/36 10/18
36 3 5@3 10/72 0/30 20/56 10/28
56 5 4@5 10/62 0/30 20/76 10/38
76 4 C@4 1/61 0/30 20/96 0/38
96 4 5@4 10/51 0/30 20/116 10/48

116 5 3@5 10/41 0/30 20/136 10/58
136 3 8@3 10/31 0/30 20/156 10/68

Energy below 40, added Recharged goal
156 8 3@8 10/21 0/30 20/176 10/78
176 3 5@3 10/11 0/30 20/196 10/88
196 5 R@5 +30/41 0/30 89/285 0/88

Partial recharge to 41
MCL suggests crc_try_again

285 5 R@5 +30/71 0/30 59/344 0/88
344 5 3@5 10/61 0/30 20/364 10/98
364 3 8@3 10/51 0/30 20/384 10/108
384 8 I@8 5/46 5/25 20/404 0/108
404 8 3@8 10/36 0/25 20/424 10/118

Energy below 40 again
424 3 5@3 10/26 0/25 20/444 10/128
444 5 R@5 +30/56 0/25 74/518 0/128

Partial recharge to 56
MCL suggests crc_try_again

518 5 R@5 +30/86 0/25 44/562 0/128
562 5 4@5 10/76 0/25 20/582 10/138
582 4 C@4 1/75 0/25 20/602 0/138
602 4 I@4 5/70 5/20 20/622 0/138

Only one photo left to go
Continued in Part 2
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Table 6.5. MCL Rover able to execute a photographic tour with perturbation P1: Partial
charging by retrying the recharge action. (Part 2)

At WP CMD NRG MEM TIME DIST
Continuing with only one photo to go

622 4 C@4 1/69 0/20 20/642 0/138
642 4 5@4 10/59 0/20 20/662 10/148
662 5 3@5 10/49 0/20 20/682 10/158
682 3 2@3 10/39 0/20 20/702 10/168

Energy below 40 once again
702 2 1@2 8/31 0/20 16/718 8/176
718 1 R@1 +30/61 0/20 69/787 0/176

Partial recharge to 61
MCL suggests crc_try_again

787 1 R@1 +30/91 0/20 39/826 0/176
826 1 I@1 5/86 5/15 20/846 0/176
846 1 T@1 7/79 +15/30 15/861 0/176

The Transmission completes the photographic tour.
Finishing up with goal of TookPanoramic6

861 1 2@1 8/71 0/30 16/877 8/184
877 2 3@2 10/61 0/30 20/897 10/194
897 3 5@3 10/51 0/30 20/917 10/204
917 5 6@5 8/43 0/30 16/933 8/212
933 6 P@6 5/38 5/25 30/963 0/212

Photographic tour and added goals complete
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The MCL process starts when the R command expectation group is completed with

the Rover sending:

send EGcomplete(mr,2,{Zero=0, Energy=41, Memory=30,
WayPoint=5,Calibrated=1, Localized=1, Sleeping=0,
Speed=1, TotalDistance=88, TotalTime=285,
LocalDistance=88, TimeSincePhoto=285,
TimeSincePanoramic=285})

MCL compares the observations given with the expectations for the expectation group.

After a recharge, the energy should be at the maximum but the energy level has climbed

only to 41. This violates the expectation declared with:

declareSelfExp(mr,2,Energy,ec_take_value,100)

The violation is recorded and held pending until the next MCL monitor call. It is

recorded by creating a MCLFrame that contains information about the violation including

a copy of the MCL Bayes network with the concrete indication of the exception inserted

into the Indications ontology. A new node, provenance:self, is linked to the resource and

short-of-target nodes. This linkage was selected because the Energy sensor was given the

resource property and the Energy level of 41 fell short of the target level 100 specified in

the expectation. The probabilities of these three nodes are set to 1.

The Rover completes the action execution cycle by calling MCL monitor with:

send monitor(mr,{Zero=0, Energy=41, Memory=30, WayPoint=5,
Calibrated=1, Localized=1, Sleeping=0, Speed=1,
TotalDistance=88, TotalTime=285, LocalDistance=88,
TimeSincePhoto=285, TimeSincePanoramic=285})

MCL will analyze the problem, and provide guidance in the form of the “CRC_TRY_AGAIN”

suggestion.
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At WP CMD NRG MEM TIME DIST
1091 5 3@5 10/64 0/25 20/1111 10/254
1111 3 7@3 10/54 0/25 20/1131 10/264
1131 7 P@7 5/49 5/20 30/1161 0/264

The Rover completed one panoramic tour
and is starting the next but this time

the path between nodes 3 and 8 is blocked.
1161 7 3@7 10/39 0/20 20/1181 10/274
1181 3 5@3 10/29 0/20 20/1201 10/284
1201 5 R@5 +71/100 0/20 71/1272 0/284
1272 5 P@5 5/95 5/15 30/1302 0/284
1302 5 3@5 10/85 0/15 20/1322 10/294
1322 3 P@3 5/80 5/10 30/1352 0/294
1352 3 8@3 9/71 0/10 30/1382 10/304

The path is blocked.
MCL suggests crc_try_again

1382 3 8@3 9/62 0/10 30/1412 10/314
We try again but still blocked.
MCL suggests crc_try_again

1412 3 8@3 9/53 0/10 30/1442 10/324
We try again but still blocked.
MCL suggests crc_try_again

And so on and so on ...

Table 6.6. Rover with MCL level 2 failing to execute a panoramic tour with perturbation
P7, blocked path

6.6 Limitations and improvements

While an instinctive MCL can handle some problems and an evaluative MCL even

more, there are situations where evaluative MCL cannot provide adequate assistance to the

host system. As seen in Table 6.6, the “best” suggestion MCL can make, “Try Again”, fails

to move the Rover around the blocked path. As the Rover is blocked again and again, MCL

keeps reevaluating and keeps coming up with its “best” (but ineffective) suggestion of “Try

Again”.

The evaluative MCL’s lack of a sense of time leads to an implementation where

each expectation violation is evaluated independently with an initialized ontology network.

The violations are added as concrete indications to the network, probabilities are adjusted
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throughout the network, and the concrete repair suggestions are selected based on cost and

probability. When the next expectation violation occurs, the evaluation occurs anew with a

fresh ontology network.

The problem with this approach is that it will give the same suggestion for the same

expectation violation every time. This is not a problem if that suggestion repairs the current

situation and the violation only reoccurs when the failure is reintroduced later. However,

if the first suggestion doesn’t fix the problem, MCL will not move on to try other sug-

gestions. This problem can be partially corrected by supplying MCL with feedback on its

suggestions. This feedback can be used to raise and lower the cost of the suggestion.

A general solution to this situation is to have MCL compare the current set of expec-

tation violations with those that have previously occurred. MCL can then decide to resolve

the current violations in the context of previous violations or to start evaluation afresh using

a new ontology network to handle a new problem. Adding this sense of prior violations,

the temporal element, is the subject of the next chapter.



Chapter 7

MCL LEVEL 3: TEMPORAL

This is the third of three chapters, that takes my idea of multiple metacognitive levels,

to deconstruct and explain the existing MCL system that I will be modifying in the next

chapter. This chapter describes how MCL works as a Level 3: Temporal metacognition

component for use with agent systems. The Level 2: Evaluative MCL from the previ-

ous chapter is expanded to include remembering past violation expectations. When a new

expectation violation occurs, MCL compares the current violation to previous ones to de-

termine if it should analyze the violation as a new problem or as continuation of an older

one.

As shown in the previous chapter, the Metacognitive Loop can be effective in lessen-

ing the problem of brittleness in cognitive systems when unexpected perturbations occur.

Using Bayesian inference over the Indications, Failure, and Response ontologies allows

MCL to better handle perturbations than agents without metacognition or those with only

hard-coded responses to stimuli. Fine tuning the ontologies and the conditional probabil-

ity tables could provide incremental improvement in performance. However, an extension

to the evaluative MCL may be able to offer even greater benefits. Saving past exception

violations and the successful and unsuccessful attempts to repair the failure(s) adds a tem-

poral dimension to MCL. Figure 7.1 shows the addition of previous exception violation

101
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information as part of the meta-knowledge of the enhanced Metacognitive Loop.

FIG. 7.1. Reentrant MCL

This chapter describes an approach to comparing the agent’s MCL state at the time of

the current exception with states from previous exceptions. MCL will decide if the current

exception appears related to any saved previous exceptions and either base its evaluation on

the current exception alone or combined with the previous exception(s). In the first section,

the information available at the time of an expectation violation is enumerated. Next, the

details of how MCL stores exception states is presented, describing what is stored, how it is

retrieved, and when it is discarded. How MCL compares the exception states comes next,

with a description of the temporal comparison function currently included with MCL.



103

7.1 What MCL Knows When an Exception Occurs

When an expectation is violated, MCL has available a number of pieces of information

about its internal state and the state of the agent it is supporting. Whether the expectation

violation is noticed when an expectation group is completed, or during a monitor call, the

same information is available. This section lists and describes the information available at

the time of the exception. The items are ordered from simplest to most complex. Expec-

tation violations associated with the P1: Partial Recharge perturbation in the Mars Rover

domain is used as an example but the information is generally domain-independent.

7.1.1 Expectation Group ID (EGID)

All expectations are assigned to an expectation group to control when the expectations

are tested for validity. Each expectation group is assigned a unique number: the Expectation

Group ID (or EGID). For agents with many expectation groups (such as having a different

expectation group for each of several actions), this can be a rich source for discriminating

between different problems. However, using many groups requires the agent’s designer

to do more work in defining the agent to MCL interface. The Expectation Group ID is

independent of the evaluation technique by MCL. It is directly related to the expectation,

but several different exceptions can have the same Expectation Group ID.

In the current implementation of the Mars Rover, only two EGIDs are used. Every

Mars Rover expectation is associated with either the EGID of 1 (for expectations valid over

the life of the Rover) or the EGID of 2 (for expectations that are valid only for the current

action). The recharge (R) action has an expectation that the energy level at the completion

of the action becomes 100 units and is associated with the EGID of 2.
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7.1.2 Expectation Group Hierarchy

Expectation groups can contain other expectation groups as well as expectations. The

Expectation Group Hierarchy is the list of Expectation Group IDs from the terminal to the

root. If the agent’s designer uses multiple expectation groups, then a number of hierarchies

are possible. Like the Expectation Group ID, the Expectation Group Hierarchy is indepen-

dent of the evaluation technique by MCL. It is directly related to the violated expectation,

but several different exceptions can have the same Expectation Group Hierarchy.

The Mars Rover uses only two groups, with the permanent group (EGID=1) being the

parent of the action group (EGID=2). Thus, the parent group of the recharge action energy

expectation is 1 and the Expectation Group Hierarchy is <1,2>.

7.1.3 Expectation Violation Signatures (EVS)

Every expectation is described as a tuple consisting of

Expectation type The expectation types were given in Table 5.4. An expectation’s ex-

pectation type determines when and how the observation from the sensor is to be

compared to the parameter value of the expectation.

Sensor The sensor whose observations are being tested. The sensors for the Mars Rover

are listed in Table 5.5.

Parameters The value to compare with the observation from the sensor (if needed). For

example, expectation types of EC_STAYUNDER and EC_TAKE_VALUE need one

parameter value, EC_WITHINNORMAL needs two parameter values, while type

EC_GO_DOWN doesn’t need any parameter values.

Like the Expectation Group ID and Expectation Group Hierarchy, the Expectation

Violation Signature is independent of the evaluation technique by MCL. It is directly related
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to the violated expectation, but several different exceptions can have the same Expectation

Group Signature.

Expectation Violation Signatures for the Mars Rover domain sample perturbations

are given in Table 8.2. The Expectation Violation Signature for the Mars Rover recharge

action (R) energy expectation is < EC_TAKE_VALUE, Energy, 100 >. It indicates

that when the expectation group completed, the Energy sensor had a value other than 100.

7.1.4 Initial Indications

When an expectation is violated, the expectation type and the sensor type are used

to set nodes in the Indications ontology to True. These nodes are the “Initial Indications”

of the exception and follow directly from the violated expectation using the mapping in

Table 6.2. There are two or three indicators that describe where the expectation violation

was detected, the type of sensor, and type of violation. As the Initial Indications are nodes

in the Indications ontology, the Initial Indications are tied to MCL’s evaluation technique

of using Bayesian inference over ontologies. Just as different violated expectations can

have the same Expectation Violation Signatures, different violated expectations can have

the same Initial Indications.

The Expectation Violation Signature for the Mars Rover recharge action energy expec-

tation is < EC_TAKE_VALUE, Energy, 100 >. The Initial Indications that would

result from the violation of that expectation would have three parts:

provenance:self The Energy sensor is one that observes the Mars Rover itself. A sensor

that provides observations about external objects would have provenance:object.

resource The Energy sensor was declared as measuring a resource (as opposed to a reward,

temporal, or control sensor).
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short-of-target The observed value of the Energy was less than the value the expectation

believed it would reach.

7.1.5 Initial Indication Signature (IIS)

Combining the Expectation Group ID (EGID) with the Initial Indications creates an

“Initial Indication Signature”. The IIS is tied to MCL’s evaluation technique of using

Bayesian inference over ontologies. Different expectation violations can have the same

IIS.

Initial Indication Signatures for sample Mars Rover perturbations are given in Ta-

ble 8.2. For the violated Recharge expectation, this is a tuple of (< EG=2, {prove-

nance:self resource short-of-target} >).

7.1.6 Bayesian Network

The exception activates specific nodes in the Indications ontology. In turn, these nodes

affect the likelihood of other nodes in the Indications ontology and, through inter-ontology

links, nodes in the Failure and Response ontologies. By looking at the Initial Indications,

you can see what the initial activations for the exceptions are; by looking at the Bayesian

network, you can see the diagnosis of the problem (in the Failure ontology) and the pre-

scription (in the Response ontology). Exceptions with different Initial Indications may have

similar nodes with high probability in other parts of the network.

7.1.7 MCL Frame

All of the Meta data information above is included in an MCL data structure called

the “frame”. A frame is created for each exception. It also contains various miscellaneous

pieces of data (mostly counts). Table 7.1 lists the data in the MCL frame. Items used only

for internal housekeeping are not listed.
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Table 7.1. MCL Frame Information

Item Description
Ontologies A Bayesian network formed by the Indications, Failure, and

Response ontologies
State Current state in the repair process
Active Response The recommended concrete response node
Expectation Group Number of expectation group with the violated expectation
Parent Group Number of parent of the expectation group with the violated

expectation
Failures Number of failing repairs
Successes Number of successful repairs
Signatures List of Expectation Violation Signatures
Ontology States List of previous ontology states

7.1.8 Frame Entry Vector

All of the information about an expectation violation is collected by MCL in a Frame

Entry Vector (FEV). It either contains the information listed in the sections above or a

reference to it. These items are given in Table 7.2.

The vECode (Entry Code) is set when the FEV is created or is reused. Most FEVs

are created in response to an exception violation and have the ENTRY_VIOLATION code.

If MCL uses the frame to generate a response, the frame may be reentered (reprocessed)

if the host replies that the repair in the response worked (REENTRY_SUCCESS) or not

(REENTRY_FAIL). See Table 7.3 for a complete list of Frame Entry Codes.

The major improvement my research made to MCL was designing and implementing

algorithms (described in Section 8.4) to evaluate when an expectation violation was a new

problem (ENTRY_VIOLATION) or when it was a reoccurrence of a previously seen prob-

lem (REENTRY_RECURRENCE). Being able to tell the difference between new problems

and previously seen problems lets MCL make better repair suggestions to the agent. The

Evaluative MCL in Chapter 6 doesn’t make such distinctions, so it repeatedly suggested
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TRY AGAIN when the Rover encountered a block path. Being able to associate the current

failure to execute a command with a previous failure to do so allows MCL to suggest a

different repair that may have more success.

Table 7.2. MCL Frame Entry Vector information

Item Section Description
vEG 7.1.1 Violation Expectation Group Key
vEVS 7.1.3 Expectation Violation Signature
vIIS 7.1.5 Violation Initial Indication Signature
vRef 7.1.7 Violation Frame Referent
vECode 7.1.8 Entry or Reentry code

Table 7.3. MCL Frame Entry Codes

Code Description
ENTRY_UNKNOWN Un-initialized frame
ENTRY_NEW Newly created frame
ENTRY_HIA Host initiated action
ENTRY_VIOLATION Expectation violated
ENTRY_CLEAN No violation
REENTRY_RECURRENCE Recurrence of the violation
REENTRY_ALIAS_VIOL An alias violation occurred
REENTRY_HOST_SUCCESS Successful response from host
REENTRY_HOST_FAIL Failed response from host
REENTRY_HOST_ABORT Host aborted response
REENTRY_HOST_IGNORE Host ignored response

7.2 Saving MCL Exception Violation State

To compare the current expectation violation to past violations, the past violation must

be saved and accessible. This section looks at what is saved, how it is accessed and how
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old exception violations are discarded.

7.2.1 What Is Saved

MCL saves previous and current exception violation information in two lists of Frame

Entry Vectors. The pending list contains frames for violations that occur between calls to

monitor. Violations that are detected when an exception group completes are put into the

pending list. The main MCL frame list is for frames from monitor calls. These can be

frames created by an exception noted by monitor or frames that monitor moved from the

pending list. After a call to monitor, there will be no frames in the pending list.

7.2.2 How it is Referenced

When comparing states to determine if they are similar, the list of Frame Entry Vectors

is processed sequentially. The current implementation is to have of all of the FEVs in

memory. Future implementation may use a database.

7.2.3 When it is Discarded

While the current implementation has provision for the removal of FEVs from the

monitor list, no such actions are being performed. This is less of a problem than it might

appear because

1. only exceptions are saved and exceptions by their nature should be exceptional events

and

2. the experimental tasks the Rover is asked to perform are limited.

When to purge FEVs and which FEVs to purge is a subject for future research.
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7.3 Comparing MCL Exception Violation States

The general description of the workings of MCL’s metacognitive loop (note, access,

guide) was given in Chapter 5 for MCL Level 1: Instinctive. This section delves deeper

into the code and data structures to provide a framework for discussion of the changes that

support effective temporal operation.

The monitor() routine has to decide if it should respond at this time or not. It could

decline to provide assistance if

1. it is operating in asynchronous mode and insufficient time has passed since the last

monitor call or

2. MCL is not active, having been stopped by a call to stopMCL().

Otherwise, the monitor() routine calls the nag() routine to execute the MCL Notice, Assess

and Guide function. The responses returned from nag() are returned as the result from

monitor().

The nag() function first checks for any new expectation violations with a call to note().

If there are any new exceptions or any pending exceptions, then access() and guide() are

called for each exception. The combined responses from the guide() calls are returned as

the result of nag(). If there are no new or pending exceptions, no responses are returned

from nag().

The main processing of note() is to loop over each expectation group and then over

each expectation within the expectation group. If an expectation is not supported by the ob-

servations, an expectation violation (an exception) is noted by creating a FrameEntryVector.

At this point, the note() routine has a list of frames from exceptions it discovered

as well as any frames created from pending exceptions. These frames can be processed

separately, with each generating a response, or two or more can be combined if they are
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deemed sufficiently similar.

note() determines which frame(s) describing expectation violations that it will send to

guide() by using a frame comparison function to determine if the new violation is similar

to any previous expectation violations. The temporal comparison function used by the

stock version of MCL is described in the next section. Experimental temporal comparison

functions are described in the next chapter.

7.4 Sample Temporal Comparison Function

The stock version of MCL Level 3: Temporal contains a temporal comparison function

called "passive" that declares the current exception the same as a previous exception if both

the Expectation Group ID and the Exception Violation Signature are the same.

7.5 Mars Rover Integration

There are no changes to the Mars Rover beyond those described for MCL Level 2:

Evaluative in Section 6.4 as the temporal comparison function is internal to MCL.



Chapter 8

TEMPORAL COMPARISON FUNCTIONS

The “passive” temporal comparison function that has been included in MCL (and was

described in the previous chapter) uses only two of the several elements that are available in

its comparison. This chapter looks at the construction of several other temporal comparison

functions that use different items available to MCL at the time of an expectation violation

(as listed in Section 7.1).

The first section of this chapter looks at the information available when an expectation

violation is identified (from Section 7.1). The items of the information are examined in

terms of how they could contribute to a function that is able to separate new problems

from old problems independent of the domain. The second section describes a number of

temporal comparison functions created for this research. A few of the temporal comparison

functions were purposely constructed to be suboptimal, but useful as baseline cases. Most,

however, were built to make the best possible use of the exception state information. In

the next section, using sample perturbations from the Mars Rover domain, the temporal

functions are evaluated for their ability to distinguish between different problems. This is

followed by a short section on how these functions were implemented within MCL. In the

final section, two comparison functions are demonstrated using the Mars Rover.

112



113

8.1 Information for Temporal Comparison Functions

A Level 3: Temporal metacognition keeps a history of past exceptions, the sugges-

tions given for those exceptions, and if the agent reported it, whether the suggestions were

successful. Using this temporal history, a Level 3 MCL is in a better position to suggest the

best response for the current exception then a Level 2: Evaluative MCL. A Temporal MCL

will favor responses that were successful for exceptions similar to the current exception.

However, in a dynamic environment the problem(s) now may not be the same as when the

prior exception occured.

For MCL, all of the knowledge we have about the previous exceptions, the suggested

repairs(s) and the results of those repairs, are saved within the Frame data structure. What

is needed is a way to compare the prior frames with the current one that will be simple to

explain, easy to implement, quick to execute, and successful in improving the performance

of the host systems.

The items available in the saved MCL frames (as listed in the previous chapter) are

examined here to see how well they satisfy the first three criteria. A violation of the expec-

tations that can occur with the partial recharge perturbation (P1) in the Mars Rover domain

is used as an example but the discussion is domain-independent.

Expectation Group ID (EGID) The EGIDs of two MCL frames are easy to compare with

a single numeric comparison. The amount of information in the EGID will vary

with the host implementation. The Mars Rover simulation has only two expectation

groups so every exception is either from the permanent EGID of 1 or the action EGID

of 2. For the Mars Rover, the EGID could be made more meaningful by creating an

expectation group for each action. One could even create a separate expectation

group for each action at each location.

Having many expectation groups does not mean that the cause of two exceptions in
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the same group are related. An energy sensor that reads too low could cause the

same recharge expectation (< EC_TAKE_VALUE, Energy, 100 >) to fail as a

battery that only recharges to half its maximum level or a battery that only recharges

a portion on each attempt.

Expectation Group Hierarchy While the EGID is only a single number, the Expectation

Group Hierarchy is a vector of numbers. The list of Expectation Groups is likely

to be small in practice, allowing for very quick comparisons. Like the EGID, the

problem discrimination utility of the Expectation Group Hierarchy will depend on

how the host system divides its expectations into groups.

Expectation Violation Signatures (EVS) The EVS consists of the expectation type, the

sensor being evaluated, and the parameter value(s). The EVS of a previous frame

can be directly compared to the EVS of the current exception using three numeric

or string equalities. Repeated violations of the same expectation would produce the

same EVS. Exceptions with different sensors will have different EVSs.

Initial Indications The Initial Indications are the nodes activated in the Bayesian network

in response to the exception. As it doesn’t include specific sensor information or any

expectation values, Initial Indications is more general than the Expectation Violation

Signature (EVS) for the same exception. The list of initial activation nodes can be

obtained as a string, allowing easy and quick comparisons.

Initial Indication Signature (IIS) IIS is the combination of the Initial Signature and the

EGID. IIS shares the characteristics of both. It has the implementation-specific EGID

and the more general Initial Indications. It is easy to implement and quick to execute

as it is an ANDing of the results of the EGIS and Initial Indications comparisons.

Bayesian Network (BN) The heart of the MCL exception/repair evaluation is the Bayesian
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network that classifies the exception, determines the failure, and suggests a response.

Different exceptions will produce different truth values in the nodes of the network.

As the networks can be extensive, and the differences between two networks sub-

tle, no quick, easy, fast method has been found to compare two arbitrary Bayesian

networks.

While the indications portion of the network changes as initial indication nodes are

linked in, the failure and response portions stay structurally static however much the

node probabilities may change. Thus, a comparison of the probabilities associated

with the concrete response nodes can be efficiently implemented.

Table 8.1 summarizes my subjective rating of the frame information elements accord-

ing to their simplicity, implementation, and execution. The scale for the three categories

is great, good, fair, and poor. Ideally, the best comparison functions would rate as great in

all categories as well as (and most importantly) be an excellant discriminator between the

same and different problems.

Table 8.1. Frame information elements rated

Element Simplicity Implementation Execution
EGID Great Great Great
EGH Good Good Good
EVS Good Good Good
II Good Good Good
IIS Good Good Good
BN Fair Fair Fair

‘The next section discusses the frame comparison functions as they will be used within

the MCL implementation.
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8.2 Frame Comparison Functions

Based on the analysis in Section 8.1, I created several frame comparison functions.

They should allow the Level 3: Temporal metacognition in MCL to select the correct ex-

pectation violation frame (either the new one or one from a previous violation) that would

let the access phase provide the best repair suggestion.

I designed the first three (F1: First, F2: New, and F3: Random) as experimental

controls and they are not expected to perform well. The frame comparison functions most

likely to provide sufficient differentiation to allow MCL to give good advice to the Mars

Rover (from the analysis in Section 8.1) are Expectation Violation Signature (EVS) or

Initial Indication Signature (IIS), either singularly (F4 or F5) or in combination (F6).

8.2.1 F1: Always The Same (First) Frame

This function always declares that the two frames are equal. In practice, this means

that any new exception frame is declared equal to the first exception frame. Thus, MCL

sees each expectation violation as the result of a single perturbation. The only advantages

of this algorithm are that it is easy to code and extremely quick in execution. It is expected

to be a very poor performer.

8.2.2 F2: Frames Always Different (New)

This function returns the opposite of the previous as it always declares the two frames

to be different. Thus, MCL will always use the new exception frame for evaluation, ignor-

ing any previous exception frames. When operating with this frame comparison function,

the Level 3: Temporal MCL is reduced to Level 2: Evaluative. Like the first algorithm, this

one is easy to code and extremely quick in execution.
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8.2.3 F3: Random

As with the previous two algorithms, this one does not actually compare the two

frames, but delivers its verdict based on a random number generator: half of the time the

frames are declared equal and half of the time the frames are declared not-equal. Like the

first two algorithms, this one is easy to code and extremely quick in execution.

8.2.4 F4: EVS Equal

Unlike the first three functions, this function (and the ones that follow) do take the val-

ues in the two frames into account in its comparison. If the Exception Violation Signature

(sensor, expectation type, value) of the two frames are the same then this function declares

the two frames equal.

8.2.5 F5: IIS Equal

This function compares the Initial Indication Signatures (IIS) of two frames to deter-

mine if the frames represent the same exception. If the IIS of the two frames are the same

then the two frames are declared equal.

8.2.6 F6: IIS and EVS

This functions tests both the IIS and EVS of two frames and doesn’t judge the frames

equal unless both match. The idea was that if either the F4: EVS or the F5: IIS comparisons

gave false positives, using both would limit the false positives. The downside is that if either

IIS or EVS has a false negative then the two frames being compared are declared not equal.
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8.2.7 F7: EVS but not IIS

This function tests both the IIS and EVS of two frames and declares the frames equal

if the EVS of the two frames match but the IIS do not. It was not expected that this function

would perform well but the worse it performed, the more likely that an IIS comparison of

the frames would have made the correct determination.

8.2.8 F8: IIS but not EVS

This function tests both the IIS and EVS of two frames and declares the frames equal if

the IIS of the two frames matches but the EVS doesn’t. It was not expected that this function

would perform well but the worse it performed, the more likely that an EVS comparison of

the frames would have made the correct determination.

8.3 Static Evaluation of Comparison Functions

The nine sample perturbations used in the Rover simulation generate expectation vio-

lations with the EVS and IIS values given in Table 8.2. Using these values (and having the

expectation group hierarchy always being 2/1) it is possible to determine the results of the

frame comparison functions for the Rover simulation.

The comparison tables (Tables 8.3 through 8.13) have one row and column for each

of the nine numbered Mars Rover perturbations from section 3.2.1 and Table 8.2. A check

mark (
√

) in a square on the diagonal, where the row and column perturbations are the same,

indicates that the comparison function can correctly tell when there are two instances of the

same perturbation. A check mark in the other squares indicates that the comparison func-

tion can correctly detect that these two perturbations are different. A perfect comparison

function would have check marks in all of the squares.

The percentage of correct numbers reported for the comparison functions assumes
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that each of the perturbations are equally probable. The only time this is likely to be true

is in the experiments conducted for this dissertation. This makes these numbers highly

theoretical and highly suspect.

Static Evaluation of Expectation Group ID Comparison In the Rover simulation,

using EGID correctly predicts when problems are caused by the same perturbation but it is

always incorrect when the problems are caused by different perturbations. This is shown

in Table 8.3. Overall it is correct only 11% of the time.

Static Evaluation of Expectation Group Hierarchy Comparison Like the EGID,

the Expectation Group Hierarchy currently predicts which failures are caused by the same

perturbations but is always wrong when the causes are different. Thus, Table 8.4 has check-

marks only on the diagonal.

Static Evaluation of F1: First Comparison This comparison function is purely for

reference and statistical purposes. It always matches the first (oldest) frame on the frame

list. Doing so gives it a perfect score when the perturbations are the same but always wrong

when they are different as show in Table 8.5 for a combined static score of 11%.

Static Evaluation of F2: New Comparison This comparison function is also

purely for reference and statistical purposes. It never matches an existing frame on the

frame list. This makes it always wrong when the perturbations are the same and always

correct when they are different (Table 8.6). As there are nine different perturbations, this

gives a combined static score of 88%.

Static Evaluation of F3: Random Comparison This is the third and final compar-

ison function purely for reference and statistical purposes. It randomly (50-50) matches the
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first frame in the frame list otherwise it creates a new frame. It should have a 50% correct

rate. Anything else is experimental error (as shown in Table 8.7).

Static Evaluation of F4: EVS Comparison Like EGID and Expectation Group

Hierarchy, EVS correctly determines when the failure is caused by the same perturbations.

Unlike them, however, it also succeeds in most cases where the perturbations are different

which is why Table 8.8 has so many more check-marks than Tables 8.3 and 8.4. It fails

in cases such as P1 and P2 where both perturbations can cause unexpected values on the

same sensors. Its total static correct rate of 85% outperforms EGID and Expectation Group

Hierarchy.

Static Evaluation of Initial Indications Comparison The static performance of

Initial Indications (Table 8.9) is close to that of EVS. With the perturbations of the Mars

Rover simulation it is slightly better, achieving 90% correct evaluations.

Static Evaluation of F5: IIS Comparison Since the Exception Group ID is always

the same in the Mars Rover simulation, it is not unexpected that the static performance of

IIS (Table 8.10) should be equal to that of the Initial Indications.

Static Evaluation of F6: EVS and IIS Comparison This is the first of three com-

parison functions combining EVS and IIS. When taking their results together (Table 8.11),

IIS dominates and it gets the same overall score of 90% as all of the perturbation pairs are

evaluated the same as with just IIS alone (Table 8.10).

Static Evaluation of F7: EVS and not IIS Comparison Using a negated IIS as

a check on EVS improves on EVS different perturbations score at the cost of missing all
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of the same perturbations on the diagonal as shown in Table 8.12. The total performance,

however, is quite close (83% vs. 85% for EVS).

Static Evaluation of F8: IIS but not EVS Comparison When taking their results

together (Table 8.11), IIS dominates and it gets the same overall score of 90% as all of the

perturbation pairs are evaluated the same as with just IIS alone (Table 8.10).

Summary of static comparison evaluation Table 8.14 summarizes the static eval-

uation of the various comparison functions. Of the functions that directly compare portions

of the expectation violation information, Initial Indications and IIS are the strongest with

both having 90% correct. EVS is second at 85%. The EVS and IIS combined methods ap-

pear no better than IIS alone. Of the statistical baseline methods, New compares favorably

to IIS in the multiple perturbation test.

Based on the static evaluation, IIS comparison should provide the best performance as

the frame comparison function for MCL Level 3: Temporal assisting a Mars Rover.
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Table 8.2. Sample Exception Information
P1: Partial charging

EVS < EC_TAKE_VALUE, Energy, 100 >
IIS < EG=2, {provenance:self, resource, short-of-target} >

P2: Reduced capacity
EVS < EC_TAKE_VALUE, Energy, 100 >
IIS < EG=2, {provenance:self, resource, short-of-target} >

P3: Longer calibration time
EVS < EC_TAKE_VALUE, TotalTime, 20 >
IIS < EG=2, {provenance:self, temporal, long-of-target} >

P4: Probabilistic calibration
EVS < EC_TAKE_VALUE, Calibrated 1 >
IIS < EG=2, {provenance:self, state, short-of-target, missed-

unchanged} >
P5: Recharge loses calibration

EVS < EC_MAINTAIN_VALUE, Calibration >
IIS < EG=2, {provenance:self, state, cwa-decrease} >

P6: Path time change
EVS < EC_TAKE_VALUE, TotalTime 20 >
IIS < EG=2, {provenance:self, temporal, short-of-target} >

P7: Blocked path
EVS < EC_TAKE_VALUE, WayPoint 8 >
IIS < EG=2, {provenance:self, spatial, short-of-target, missed-

unchanged} >
P8: Dirty panoramic rotator

EVS < EC_TAKE_VALUE, TotalTime, 20 >
IIS < EG=2, {provenance:self, temporal, short-of-target} >

P9: Noisy sensor
Item Value
EVS < EC_TAKE_VALUE, Energy, 100 >
IIS < EG=2, {provenance:self, resource, short-of-target} >
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Table 8.3. Static Evaluation of comparing frames by Expectation Group ID
1/2 P1 P2 P3 P4 P5 P6 P7 P8 P9
P1

√

P2
√

P3
√

P4
√

P5
√

P6
√

P7
√

P8
√

P9
√

Table 8.4. Static Evaluation of comparing frames by Expectation Group Hierarchy
1/2 P1 P2 P3 P4 P5 P6 P7 P8 P9
P1

√

P2
√

P3
√

P4
√

P5
√

P6
√

P7
√

P8
√

P9
√

Table 8.5. Static Evaluation of comparing frames by F1: First
1/2 P1 P2 P3 P4 P5 P6 P7 P8 P9
P1

√

P2
√

P3
√

P4
√

P5
√

P6
√

P7
√

P8
√

P9
√



124

Table 8.6. Static Evaluation of comparing frames by F2: New
1/2 P1 P2 P3 P4 P5 P6 P7 P8 P9
P1

√ √ √ √ √ √ √ √

P2
√ √ √ √ √ √ √ √

P3
√ √ √ √ √ √ √ √

P4
√ √ √ √ √ √ √ √

P5
√ √ √ √ √ √ √ √

P6
√ √ √ √ √ √ √ √

P7
√ √ √ √ √ √ √ √

P8
√ √ √ √ √ √ √ √

P9
√ √ √ √ √ √ √ √

Table 8.7. Static Evaluation of comparing frames by F3: Random
1/2 P1 P2 P3 P4 P5 P6 P7 P8 P9
P1

√ √ √ √ √

P2
√ √ √ √

P3
√ √ √ √ √ √ √

P4
√ √ √ √

P5
√ √ √ √ √

P6
√ √ √ √ √

P7
√ √ √ √

P8
√ √ √ √ √ √ √

P9
√ √ √ √ √

Table 8.8. Static Evaluation of comparing frames by F4: EVS
1/2 P1 P2 P3 P4 P5 P6 P7 P8 P9
P1

√ √ √ √ √ √ √

P2
√ √ √ √ √ √ √

P3
√ √ √ √ √ √ √

P4
√ √ √ √ √ √ √ √ √

P5
√ √ √ √ √ √ √ √ √

P6
√ √ √ √ √ √ √

P7
√ √ √ √ √ √ √ √ √

P8
√ √ √ √ √ √ √

P9
√ √ √ √ √ √ √
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Table 8.9. Static Evaluation of comparing frames by Initial Indications
1/2 P1 P2 P3 P4 P5 P6 P7 P8 P9
P1

√ √ √ √ √ √ √

P2
√ √ √ √ √ √ √

P3
√ √ √ √ √ √ √ √ √

P4
√ √ √ √ √ √ √ √ √

P5
√ √ √ √ √ √ √ √ √

P6
√ √ √ √ √ √ √ √

P7
√ √ √ √ √ √ √ √ √

P8
√ √ √ √ √ √ √ √

P9
√ √ √ √ √ √ √

Table 8.10. Static Evaluation of comparing frames by F5: IIS
1/2 P1 P2 P3 P4 P5 P6 P7 P8 P9
P1

√ √ √ √ √ √ √

P2
√ √ √ √ √ √ √

P3
√ √ √ √ √ √ √ √ √

P4
√ √ √ √ √ √ √ √ √

P5
√ √ √ √ √ √ √ √ √

P6
√ √ √ √ √ √ √ √

P7
√ √ √ √ √ √ √ √ √

P8
√ √ √ √ √ √ √ √

P9
√ √ √ √ √ √ √

Table 8.11. Static Evaluation of comparing frames by F6: EVS and IIS
1/2 P1 P2 P3 P4 P5 P6 P7 P8 P9
P1

√ √ √ √ √ √ √

P2
√ √ √ √ √ √ √

P3
√ √ √ √ √ √ √ √ √

P4
√ √ √ √ √ √ √ √ √

P5
√ √ √ √ √ √ √ √ √

P6
√ √ √ √ √ √ √ √

P7
√ √ √ √ √ √ √ √ √

P8
√ √ √ √ √ √ √ √

P9
√ √ √ √ √ √ √
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Table 8.12. Static Evaluation of comparing frames by F7: EVS but not IIS
1/2 P1 P2 P3 P4 P5 P6 P7 P8 P9
P1

√ √ √ √ √ √ √ √

P2
√ √ √ √ √ √ √ √

P3
√ √ √ √ √ √

P4
√ √ √ √ √ √ √ √

P5
√ √ √ √ √ √ √ √

P6
√ √ √ √ √ √ √

P7
√ √ √ √ √ √ √ √

P8
√ √ √ √ √ √ √

P9
√ √ √ √ √ √ √ √

Table 8.13. Static Evaluation of comparing frames by F8: IIS but not EVS
1/2 P1 P2 P3 P4 P5 P6 P7 P8 P9
P1

√ √ √ √ √ √ √

P2
√ √ √ √ √ √ √

P3
√ √ √ √ √ √ √ √ √

P4
√ √ √ √ √ √ √ √ √

P5
√ √ √ √ √ √ √ √ √

P6
√ √ √ √ √ √ √ √

P7
√ √ √ √ √ √ √ √ √

P8
√ √ √ √ √ √ √ √

P9
√ √ √ √ √ √ √

Table 8.14. Static Evaluation of Frame Comparison Functions
Comparison Percent Correct
Method Total Same Different
Expectation Group ID 11 100 0
Expectation Group Hierarchy 11 100 0
F1: First 11 100 0
F2: New 88 0 100
F3: Random 56 55 56
F4: EVS 85 100 83
Initial Indications 90 100 88
F5: IIS 90 100 88
F6: EVS and IIS 90 100 88
F7: EVS but not IIS 83 0 94
F8: IIS but not EVS 90 100 88
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8.4 Implementation

I implemented (in C++) several frame comparison algorithms as described in Sec-

tion 8.2 above. See Appendix C for the code listings.

MCL would normally use one and only one frame comparison function, I imple-

mented several to determine which one worked best in the Mars Rover simulation. For

testing and evaluative purposes, the frame comparison function is easily changed using the

MCL API.

I also implemented a new MCL API command, setREB(), which allowed the Mars

Rover to change the frame comparison function at the start of each experiment.

8.5 Mars Rover Integration

There are no changes to the Mars Rover beyond those described for the Rover using

MCL (evaluative) in Section 6.4 as the temporal comparison function(s) are internal to

MCL. For the purpose of experimentation, MCL API functions were added to allow the

agent to select the temporal comparison. Figure 8.1 show the conversation between the

agent and MCL to set the temporal comparison function to F4: IIS. The codes to select the

various temporal comparison functions are listed in Table 8.15.

send setREB(mr,four)
recv ok(REB set to ’four’.)

FIG. 8.1. Setting the Temporal Comparison Function to F4: IIS for a agent initialized with
the key ’mr’
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Code Fn Name
default Passive
one F1 First
two F2 New
three F3 Random
four F4 EVS
five F5 IIS
six F6 EVS and IIS
seven F7 EVS but not IIS
eight F8 IIS but not EVS
nine Passive

Table 8.15. Codes for Static Evaluation of Frame Comparison Functions

8.6 Examples

This section looks at two frame comparison functions in action. Two motivated Mars

Rovers augmented by MCL Level 3: Temporal, one using F1: First and one using F5: IIS,

attempt to complete a triple panoramic tour that is first perturbed by P7: Blocked path and

then by P1: Partial charging1. The P1 and P7 perturbations are very different problems

and should be treated differently by MCL. Table 8.9 shows that the F5: IIS comparison

function should be able to correctly distinguish between the perturbations while the F1:

First comparison function (Table 8.5) does not.

When the Rover encounters the blocked path, the first suggestion made by MCL will

be to retry the movement action. This will not succeed and MCL will then suggest that the

Rover rebuild its models. After taking the blocked path out of its STRIPS table, the Rover

is able to generate a plan that moves it around the blocked path. The Rover continues on

and completes the second panoramic tour where the perturbation is changed to P1, reduced

recharge. For this perturbation the effective repair is to try again. But the TRY AGAIN

repair failed for the blocked path perturbation so if MCL cannot distinguish between the

1See Section 9.1 for details of the triple panoramic tour.
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two perturbations, MCL will not suggest TRY AGAIN when the recharge action fails to

completely recharge the Rover. This is the Rover execution trace shown in Table 8.17.

If the comparison function can distinguish that the perturbations are different, MCL will

suggest TRY AGAIN (as in Table 8.16) and the Rover can complete the tour.
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Table 8.16. Rover with MCL level 3 and IIS comparison successfully executing a
photographic tour with perturbation P7: Blocked Path and then with P1: Partial Charging

At WP CMD NRG MEM TIME DIST
0 1 P@1 5/95 5/25 30/30 0/0

The Rover starts and completes an unperturbed Panoramic Tour.
For the second tour the path between 3 and 8 is blocked.

1146 8 3@8 9/61 0/20 30/1176 10/262
The movement fails because the path is blocked.
MCL suggests TRY AGAIN and the Rover tries.

1176 8 3@8 9/52 0/20 30/1206 10/272
But not very successfully.

1206 8 3@8 9/43 0/20 30/1236 10/282
This time MCL suggests REBUILD MODELS.

The 3@8 action is removed from the
STRIPS tables, and a new plan created.

1236 8 P@8 5/38 5/15 30/1266 0/282
1266 8 7@8 8/30 0/15 16/1282 8/290
1282 7 3@7 10/20 0/15 20/1302 10/300

This time a different route is chosen and
the Rover goes on to complete the tour.

2618 1 P@1 5/36 5/15 30/2648 0/590
2648 1 R@1 +30/66 0/15 64/2712 0/590

When the recharge doesn’t live up to expectations,
MCL suggests TRY AGAIN.

2712 1 R@1 +30/96 0/15 34/2746 0/590
The Rover goes on to complete the third tour.

4978 8 P@8 5/55 5/15 30/5008 0/1030
Photographic tour with added goal complete
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Table 8.17. Rover with MCL level 3 and F1: First comparison unsuccessfully executing
a photographic tour with perturbation P7: Blocked path and then with perturbation P1:
Partial charging

At WP CMD NRG MEM TIME DIST
0 1 P@1 5/95 5/25 30/30 0/0

30 1 2@1 8/87 0/25 16/46 8/8
The Rover starts and completes an unperturbed Panoramic Tour.

For the second tour the path between 3 and 8 is blocked.
1439 7 P@7 5/70 5/15 30/1469 0/348
1469 7 8@7 8/62 0/15 16/1485 8/356
1485 8 P@8 5/57 5/10 30/1515 0/356
1515 8 3@8 9/48 0/10 30/1545 10/366

The movement fails because the path is blocked.
MCL suggests TRY AGAIN and the Rover tries.

1545 8 3@8 9/39 0/10 30/1575 10/376
But not very successfully.

1575 8 3@8 9/30 0/10 30/1605 10/386
This time MCL suggests REBUILD MODELS.

The action 3@8 is removed from the STRIPS table.
The Rover re-plans, finds another route and complete the tour.
For the third tour, the perturbation changes to reduced recharge
3126 5 R@5 +30/59 0/10 71/3197 0/730

MCL with the First temporal comparison function
can’t tell that this is a different problem.

So MCL suggests SENSOR DIAG instead of TRY AGAIN
3197 5 D@5 20/39 0/10 10/3207 0/730
which uses enough power so that the Rover need to recharges.

4185 5 R@5 +30/55 0/20 75/4260 0/882
And then MCL suggests SENSOR DIAG again

4260 5 D@5 20/35 0/20 10/4270 0/882
And this repeats self over and over again.

5225 5 R@5 +30/45 0/10 85/5310 0/1042
5310 5 D@5 20/25 0/10 10/5320 0/1042
5320 5 R@5 +30/55 0/10 75/5395 0/1042
5395 5 3@5 10/45 0/10 20/5415 10/1052
5415 3 7@3 10/35 0/10 20/5435 10/1062
5435 7 3@7 10/25 0/10 20/5455 10/1072
5455 3 5@3 10/15 0/10 20/5475 10/1082

The Rover keeps looping through these same instructions
as MCL keeps suggesting SENSOR DIAG.



Chapter 9

METHODOLOGY

The claim made in this dissertation is that adding memory of past problems to the

MCL advisor provides better assistance to the agent than a MCL advisor without such

memory. The previous two chapters described how such temporal knowledge is added to

MCL with several proposed temporal comparison functions. The two chapters addressed

the first three of the five research questions. This chapter describes how the claim will be

demonstrated and provides the metrics that will be used to answer the final two research

questions.

The primary measure for the success of the proposed research is how well the proposed

MCL temporal comparison function improves the performance of the host system in a

perturbed environment. For baselines, experiments will also be run using non-temporal

forms of MCL: Bereft, Instinctive and Evaluative. Only if the agent using temporal MCL

with one of the proposed MCL temporal comparison functions performs better than agents

using non-temporal MCL will the proposed function be judged as successful.

The remainder of this chapter provides details about the experiments to be run and

the evaluation of the results. The next section describes the task that each agent will be

required to perform and gives an example of an agent completing it. This chapter’s second

second will show how the environment will be perturbed for the various experiments. The

132
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configurations that will be used for each of the twelve Mars Rovers is also given there.

The final two sections of this chapter describe the metrics that will be collected from each

experiment and how those metrics will be analyzed to determine the effectiveness of the

assistance provided to the Rover by the various MCL configurations.

9.1 Evaluation Domain

The Mars Rover domain described in Section 3.1 will be used to evaluate the MCL

Frame comparison function. The basic task used will be a panoramic tour in which the

Rover will have to travel to all eight waypoints and at each take a panoramic image. The

Rover has neither energy nor storage to complete the task directly. It will have to recharge

its battery a few times during the process, as well as transmitting the collected panoramic

images, before being able to finish the tour. Additionally, due to the length of the panoramic

tour, the motivation to collect a photographic image will be triggered causing the Rover to

pursue a TakeImagen goal.

An example execution of such a tour using the Motivated Mars Rover from Chapter 4

(MCL Level 0: Bereft) is given in Tables 9.1 and 9.2. In the first part of the tour, the Rover

visits all eight locations, takes the panoramic images and transmits them. These actions

took 32 steps using a plan from the STRIPS planner that is less than optimal but reasonable

given the planner’s limitations. However, while satisfying the goals of the tour, the Rover

generated additional goals due to its Take Photo and Take Panoramic Image motivations.

To satisfy these additional goals took another 10 steps. The faster the Rover can complete

its assigned tasks, the fewer additional Photo and Panoramic tasks will be added by the

motivations.

In the experiments, the Rover is required to perform three panoramic tours in succes-

sion. Between each tour, the environment is perturbed. Each experiment is controlled by a
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At WP CMD NRG MEM TIME DIST
Initial plan of P238P35P4P56P537P83P2P

0 1 P@1 5/95 5/25 30/30 0/0
30 1 2@1 8/87 0/25 16/46 8/8
46 2 3@2 10/77 0/25 20/66 10/18
66 3 8@3 10/67 0/25 20/86 10/28
86 8 P@8 5/62 5/20 30/116 0/28

116 8 3@8 10/52 0/20 20/136 10/38
136 3 5@3 10/42 0/20 20/156 10/48
156 5 P@5 5/37 5/15 30/186 0/48

Energy low, Preempting with Recharged goal
Setting plan to just R

186 5 R@5 +63/100 0/15 63/249 0/48
Resuming tour, new plan of 6P54P53P7P32P

249 5 6@5 8/92 0/15 16/265 8/56
265 6 P@6 5/87 5/10 30/295 0/56

Too long since last photo, Added TookImage3
295 6 5@6 8/79 0/10 16/311 8/64
311 5 4@5 10/69 0/10 20/331 10/74
331 4 P@4 5/64 5/5 30/361 0/74

Memory low, Preempting with Transmitted
Setting plan to 532T

361 4 5@4 10/54 0/5 20/381 10/84
381 5 3@5 10/44 0/5 20/401 10/94
401 3 2@3 10/34 0/5 20/421 10/104

Energy low, Preempting with Recharged goal
Setting plan to 1R

421 2 1@2 8/26 0/5 16/437 8/112
437 1 R@1 +74/100 0/5 74/511 0/112

Resuming Transmitted plan with T
511 1 T@1 12/88 +25/30 25/536 0/112

Resuming tour, new plan of 2P3P7P
536 1 2@1 8/80 0/30 16/552 8/120
552 2 P@2 5/75 5/25 30/582 0/120
582 2 3@2 10/65 0/25 20/602 10/130

Continued in Table 9.2

Table 9.1. Sample Panoramic tour by a Motivated Mars Rover with MCL Level 0 (Part 1).
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At WP CMD NRG MEM TIME DIST
602 3 P@3 5/60 5/20 30/632 0/130
632 3 7@3 10/50 0/20 20/652 10/140
652 7 P@7 5/45 5/15 30/682 0/140

Finished Panoramic Image taking part of tour
New goal: Transmitted, plan of 32T

682 7 3@7 10/35 0/15 20/702 10/150
Energy low, Preempting with Recharged goal

Setting plan to 5R
702 3 5@3 10/25 0/15 20/722 10/160
722 5 R@5 +75/100 0/15 75/797 0/160

Resuming Transmitted goal
Setting plan to 32T

797 5 3@5 10/90 0/15 20/817 10/170
Too long since last Panoramic Image

Adding TookPanormaic8 as low level goal
817 3 2@3 10/80 0/15 20/837 10/180
837 2 T@2 7/73 +15/30 15/852 0/180

Finished photo tour, Goals now TookImage3 and TookPanoramic8
Setting plan to 354C538I

852 2 3@2 10/63 0/30 20/872 10/190
872 3 5@3 10/53 0/30 20/892 10/200
892 5 4@5 10/43 0/30 20/912 10/210
912 4 C@4 1/42 0/30 20/932 0/210
932 4 5@4 10/32 0/30 20/952 10/220

Energy low, setting plan to R
952 5 R@5 +68/100 0/30 68/1020 0/220

Resuming TookImage3 goal, plan is38I
1020 5 3@5 10/90 0/30 20/1040 10/230
1040 3 8@3 10/80 0/30 20/1060 10/240
1060 8 I@8 5/75 5/25 20/1080 0/240

Setting plan to P for TakePanoramic8
1080 8 P@8 5/70 5/20 30/1110 0/240

Panoramic tour with added goals complete

Table 9.2. Sample Panoramic tour by a Motivated Mars Rover with MCL Level 0 (Part 2).
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script that sets the goals for the Rover, perturbs the environment, and waits for the Rover

to complete each set of goals. A sample script is shown in Figure 9.1. When the script

starts, the goals for the Rover are set so that it will execute a panoramic tour and run until

all goals are satisfied. After that, a perturbation is added to the environment, the panoramic

tour goals set and the simulation run until there are no more goals to be satisfied. When (if)

the Rover completes the second tour, the first perturbation is removed and another pertur-

bation (possibly the same one) is added. The goals for the panoramic tour are again set and

the Rover set off to finish the third tour. At this point, the controlling script is complete and

the experiment ends.

9.2 Experiments

Several experiments were performed using various MCL levels, perturbations and

frame comparison functions.

9.2.1 Experiment MCL Levels

Four of the six MCL levels will be used in the experiments. The Motivated Mars

Rover (which includes a Level 1: Instinctive component) will be augmented with

MCL Level 0: Bereft that gives the Rover no additional benefit,

MCL Level 1: Instinctive that will re-plan if there is an action expectation violation,

MCL Level 2: Evaluative and

MCL Level 3: Temporal which will suggest a variety of repairs.

MCL Levels 4 and 5 are not included as they are still hypothetical.
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9.2.2 Experiment Perturbations

For each of the four MCL levels, several experiments are run varying the perturbations

introduced between the first and second, and second and third panoramic tours. Seven

different perturbations selected from Section 3.2 are used along with the null perturbation,

P0. The perturbations used are listed in Table 9.3. As two perturbations are used per

experiment, there are fifty-six different scenarios (8 × 8 − 8 duplicate pairs) but all sixty-

four pairings are run.

Table 9.3. Eight perturbations used in the experiments

Num Description Section
0 No perturbation
1 Partial charging 3.2.2
2 Reduced capacity 3.2.3
3 Longer calibration time 3.2.4
4 Probabilistic calibration 3.2.2
5 Recharge loses localization 3.2.4
6 Path time change 3.2.6
7 Blocked path 3.2.6

9.2.3 Experimental Temporal Comparison Functions

For MCL Level 3: Temporal, experiments will be run with each of the eight frame

algorithms described in Section 8.2. The frame comparison algorithms are enumerated in

Table 9.4. An additional temporal comparison function, F9: Passive, is included in the

experiments. This is the default temporal comparison function included with MCL and

was described in Section 7.4.

The total number of experiments is determined by the number of MCL levels (4), the

number of perturbation combinations (64), and the number of frame comparison algorithms
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Table 9.4. Nine frame comparison algorithms used in the experiments

Num Description Static
Evaluation

1 First (Same) 11
2 New (Different) 88
3 Random (50/50) 50
4 EVS 85
5 IIS 90
6 EVS and IIS 90
7 EVS but not IIS 83
8 IIS but not EVS 90
9 Passive –

(9). As the algorithms are only used at MCL Level 3: Temporal, the base number of

experiments to be performed is: 64+64+64+64×9 = 768. To reduce the variability and

to perform ANOVA (Judd, McClelland, & Ryan 2009) calculations, each set of experiments

needs to be performed twenty times, for a grand total of at least 15,360 experiments.

9.3 Metrics Collection

Each experimental run collects several pieces of information to confirm the comple-

tion (or not) of the three panoramic tours as well as to evaluate the performance of MCL

and the frame comparison functions under the various perturbation conditions.

9.3.1 CSV files

The experiment software records data in comma separated variable (CSV) files to al-

low easy incorporation into most spreadsheet, graphing, and data analysis programs. The

first line of each file is a header with a short name for each column. The remaining lines

contain the data from one experimental variation. The data columns are detailed in Ta-
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bles 9.5 and 9.6. A short sample results file in shown in Figure 9.2.

9.3.2 SQL files

A utility program takes one or more CSV files generated from running the experiments

and combines them into an sqlite3 database. From this database, a series of SQL queries

are run to produce reports on the experiment results. In addition to the standard queries,

ad-hoc SQL requests can be made to delve deeper into the data.

The database consists of two tables: one to record the CSV file names used, and

another to record the experimental data itself. The description of the fields is the same

as those given in Tables 9.5 and 9.6. The SQL to create the database tables is given in

Figure 9.3.

9.4 Evaluation Criteria

The purpose of the experiments is to support the claim that an agent using metacog-

nition with a temporal component (level 3) and the proper frame comparison function will

perform better in a perturbed environment than an agent using instinctive or evaluative

metacognition. The number of steps required to complete a triple panoramic tour will be

used as the primary method to compare the Rover using different MCL levels and frame

comparison functions.

ANOVA analysis (NIST/SEMATECH 2003) is done to determine if the Mars Rover

performance using one MCL level (and frame comparison function) is statistically signifi-

cant from another. The null hypothesis is that there is no difference between the number of

steps needed to complete the triple panoramic tour when using the different MCL compo-

nents. This analysis is done using the Python statlib.anova package.1

1http://code.google.com/p/python-statlib
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The success of the MCL Frame comparison function will be evaluated by the number

of tours completed and the average number of actions (steps) required. A single metric,

a letter grade from A to F, is used to combine both number of steps and number of tour

failures. As usual, the lower letter grades are better (A is best).

Computing the grade score starts by grading each trial using the criteria in Table 9.7.

Next, the number of trials for each letter score is determined. Each count is then multiplied

by the score for the grade given in Table 9.7. These are summed and then divided by the

number of experimental trials to get a numeric score between 0 and 100. A score greater

than 90 is assigned an A, greater than 80 a B, greater than 70 a C, greater that 60 a D.

Scores of 60 or less are given an F.
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on start: call rover.set_goal_at_level(’TookPanoramic1,
TookPanoramic2,
TookPanoramic3,
TookPanoramic4,
TookPanoramic5,
TookPanoramic6,
TookPanoramic7,
TookPanoramic8;
Transmitted’),

run until nogoal;
on sleep: stop;
and then
on start: call rover.set_ezp(P3),

call rover.set_goal_at_level(’TookPanoramic1,
TookPanoramic2,
TookPanoramic3,
TookPanoramic4,
TookPanoramic5,
TookPanoramic6,
TookPanoramic7,
TookPanoramic8;
Transmitted’),

run until nogoal;
on sleep: stop;
and then
on start: call rover.set_ezp(P6),

call rover.set_goal_at_level(’TookPanoramic1,
TookPanoramic2,
TookPanoramic3,
TookPanoramic4,
TookPanoramic5,
TookPanoramic6,
TookPanoramic7,
TookPanoramic8;
Transmitted’),

run until nogoal;
on sleep: stop;

FIG. 9.1. Sample experiment script for three panoramic tours with perturbations.
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Table 9.5. Description of the fields in the experiment result CSV file (Part 1).

Column Values Description
MCL 0− 3 MCL Level (see Section 9.2.1)
FRM 1− 9 Frame comparison algorithm (see Table 9.4)

P1 0− 7 Perturbation after first tour (see Table 9.3)
P2 0− 7 Perturbation after second tour (see Table 9.3)

STEPS ≥ 0 Total number of actions performed
TTIME ≥ 0 Total time to complete the script
TDIST ≥ 0 Total distance traveled
CMPLT 0− 100 Percent of three tours completed

1 ≥ 0 Number of Goto WayPoint 1 actions
2 ≥ 0 Number of Goto WayPoint 2 actions
3 ≥ 0 Number of Goto WayPoint 3 actions
4 ≥ 0 Number of Goto WayPoint 4 actions
5 ≥ 0 Number of Goto WayPoint 5 actions
6 ≥ 0 Number of Goto WayPoint 6 actions
7 ≥ 0 Number of Goto WayPoint 7 actions
8 ≥ 0 Number of Goto WayPoint 8 actions
B ≥ 0 Number of Blow actions
C ≥ 0 Number of Calibrate actions
D ≥ 0 Number of Diagnose actions
F ≥ 0 Number of Fast Speed actions
I ≥ 0 Number of Take Image actions
L ≥ 0 Number of Localize actions
M ≥ 0 Number of Medium Speed actions
P ≥ 0 Number of Take Panoramic actions
R ≥ 0 Number of Recharge actions
S ≥ 0 Number of Slow Speed actions
T ≥ 0 Number of Transmit actions
W ≥ 0 Number of Wait actions
Z ≥ 0 Number of Sleep actions
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Table 9.6. Description of the fields in the experiment result CSV filea (Part 2).

Column Values Description
knt_zero ≥ 0 Monitor give no suggestions
knt_one ≥ 0 Monitor give one suggestion
knt_two ≥ 0 Monitor give two suggestions
knt_three ≥ 0 Monitor give three suggestions
knt_four ≥ 0 Monitor give four or more suggestions
UNKNOWN ≥ 0 Times an Unknown CRC suggested
IGNORE ≥ 0 Times Ignore suggested
NOOP ≥ 0 Times No Operation suggested
TRY_AGAIN ≥ 0 Times Try Again suggested
SOLICIT_HELP ≥ 0 Times Solicit Help suggested
RELINQUISH_CONTROL ≥ 0 Times Relinquish Control suggested
SENSOR_DIAG ≥ 0 Times Sensor Diagnostic suggested
EFFECTOR_DIAG ≥ 0 Times Effector Diagnostic suggested
SENSOR_RESET ≥ 0 Times Sensor Reset suggested
EFFECTOR_RESET ≥ 0 Times Effector Reset suggested
ACTIVATE_LEARNING ≥ 0 Times Activate Learning suggested
ADJ_PARAMS ≥ 0 Times Adjust Learning Parameters suggested
REBUILD_MODELS ≥ 0 Times Rebuild Models suggested
REVISIT_ASSUMPTIONS ≥ 0 Times Revisit Assumptions suggested
AMEND_CONTROLLER ≥ 0 Times Amend Controller suggestion
REVISE_EXPECTATIONS ≥ 0 Times Revise Expectations suggestion
ALG_SWAP ≥ 0 Times Algorithm Swap suggested
CHANGE_HLC ≥ 0 Times Change HLC suggested
RESCUE ≥ 0 Times Rescue suggested
GIVE_UP ≥ 0 Times Give Up suggested
optionsExhausted ≥ 0 Times response Options Exhausted
otherResponse ≥ 0 Times an unlisted response was given
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CREATE TABLE f i l e n a m e s (
f n _ i d i n t e g e r primary key a u t o i n c r e m e n t ,
f i l e n a m e t e x t ) ;

CREATE TABLE e x p e r i m e n t s (
ex p_ id i n t e g e r primary key a u t o i n c r e m e n t ,
f i l e _ i d i n t e g e r , ’MCL’ i n t e g e r , ’FRM’ i n t e g e r ,
’ P1 ’ i n t e g e r , ’ P2 ’ i n t e g e r , ’STEPS ’ i n t e g e r ,
’TTIME ’ i n t e g e r , ’TDIST ’ i n t e g e r , ’CMPLT’ i n t e g e r ,
’ 1 ’ i n t e g e r , ’ 2 ’ i n t e g e r , ’ 3 ’ i n t e g e r , ’ 4 ’ i n t e g e r ,
’ 5 ’ i n t e g e r , ’ 6 ’ i n t e g e r , ’ 7 ’ i n t e g e r , ’ 8 ’ i n t e g e r ,
’B ’ i n t e g e r , ’C ’ i n t e g e r , ’D’ i n t e g e r , ’F ’ i n t e g e r ,
’ I ’ i n t e g e r , ’L ’ i n t e g e r , ’M’ i n t e g e r , ’P ’ i n t e g e r ,
’R ’ i n t e g e r , ’S ’ i n t e g e r , ’T ’ i n t e g e r , ’W’ i n t e g e r ,
’Z ’ i n t e g e r ,
’ k n t _ z e r o ’ i n t e g e r , ’ kn t_one ’ i n t e g e r ,
’ kn t_ two ’ i n t e g e r , ’ k n t _ t h r e e ’ i n t e g e r ,
’ k n t _ f o u r ’ i n t e g e r ,
’UNKNOWN’ i n t e g e r , ’IGNORE ’ i n t e g e r ,
’NOOP’ i n t e g e r , ’TRY_AGAIN ’ i n t e g e r ,
’SOLICIT_HELP ’ i n t e g e r , ’RELINQUISH_CONTROL ’ i n t e g e r ,
’SENSOR_DIAG ’ i n t e g e r , ’EFFECTOR_DIAG ’ i n t e g e r ,
’SENSOR_RESET ’ i n t e g e r , ’EFFECTOR_RESET ’ i n t e g e r ,
’ACTIVATE_LEARNING ’ i n t e g e r ,
’ADJ_PARAMS ’ i n t e g e r , ’REBUILD_MODELS ’ i n t e g e r ,
’REVISIT_ASSUMPTIONS ’ i n t e g e r ,
’AMEND_CONTROLLER’ i n t e g e r ,
’REVISE_EXPECTATIONS ’ i n t e g e r ,
’ALG_SWAP’ i n t e g e r , ’CHANGE_HLC’ i n t e g e r ,
’RESCUE ’ i n t e g e r , ’GIVE_UP ’ i n t e g e r ,
’ o p t i o n s E x h a u s t e d ’ i n t e g e r ,
’ o t h e r R e s p o n s e ’ i n t e g e r ) ;

FIG. 9.3. SQL CREATE TABLE statements for the MCL/Mars Rover experiments



146

Table 9.7. Grading Criteria for a Single Experimental Trial

Grade Points Criteria
A 95 Number of steps less than average number of steps for un-

perturbed trials
B 85 Number of steps less than average number of steps plus one

standard deviation of the unperturbed trials
C 75 Number of steps less than average number of steps plus two

standard deviations of the unperturbed trials
D 65 Number of steps more than average number of steps plus two

standard deviations of the unperturbed trials but less than the
maximum number of steps allowed for experimental trials

F 0 Number of steps equal to maximum number of steps allowed
for experimental trials



Chapter 10

RESULTS

The triple-panoramic tours using the MCL metacognition Levels 0: Bereft, 1: Instinc-

tive, 2: Evaluative, and 3: Temporal were run as prescribed in the preceding methodology

chapter. The averaged tabular results are included in Appendix A. The figures and tables in

this chapter provide summary information or explore specific experimental results. There

were

• 100 experimental results CSV files analyzed,

• 38400 experimental trials,

• and a maximum of 500 steps allowed in a trial.

The experimental results will be presented in three phases. First are the trials with no

perturbations as these form a baseline against which the other trials will be judged. Next

are trials where the same perturbation is used in the second and third parts of the triple

panoramic tour. After that are trials using two different perturbations. In the last section,

the frame comparison function with the best performance is determined along with some

general observations.

147
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10.1 No Perturbation Results

The basic information about the unperturbed experimental trials is given in Table 10.1.

Of the 38400 experimental trials, 600 were done without any perturbations. In an ideal

world, with a perfect planner, all 600 trials should have the same number of steps. But

the Rover has only a simple, non-deterministic, STRIPS planner which introduces some

variability in the quality of plans generated.

Table 10.1. Unperturbed Trials

What Number
P0 experiments 600
P0 minimum number of steps 123
P0 average number of steps 147
P0 maximum number of steps 183
P0 minimum total time 3293
P0 average total time 3901
P0 maximum total time 4797
P0 average step time 26.54

This variability is shown in the histograms of the steps required to complete the un-

perturbed plans shown in Figure 10.1. The best trial had 123 steps and the worst 183. The

unperturbed Mars Rover experiment trials were completed in an average of 147.1 steps.

The executed steps averaged 26.54 seconds per step. Most steps take 16 or 20 seconds but

recharge (R) and transmit (T) may take longer.

Table 10.2 shows the 600 trials divided by the MCL level and Frame comparison

method used. An ANOVA test (bottom of Table 10.2) shows that there is no statistical dif-

ference between the trials when considering the MCL level / Frame comparison functions.

This is the expected result as, when there are no perturbations, MCL is not invoked.

The average of 147.1 steps and the standard deviation of 9.0 are used to fill in the step
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FIG. 10.1. P0 Histogram

limits for the letter scores defined in Table 9.7. Table 10.3 shows the step limits for the five

grades.
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Table 10.2. P0 Statistics by MCL / Frame comparison function

MCL Level Min Mean Max σ
M0: Bereft 127 145.9 168 9.78
M1: Instinctive 127 147.4 168 9.06
M2: Evaluative 127 145.6 163 9.11
M3: Temporal 134 148.3 160 7.5
F1: First 128 147.1 165 8.51
F2: New 130 147.7 163 7.92
F3: Random 124 147.4 167 10.25
F4: EVS 123 145.8 162 8.12
F5: IIS 124 147.5 164 9.68
F6: EVS and IIS 132 146.6 169 8.94
F7: EVS but not IIS 129 148.6 183 10.9
F8: IIS but not EVS 132 147.5 162 8.07

ANOVA judged all methods equal

Table 10.3. Grading Limits for a Single Experimental Trial

Grade Points Criteria
A 95 Number of steps ≤ 147
B 85 148 < Number of steps ≤ 156
C 75 157 < Number of steps ≤ 165
D 65 166 < Number of steps ≤ 499
F 0 Number of steps = 500
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10.2 Single Perturbation Results

In this section, Mars Rover experimental trials with a single perturbation are analyzed.

For each perturbation, a histogram and statistics table are shown. Table 10.4 has a list of

figures and tables for the seven single perturbation trials.

Table 10.4. Single Perturbation Histograms and Statistics

Perturbation Histogram Statistics
P1: Partial charging Figure 10.2 Table 10.7
P2: Reduced capacity Figure 10.3 Table 10.8
P3: Longer calibration time Figure 10.4 Table 10.9
P4: Probabilistic calibration Figure 10.5 Table 10.10
P5: Recharge loses calibration Figure 10.6 Table 10.11
P6: Path time change Figure 10.7 Table 10.12
P7: Blocked path Figure 10.8 Table 10.13

Table 10.5 shows the number of completed single perturbation trials for each of the

four MCL levels with level 3 broken out for various frame comparison functions. Of the

seven different perturbations, P7: Blocked path caused the most failures with P2: Reduced

capacity and P1: Partial charging a distant second and third.

MCL Level 0: Bereft, failed to complete any trial with P1: Partial charging or P7:

Blocked path. MCL Level 1: Instinctive, which re-planned on any expectation failure fared

only slightly better being able to complete one trial of fifty with P1: Partial charging. MCL

Level 2: Evaluative, failed with P2: Reduced capacity and P7: Blocked path. The MCL

level 1 and 2 failures are consistent with the failure examples give in Tables 4.4 and 6.6 at

the end of Chapters 3 and 6.

Table 10.6 shows the average number of steps for the trials with a single perturbation.

The lower the average number of steps, the better the performance. Where there were
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failures in Table 10.5, Table 10.6 will have an average number of steps near or equal to

500.

MCL Level 2, Evaluative, and MCL Level 3, Temporal, comparison routine 2: New,

have the same failures in Table 10.5 and comparable steps in Table 10.6. This was expected

as the MCL Level 2 treats every exception as a new event as does the New comparison

function.
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10.2.1 P1: Partial Charging

The inability of the MCL Level 0: Bereft and MCL Level 1: Instinctive, to complete

panoramic tours with the P1: Partial charging perturbation skews the P1 histogram, Fig-

ure 10.2. It is shown with a broken horizontal axis to allow more of the information to

seen. For any histogram with failure trials, two averages are give: one including the 500

step trials, and one without. In this case, the average is 226.13 when the failing cases are

included and 172.02 when they are not.

The ANOVA analysis given at the bottom of Table 10.7 shows puts MCL levels 0

and 1 in the same poorly performing group and separates into three groups with temporal

comparison functions F2: New and F6: EVS and IIS doing the best.
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FIG. 10.2. P1 Histogram
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Table 10.7. P1 Statistics by MCL / Frame comparison function

MCL Level Min Mean Max σ A B C D F G
M0: Bereft 500 500.0 500 0.0 0 0 0 0 50 F
M1: Instinctive 273 495.5 500 32.1 0 0 0 1 49 F
M2: Evaluative 143 170.7 243 17.06 2 9 9 30 0 C
M3: Temporal 140 168.9 215 13.12 2 6 10 32 0 C
F1: First 139 170.4 210 14.02 2 7 8 33 0 C
F2: New 143 168.1 189 12.52 2 8 12 28 0 C
F3: Random 145 185.6 283 28.55 1 3 2 44 0 D
F4: EVS 144 170.5 207 11.12 1 4 11 34 0 D
F5: IIS 148 172.9 239 16.78 0 7 5 38 0 D
F6: EVS and IIS 140 168.1 198 11.64 3 5 10 32 0 C
F7: EVS but not IIS 142 174.1 236 16.7 2 5 4 39 0 D
F8: IIS but not EVS 138 168.8 196 14.28 2 10 9 29 0 C

ANOVA ordered grouped methods
C F2: New and F6: EVS and IIS
C-D M2, M3, F1, F4, F5, F7 and F8
D F3: Random
F M0: Bereft and M1: Instinctive

10.2.2 P2: Reduced Capacity

Reducing the battery of the Rover proved more challenging than reducing the amount

of recharge. MCL Level 2: Evaluative, failed completely as did its twin MCL Level 3:

Temporal with comparison function F2: New. Also failing was MCL Level 3: Tempo-

ral with comparison function F8: IIS but not EVS. So while a Rover with MCL Level 1:

Instinctive, can handle this perturbation, Rovers with what should be a “better” metacog-

nitive assistance do not. All of the failing MCLs keep suggesting TRY AGAIN when the

recharge action brought the Rover’s battery only up to 80 energy units and not the expected

100. MCL continued repeating the advice until the trial was stopped at 500 steps. While

TRY AGAIN is good advice in some cases (e.g., P1: Partial charging), it does not solve the

problem of reduced battery capacity.
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The ANOVA analysis reflects the difference between the failing and non-failing trials.
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FIG. 10.3. P2 Histogram
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Table 10.8. P2 Statistics by MCL / Frame comparison function

MCL Level Min Mean Max σ A B C D F G
M0: Bereft 132 159.7 186 12.04 6 10 18 16 0 C
M1: Instinctive 140 163.3 200 11.7 2 13 17 18 0 C
M2: Evaluative 500 500.0 500 0.0 0 0 0 0 50 F
M3: Temporal 150 177.0 223 15.09 0 3 4 43 0 D
F1: First 153 177.5 204 11.18 0 1 4 45 0 D
F2: New 500 500.0 500 0.0 0 0 0 0 50 F
F3: Random 139 168.7 194 12.68 3 2 16 29 0 C
F4: EVS 149 175.8 205 10.58 0 1 6 43 0 D
F5: IIS 130 163.3 194 12.59 6 8 16 20 0 C
F6: EVS and IIS 130 160.9 182 12.03 7 8 15 20 0 C
F7: EVS but not IIS 161 177.3 203 10.55 0 0 5 45 0 D
F8: IIS but not EVS 500 500.0 500 0.0 0 0 0 0 50 F

ANOVA ordered grouped methods
C M0, M1, F5 and F6
C F3: Random
D M3, F1, F4 and F7
F M2: Evaluative, F2: New and F8: IIS but not EVS

10.2.3 P3: Longer Calibration Time

With longer calibration time, the Rovers were divided into those whose average num-

ber of steps were around 149 (about the same as unperturbed) and whose average steps

were near 320. So while there were no complete failures, MCL Level 2: Evaluative and

MCL Level 3: Temporal with comparison functions 2, 7, and 8 provided poor advice which

doubled the number of steps. This difference between the two groups of trials is statistically

significant as seen in the ANOVA analysis in Table 10.9.

Rovers using MCL Level 0: Bereft, didn’t notice the longer calibration time. The

Rovers using MCL Level 1: Instinctive, responded to the expectation failure by re-planning.

This didn’t change the calibration times but may have resulted in slightly better plans. The

other Rovers were divided into those whose metacognitive assistant offered TRY AGAIN
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once and those that continued to offer it again and again. Repeated attempts to Calibrate

eventually drained the battery until recharging became imperative. Once the Rover was

recharged, it moved on to take the photographic image. This time, the assistant’s bad

advice didn’t stop the Rover from completing the panoramic tour. The bad advice did

cause a lengthy delay.
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FIG. 10.4. P3 Histogram
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Table 10.9. P3 Statistics by MCL / Frame comparison function

MCL Level Min Mean Max σ A B C D F G
M0: Bereft 127 149.0 169 8.96 20 22 5 3 0 B
M1: Instinctive 118 147.3 166 9.71 25 16 8 1 0 B
M2: Evaluative 269 319.2 414 28.54 0 0 0 50 0 D
M3: Temporal 133 147.4 164 9.51 25 14 11 0 0 B
F1: First 133 148.7 173 9.42 23 15 11 1 0 B
F2: New 261 326.1 440 35.76 0 0 0 50 0 D
F3: Random 132 149.4 165 8.96 21 16 13 0 0 B
F4: EVS 131 148.7 167 8.85 20 22 6 2 0 B
F5: IIS 130 146.8 166 8.92 27 16 5 2 0 B
F6: EVS and IIS 136 149.0 168 8.38 25 16 8 1 0 B
F7: EVS but not IIS 256 320.1 417 29.13 0 0 0 50 0 D
F8: IIS but not EVS 262 317.7 385 33.84 0 0 0 50 0 D

ANOVA ordered grouped methods
B M0, M1, M3, F1, F3, F4, F5 and F6
D M2, F2, F7 and F8

10.2.4 P4: Probabilistic Calibration

Generally only three Photo Image actions are needed during a triple panoramic tour so

only three calibrations will need to be done. The repair, TRY AGAIN, should be sufficient

to overcome this perturbation. The calibration action would be repeated until it eventually

succeeds (usually on the next attempt) and then TRY AGAIN would not be suggested. The

ANOVA analysis (bottom of Table 10.10) does separate the experimental trials into three

distinct sets despite having very close means.

Rovers using MCL Level 0: Bereft, whose metacognitive agent would not suggest TRY

AGAIN, would get a failure upon attempting to take the image while not calibrated. The

failure would cause a new plan to be generated which would include a calibration. Rovers

using MCL Level 1: Instinctive, would re-plan when the calibration expectation. This plan

would start with a calibration action so they were effectively doing the TRY AGAIN repair.
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FIG. 10.5. P4 Histogram

Table 10.10. P4 Statistics by MCL / Frame comparison function

MCL Level Min Mean Max σ A B C D F G
M0: Bereft 132 151.8 181 10.31 16 20 10 4 0 B
M1: Instinctive 125 145.6 172 9.22 24 23 2 1 0 B
M2: Evaluative 125 149.3 165 9.3 19 20 11 0 0 B
M3: Temporal 122 147.5 176 10.1 21 19 9 1 0 B
F1: First 126 145.1 192 11.56 30 13 6 1 0 B
F2: New 126 148.0 164 9.36 24 17 9 0 0 B
F3: Random 124 147.1 162 9.05 19 24 7 0 0 B
F4: EVS 127 145.8 164 8.62 29 15 6 0 0 B
F5: IIS 133 150.1 167 8.62 21 17 10 2 0 B
F6: EVS and IIS 129 148.2 182 10.6 22 19 7 2 0 B
F7: EVS but not IIS 132 150.2 199 12.23 19 18 10 3 0 B
F8: IIS but not EVS 127 147.6 167 10.24 22 17 10 1 0 B

ANOVA ordered grouped methods
B M1: Instinctive, F1: First and F4: EVS
B M2, M3, F2, F3, F5, F6, F7 and F8
B M0: Bereft
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10.2.5 P5: Recharge Loses Calibration

In order to take an Image (I), the camera has to be calibrated (C). Since these are done

at different nodes, a movement command must be executed between the I and C commands.

If the movement causes the power level to drop too low, then a recharge (R) must be done.

With the P5 perturbation, a recharge after doing a calibration requires another calibration

to be done. Since only three Images are likely added to a triple panoramic tour, only three

calibrations should be needed.

If the Rover does a calibration and then a recharge, MCL levels 1 and above would

notice the loss of calibration. A second recharge (such as after a TRY AGAIN) would not

lose calibration because the Rover was no longer calibrated. The new plan would now

direct the Rover to calibrate. With a full battery, the Rover would be able to calibrate and

take the photographic image without needing to charge again. The ANOVA analysis shows

that there were no significant performance differences between the trials.
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FIG. 10.6. P5 Histogram
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Table 10.11. P5 Statistics by MCL / Frame comparison function

MCL Level Min Mean Max σ A B C D F G
M0: Bereft 132 156.5 219 19.98 15 16 10 9 0 B
M1: Instinctive 131 158.1 221 21.27 13 16 13 8 0 B
M2: Evaluative 134 157.4 282 25.81 19 13 12 6 0 B
M3: Temporal 130 158.3 227 21.47 16 10 18 6 0 B
F1: First 127 156.2 224 22.12 20 14 8 8 0 B
F2: New 123 161.5 294 32.53 20 12 9 9 0 B
F3: Random 126 157.3 226 23.24 20 7 12 11 0 B
F4: EVS 124 161.0 224 26.85 16 12 9 13 0 B
F5: IIS 128 158.8 230 25.07 18 12 10 10 0 B
F6: EVS and IIS 128 165.7 228 32.14 20 8 7 15 0 B
F7: EVS but not IIS 131 157.5 225 24.5 20 9 13 8 0 B
F8: IIS but not EVS 131 161.8 225 25.18 12 15 13 10 0 B

ANOVA judged all methods equal

10.2.6 P6: Path Time Change

Like changing the time to perform re-calibration, changing the time to move from one

node to another did little to the performance of the Rover. The times for completing the

triple panoramic tour with this perturbation were not much different from those without a

perturbation. The ANOVA analysis isolated F6: EVS and IIS which had the highest mean

into its own group otherwise there were no significant performance differences.

While every Rover’s triple panoramic tour had to include three calibrations and thus

the Rover had to encounter the changed calibration time at least twice, not every tour

needed to move between nodes 3 and 8. Also, when movement was made between those

two nodes, MCL would see the longer transit time and make a TRY AGAIN suggestion.

But as the Rover would have moved, it could no longer re-execute the 3@8 (or 8@3) com-

mand so the TRY AGAIN suggestion would be ignored.



164

01

32

124 175147
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Table 10.12. P6 Statistics by MCL / Frame comparison function

MCL Level Min Mean Max σ A B C D F G
M0: Bereft 129 147.3 175 9.65 25 16 8 1 0 B
M1: Instinctive 126 147.2 165 9.48 26 18 6 0 0 B
M2: Evaluative 126 147.5 170 9.67 27 14 8 1 0 B
M3: Temporal 131 148.1 167 8.93 24 16 9 1 0 B
F1: First 132 147.3 161 8.46 21 23 6 0 0 B
F2: New 133 147.7 162 7.61 27 16 7 0 0 B
F3: Random 126 147.5 170 9.15 21 20 8 1 0 B
F4: EVS 132 147.1 162 8.67 24 18 8 0 0 B
F5: IIS 125 146.6 171 9.92 22 22 5 1 0 B
F6: EVS and IIS 131 150.5 164 8.28 19 15 16 0 0 B
F7: EVS but not IIS 124 146.6 168 9.67 25 20 4 1 0 B
F8: IIS but not EVS 128 146.2 167 10.38 26 16 7 1 0 B

ANOVA ordered grouped methods
B M0, M1, M2, M3, F1, F2, F3, F4, F5, F7 and F8
B F6: EVS and IIS
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10.2.7 P7: Blocked Path

Rovers using MCL Levels 0: Bereft, 1: Instinctive, and 2: Evaluative, were unable

to complete any tours with the path blocked between nodes 3 and 8. Some MCL Level 3:

Temporal, Rovers failed completely (comparison functions 2 and 8). Other Rovers (with

comparison functions 1 and 7) had some successes and failures. While the rest (3, 4, 5, and

9) had all successes.

The failures were caused by TRY AGAIN being offered as the suggestion again and

again. The success occurred when the TRY AGAIN was judged to have failed and REBUILD

MODELS suggested or when a low battery allowed the Rover to ignore the TRY AGAIN

suggestion, recharge, and then have a plan that avoided the broken node 3 to node 8 link.
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FIG. 10.8. P7 Histogram
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Table 10.13. P7 Statistics by MCL / Frame comparison function

MCL Level Min Mean Max σ A B C D F G
M0: Bereft 500 500.0 500 0.0 0 0 0 0 50 F
M1: Instinctive 500 500.0 500 0.0 0 0 0 0 50 F
M2: Evaluative 500 500.0 500 0.0 0 0 0 0 50 F
M3: Temporal 135 157.3 186 11.4 6 23 12 9 0 B
F1: First 144 347.0 500 167.62 1 3 7 12 27 F
F2: New 500 500.0 500 0.0 0 0 0 0 50 F
F3: Random 140 164.3 196 12.45 3 10 15 22 0 C
F4: EVS 134 158.9 185 9.64 4 17 14 15 0 C
F5: IIS 138 159.2 187 11.18 7 16 17 10 0 C
F6: EVS and IIS 137 157.8 183 10.98 8 15 16 11 0 C
F7: EVS but not IIS 152 389.7 500 150.5 0 2 4 12 32 F
F8: IIS but not EVS 500 500.0 500 0.0 0 0 0 0 50 F

ANOVA ordered grouped methods
B-C M3, F4, F5 and F6
C F3: Random
F F1: First and F7: EVS but not IIS
F M0, M1, M2, F2 and F8

10.2.8 Analysis of Single Perturbation

Table 10.14 shows the steps taken, total time, and counts of action performed for the

best and worst MCL level / frame comparison function for each single perturbation. By

looking at the best cases, the triple panoramic tour is likely to require 3 photographic im-

ages (I) and therefore 3 calibrations (C), 12 recharges (R) (unless the perturbation involves

recharging in which case you need 24), 24 to 27 panoramic images (P), 6 transmissions (T)

and 1 location (L).

For P0: No Perturbation, the best (MCL Level 3: Temporal, with comparison function

F4: EVS) and the worst (MCL Level 3: Temporal, with comparison function F7: EVS but

not IIS) owe their places to variations in the plans generated by the STRIPS planner. Rovers

who get longer plans end up having to take extra images and panoramic views which forces
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additional recharges, transmissions, calibrations, and localizations.

With P1: Partial charging, the important counts to observe are for 5 and R. A Rover

with MCL Level 3: Temporal, and comparison function 7: EVS but not IIS, went to the

recharge location 18 times (about the same as the best P0 time) but, because of the TRY

AGAIN suggestion, recharged 28 times. A Rover using MCL Level 1: Instinctive, without

such TRY AGAIN guidance, returned to node 5 115 times for 115 recharges and would still

be doing it if the trial hadn’t been stopped at 500 steps.

An excessive number of recharges, 447, was also done by the MCL Level 2: Evalu-

ative Rover with the most steps for P2: Reduced capacity. In this case, MCL noticed that

the recharge did not bring the battery level to the expected 100 level and suggested that

the recharge be done again. As the reduced battery capacity will never advance the bat-

tery level past 80, when the repeated recharge did not reach the anticipated 100 level, TRY

AGAIN was again suggested. This bad advice repeated to the end of the trial at 500 steps.

More calibrations than normal were done with P3: Longer calibration time, P4: Prob-

abilistic calibration, and P5: Recharge loses calibration.

Table 10.15 shows the MCL repair suggestions made for the single perturbation trials.

Naturally, the unperturbed (P0) trials have no suggestions as no exceptions were raised.

TRY AGAIN was the most suggested repair and it was suggested for all perturbations. RE-

BUILD MODELS was suggested by some when it was seen that TRY AGAIN wasn’t work-

ing. A distant third was SENSOR DIAGNOSTIC which was only suggested by the very

desperate coping with the blocked path.
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Table 10.15. Repair suggestions made by MCL / Perturbation

Repair Suggestion P0 P1 P2 P3 P4 P5 P6 P7
Unknown 0 0 0 0 0 0 0 0
Ignore 0 0 0 0 0 0 0 0
noop 0 4268 765 102 30 65 250 1644
Try again 0 8046 70772 32025 371 708 1378 54301
Solicit help 0 0 0 0 0 0 0 0
Relinquish control 0 0 0 0 0 0 0 0
Sensor diagnostic 0 0 0 0 0 0 0 117
Effector diagnostic 0 0 0 0 0 0 0 0
Sensor reset 0 0 0 0 0 0 0 0
Effector reset 0 0 0 0 0 0 0 0
Activate learning 0 0 0 0 0 0 0 0
Adjust params 0 0 0 0 0 0 0 0
Rebuild models 0 150 250 50 47 2 0 1114
Revisit assumptions 0 0 0 0 0 0 0 0
Amend controller 0 0 0 0 0 0 0 0
Revise expectation 0 0 0 0 0 0 0 0
Algorithm swap 0 0 0 0 0 0 0 0
Change HLC 0 0 0 0 0 0 0 0
Rescue 0 0 0 0 0 0 0 0
Give up 0 0 0 0 0 0 0 0
Options exhausted 0 0 0 0 0 0 0 0
Other response 0 0 0 0 0 0 0 0

Each trial with a single perturbation was graded and tabulated with the results shown

in Table 10.16. When averaged and a final grade assigned, it is clear that there is no

single standout. MCL Levels 0: Bereft, 1: Instinctive, 2: Evaluative, and the comparison

functions F2: New and F8: IIS but not EVS all score badly due to the number of failures.

The best, MCL Level 3: Temporal with comparison functions (4, 5, 6, and passive), are

clustered together with F5: IIS a slight favorite.
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Table 10.16. Single Perturbation Grades by MCL / Frame comparison function

MCL Level Min Mean Max σ A B C D F G
M0: Bereft 127 252 500 157 82 84 51 33 100 F
M1: Instinctive 118 250 500 157 90 86 46 29 99 D
M2: Evaluative 125 277 500 152 67 56 40 87 100 F
M3: Temporal 122 157 227 17 94 91 73 92 0 B
F1: First 126 184 500 92 97 76 50 100 27 C
F2: New 123 278 500 152 73 53 37 87 100 F
F3: Random 124 159 283 20 88 82 73 107 0 C
F4: EVS 124 158 224 17 94 89 60 107 0 C
F5: IIS 125 156 239 16 101 98 68 83 0 B
F6: EVS and IIS 128 157 228 17 104 86 79 81 0 B
F7: EVS but not IIS 124 216 500 107 66 54 40 158 32 D
F8: IIS but not EVS 127 277 500 152 62 58 39 91 100 F

ANOVA ordered grouped methods
B-C M3, F4, F5 and F6
C F3: Random
C F1: First
D F7: EVS but not IIS
D-F M0: Bereft and M1: Instinctive
F M2: Evaluative, F2: New and F8: IIS but not EVS

10.3 Dual Perturbation Results

Experimental trials with two different perturbations make up the majority of the Mars

Rover experiments. The average number of steps from the PxPy trials by MCL level and

temporal comparison function are shown in Appendix A. The summary information (min,

mean, max steps and standard deviation) with grades and ANOVA groupings is below in

Table 10.17. The catastrophic failures for single perturbations (e.g., P1: Reduced recharg-

ing for MCL Levels 0: Bereft, 1: Instinctive and P2: Reduced capacity for MCL Level 2:

Evaluative) also caused failure when these perturbations were part of a dual perturbation

trial. Even when each perturbation of a dual trial could be conquered singularly, having
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two perturbations could cause a trial to reach the 500 step limit. The only Rover that did

not have a complete failure was the one using the random frame comparison function.

Table 10.17. PxPy Grades by MCL / Frame comparison function

MCL Level Min Mean Max σ A B C D F G
M0: Bereft 122 288 500 169 680 652 382 234 1252 F
M1: Instinctive 118 292 500 171 711 663 355 181 1290 F
M2: Evaluative 124 318 500 161 459 371 264 733 1373 F
M3: Temporal 122 162 500 40 756 819 811 792 22 C
F1: First 120 199 500 112 771 672 642 727 388 C
F2: New 123 318 500 161 431 368 276 752 1373 F
F3: Random 117 161 411 21 696 738 757 1009 0 C
F4: EVS 123 161 500 38 812 790 781 800 17 C
F5: IIS 123 161 500 42 835 919 774 637 35 B
F6: EVS and IIS 121 161 500 40 836 849 828 664 23 B
F7: EVS but not IIS 124 222 500 113 480 498 469 1346 407 D
F8: IIS but not EVS 123 316 500 162 453 371 287 723 1366 F

ANOVA ordered grouped methods
B-C M3, F3, F4, F5 and F6
C F1: First
D F7: EVS but not IIS
F M0: Bereft and M1: Instinctive
F M2: Evaluative, F2: New and F8: IIS but not EVS

Table 10.18 shows the repair suggestions made by the MCL levels 0 through 3.

There are no suggestions for MCL Level 0: Bereft, as that Rover only uses its own, pre-

programmed motivations. MCL Level 1: Instinctive was set to always return NOOP which

the agent interprets as a suggestion to create a new plan from the current goals based on

the current status. As it was in Table 10.15, TRY AGAIN was the top suggestion by far, fol-

lowed by REBUILD MODELS and SENSOR DIAGNOSTIC. F3, the random comparison

function, also tried several other suggestions and, at times, ran out of alternate repairs to

suggest.
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10.4 The Best Frame Comparison Function

Measured by average number of actions (Table 10.19), several MCL Level 3 frame

comparison functions were tied. The same functions were closely packed for average

elapsed time (Table 10.20), and percent of tasks completed (Table 10.21) with frame func-

tion F3: Random, with a slight lead.

Table 10.19. Average number of actions

Best Counts MCL/Frame
288 M0: Bereft
292 M1: Instinctive
318 M2: Evaluative
162 M3: Temporal
199 F1: First
318 F2: New

=⇒ 161 F3: Random
=⇒ 161 F4: EVS
=⇒ 161 F5: IIS
=⇒ 161 F6: EVS and IIS

222 F7: EVS but not IIS
316 F8: IIS but not EVS

Looking at the grades of all the trials (Table 10.17), the same comparison functions

are the top rated: F3: Random, F4: EVS, F5: IIS, F6: EVS and IIS. F6: EVS and IIS had

the most As, barely beating F5: IIS which had the most As and Bs, while only F3: Random

had no failures. The four functions are not statistically different from each other nor from

MCL Level 3: Temporal using the default passive comparison function, according to the

ANOVA analysis in Table 10.22.
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Table 10.20. Average elapsed time

Best Time MCL/Frame
7135 M0: Bereft
7806 M1: Instinctive
7175 M2: Evaluative
4384 M3: Temporal
5129 F1: First
7169 F2: New

=⇒ 4339 F3: Random
4361 F4: EVS
4373 F5: IIS
4363 F6: EVS and IIS
5646 F7: EVS but not IIS
7132 F8: IIS but not EVS

Table 10.21. Percent of tasks completed

Best Counts MCL/Frame
60 M0: Bereft
59 M1: Instinctive
57 M2: Evaluative
99 M3: Temporal
87 F1: First
57 F2: New

=⇒ 100 F3: Random
99 F4: EVS
98 F5: IIS
99 F6: EVS and IIS
87 F7: EVS but not IIS
57 F8: IIS but not EVS
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10.5 Comparison to Predicted Performance

Section 8.3 showed the results of performing a static evaluation of MCL Level 3:

Temporal comparison functions. Table 8.14 showed the total expected correct comparisons

for the experimental perturbations.

The top three comparison functions in the static evaluation were F5: IIS, F6: EVS and

IIS, and F8: IIS but not EVS with 90% correct each. F2: New (88%), F4: EVS (85%) and

F7: EVS but not IIS (83%) followed closely. The worst two were F1: First (11%) and F3:

Random (56%).

Of the top comparison functions from the static evaluation, only F5: IIS and F6: EVS

and IIS remained in the top tier of the experimental results. The two worst from the static

evaluation did well in the experiments with F3: Random rising to the top tier and F1: First

to the second. F8: IIS but not EVS, which was tied for first place in the static evaluations,

dropped to the lowest tier in the experiments. The static evaluations were a poor predictor

of experimental success. Table 10.23 compares the static and experimental tiering of the

comparison functions.
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Table 10.23. Static versus Experimental Comparison Function Evaluation

Comparison Static Experimental Prediction
Method Percent Tier Grade Tier Success
F1: First 11 4 C 2 Poor
F2: New 88 2 F 5 Very Poor
F3: Random 56 3 C 1 Poor
F4: EVS 85 2 B 1 Good
F5: IIS 90 1 B 1 Great
F6: EVS and IIS 90 1 B 1 Great
F7: EVS but not IIS 83 2 D 3 Poor
F8: IIS but not EVS 90 1 F 5 Very Poor

10.6 Answers to Research Questions

The search for the temporal comparison function was also to determine the answers

to five questions:

How to determine that the current and previous symptoms are related? For

MCL, symptom states are captured in an data object called a frame. It is easy to come up

with comparison functions (e.g., New) that do not correctly identify related and non-related

symptoms. There are also several comparison functions that can (usually) make the correct

determination (e.g., IIS, EVS, and IIS AND EVS).

How sure are we that we have made the correct determination? A static analysis

of the frame comparison functions for the Mars Rover context were at best around 90%

correct. In practice, the functions IIS, EVS, and IIS AND EVS almost always assisted the

Rover in completing its task in the face of perturbations.
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How does the correct determination affect the response? The frame state sets

nodes in the concrete indications portion of the Bayesian network of MCL. They influence

which repair suggestion (if any) that MCL will make.

How much does the correct determination improve performance? When the

temporal comparison function made the correct determination there was often a definite

performance gain. With the P3: Longer calibration time perturbation, the average number

of steps needed to complete the triple panoramic tour was halved for those Rovers whose

comparison functions correctly advised, versus those whose didn’t. At other times, the

improvement (if any) was not statistically significant.

How much does the incorrect determination degrade performance? Making an

incorrect determination is not usually fatal unless the same bad advice is repeated over and

over again. This was the downfall of a couple of the poor frame comparison functions

(e.g., First, and EVS BUT NOT IIS). Even the good frame comparison functions (with the

notable exception of Random) were sometimes not able to guide a Rover to a successful

completion of the task.



Chapter 11

RELATED WORK

Cox (2005b) provides a survey of selected AI metacognition research areas through

2000 (and a little beyond). Newer research is surveyed by Anderson and Oates (2007).

This chapter starts by looking at pre-ontology and early-ontology MCL work. Next, Case-

based Reasoning and Model Based Reflection are examined as another approach to assist-

ing agents. It ends with a section on a topic not covered in the survey papers, monitoring

multi-agent systems.

11.1 Pre-ontology Metacognitive Loop

An early version of MCL was part of a hybrid system to assist Learning agents using

both Neural Networks and a symbolic logic reasoner (Hennacy, Swamy, & Perlis 2003).

The Metacognitive Loop (Anderson & Perlis 2005), with its notice, assess, and guide

phases, is offered as a solution to the problem of brittleness in AI systems as due to the

lack of perturbation tolerance. A trio of problem domains (reinforcement learning, naviga-

tion, and human-computer dialogue) is shown to benefit from adding MCL. Three research

areas were proposed corresponding to the three MCL phases:

1. How should expectations be formulated to best track the performance of the systems?

2. How should the reasoning about the exceptions be organized?

179
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3. What are the best strategies for guiding a system back to proper operation?

The first and third questions remain open issues. Bayesian inference over three sets of

ontologies is thought to be the answer to the second question and this dissertation has

shown it to be an effective approach (at least in the Mars Rover domain).

Three alternatives to the incorporation of MCL to deal with perturbations have been

suggested (Anderson et al. 2006):

1. Do nothing,

2. Incorporate a recovery strategy for every possible problem, and

3. Create an extensive world model and continually compare the actual and predicted

performance.

The first of these approaches offers nothing except ease of implementation while the last

two are too expensive to use. MCL is offered as a cost-effective alternative as it has only

a moderate cost and can greatly improve a system’s tolerance to perturbation. This is

demonstrated with the Chippy grid world. Perturbation in Chippy was used to explore

different expectations (average reward and steps between rewards), different assessment

techniques (immediate and cumulative), and different recovery strategies (increasing the

exploration rate and resetting the Q values). All of this was tailored for Q-learning and

would not be applicable to other types of cognitive systems. The approach outlined in this

dissertation can produce the same perturbation tolerance as observed in the MCL-enhanced

Chippy, but is applicable to more types of systems.

Another domain used in early MCL research was TRAINS (Allen et al. 1994; 1996;

Ferguson, Allen, & Miller 1996) where a human and a computer carry out a natural-

language dialog about controlling trains. MCL was used in the detection and resolving
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of ambiguities (Perlis, Purang, & Andersen 1998; Traum et al. 1999). An MCL com-

ponent was also built into ALFRED (Active Logic for Reason-Enhanced Dialog) (Ander-

son et al. 2004; Josyula, Anderson, & Perlis 2003). Active Logic (Elgot-Drapkin 1988;

Elgot-Drapkin & Perlis 1990; Elgot-drapkin et al. 1993; Purang 2001; Miller 1993) com-

bines inference rules with a time-tagged knowledge base. ALFRED also uses use-mention

distinction (Saka 1998) when processing utterances(Anderson et al. 2002). ALFRED is

able to ask the user for help when it doesn’t know a term and then to use that knowledge

later to implement the user’s request (Josyula 2005).

11.2 Early Ontology Metacognitive Loop

In 2007, MCL went through a metamorphous to replace many of its domain-specific

elements by using three ontologies linked together (Anderson et al. 2007). However,

instead of using Bayesian inference, MCL would reason from expectations to response by

spreading activation (Anderson 1983; Anderson & Pirolli 1984; Cohen & Kjeldsen 1987).

Additional domains were also explored including human-computer dialogue (Schmill et al.

2007) and the Chippy reinforcement learner (Anderson et al. 2008) that is also used as an

example in this dissertation.

11.3 Case-based Reasoning

Case-based reasoning (CBR) uses past experiences to solve new problems (Hammond

1986; 1989; 1990; Kolodner 1993). Humans are thought to make use of CBR as we reason

from stories (previous experience) (Schank & Leake 1989; Schank 1990) using reasoning

by analogy (Leake 1996a) when presented with a new situation. That is, we internalize the

basic elements of our experiences as stories. Then, when faced with a new problem, we

retrieve a previous experience that is similar to the current one. We use the similar story
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to provide the outline of a plan for dealing with the current situation. The assumptions

underlying the computer use of CBR (Leake 1996b) are that similar problems have similar

solutions and that an agent will often encounter problems that it has seen in the past. A

temporal MCL can be viewed as using the same general techniques as it uses knowledge

about past expectation violations in attempting to resolve new violations.

CBR is generally shown as having four steps (Aamodt & Plaza 1994):

Retrieve Find a past case similar to the current problem.

Reuse Use the similar past case in the solution to the current problem.

Revise Update the past case by noting how well it solved the current problem.

Retain Save the updated case information for successful adapted solutions.

A Level 3: Temporal MCL will also perform these steps, using a frame comparison func-

tion to find a similar past exception. It then modifies the Bayesian network from the past

exception with the indications of the new exception. When the agent responds that the

repair suggestion was successful (or not), MCL saves the updated exception.

The main research in this dissertation was to find a “good” function with which to

compare past expectation violations with the current violation. Similarity metrics provide

the same function for case-based reasoning (Bento & Costa 1994) and (Veloso & Carbonell

1994). Constructive similarity assessment (Leake 1992; 1995; Leake, Kinley, & Wilson

1997) looked at making the judgement dynamic rather that using a fixed set of criteria.

11.4 Model Based Reflection

Model-based reflection (MBR) (Stroulia 1994; Stroulia & Goel 1995; 1996) also uses

a three-phase approach to provide metacognition. The “monitor” phase checks expecta-

tions, the “assign blame” phase determines the cause of the failure, and the “redesign”
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phase makes the necessary corrections. Rather than using a general model of cognitive sys-

tems and their failures, MBR uses a detailed model of the problem solver using structure-

behavior-function (SBF) models. Having these models allows the expectations to be auto-

matically generated.

MBR uses a model of the agent and the environment when deciding the cause of the

problem. This model could become quite large with a large search space and may only

be partially observable (Ulam, Goel, & Jones 2004). Rather than searching the complete

space, large systems could be broken down into parts. Blame then could be assigned at the

top level (Jones & Goel 2005). If the agent has several tasks, each of which is controlled by

reinforcement learning, MBR could aid the agent in deciding which task’s learning needed

modification based on the assignment of failure to that part (Ulam et al. 2005).

As systems become more complicated, there is a greater chance that system faults

will damage more components so being able to detect and isolate faults becomes more

important (Tinós, Terra, & Bergerman 2002; Tinós & Terra 2002). The NASA Deep Space

I spacecraft1 is equipped with a MDR system that monitors its systems and performs failure

analysis and correction (Williams & Nayak 1996; Williams & Nyak 1999). Nuclear power

systems also can benefit from systems that detect and isolate faults automatically (Hardy,

Miller, & Hajek 1992; Hines & Hajek 1995; Hines, Miller, & Hajek 1996).

Instead of using a model of the agent and the domain, MCL uses a model of how agent

fail and then repair themselves as captured in the three ontologies. This should allow MCL

to assist agents even when many aspects of the of the agent and/or domain are not known.

1http://nmp.jpl.nasa.gov/ds1/DS1_Extended_Mission.pdf
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11.5 Multi-agent Metacognition

One approach to handling problems (or perturbations) in multi-agent systems is to

task an agent with monitoring and controlling the other agents (Hägg 2000). The sentinel

agents act as a metacognitive control on the collection of task-solving agents (Figure 11.1).

The sentinel monitors the communication between agents. If an agent is acting outside the

model of the application-specific interaction plan, the sentinel can take action to correct the

situation such as killing an agent, or informing other agents to ignore it.

Sentinels can also be part of a general purpose three-phase monitoring scheme (Del-

larocas & Klein 2000). Rather than an application-specific model of the agent interactions,

these sentinels use a knowledge base of error conditions, causes, and responses. Table 11.1

contrasts this approach with the MCL phases and ontologies.

Table 11.1. Monitor and control in MCL and Sentinels

MCL Sentinels
Phase Ontology Phase KB
Notice Indications Instrumentation Failure
Assess Failure Diagnosis Exception
Guide Response Resolution Resolution

The similarities between metacognition for single agents and sentinels for multi-

agents systems allows the transfer of ideas between the two. This is particularly apparent

when the fault-handling approach is abstracted using ontologies (or knowledge bases) to

hold domain-specific information.



185

FIG. 11.1. Monitoring a multi-agent system with a sentinel is isomorphic to using
metacognition with a single cognitive agent.



Chapter 12

FUTURE WORK

Adding the Metacognitive Loop with temporal knowledge has been shown to improve

the operation of the Mars Rover. However, more can be done at this level of metacogni-

tion as well as developing further enhancements. Also, MCL can be applied to different

domains to show that the improvement in performance for the Mars Rover was not a fluke.

This chapter examines several different areas of exploration.

12.1 Revisiting the Current System

Experimental trials using the Mars Rover simulation were able to show that MCL

Level 3: Temporal is statistically better at assisting the agent during perturbations than

MCL Level 2 : Evaluative. Will this improvement continue to be shown if the experiments

were changed? This section looks at a several changes that could be done within the current

testing framework to expand the breadth and intensity of testing.

Expand the number of perturbations The seven perturbations used were chosen in the

belief that they would exercise both the Rover and MCL. But a different (or larger)

mix of perturbations might show different results than the seven chosen. In Sec-

tion 3.2 many more perturbations were described than those used. Rather than re-

peating the same seven perturbations in each experimental run, a random set of seven

186
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could be chosen.

Improve the frame comparison functions While most of the frame comparison func-

tions performed better than level 0 and 1 MCL agents, there was no one perfect

function. Given the available frame information, it should be possible to construct

frame comparison functions using decision tables (or other learning technique) that

would perform better than the simple ones that were used. A learned comparison

function could be trained using the seven perturbations used in this dissertation and

then tested against a different set (such as the random perturbation in the previous

paragraph).

Changing the task A triple panoramic tour was chosen as it was easy to explain, had fixed

divisions for changing the perturbations, and forced the Rover to perform actions

multiple times. A triple photographic tour could easily be substituted or a mixed tour

consisting of both panoramic and photo tours. Rather than changing the perturba-

tions at tour boundaries, the perturbations could be switched during the execution

of the tours. Experiments could be run at low and high volatility of switching to

see how well MCL was able to improve performance as a function of the degree of

perturbation.

More repair options A larger MCL ontology with more repair nodes to activate would

give MCL more possible repair suggestions. Having more possible repairs to suggest

could give MCL a greater ability to suggest repairs that improve the Rover’s perfor-

mance. This might allow MCL to improve the agent’s performance across a greater

range of perturbations.

Improve Conditional Probability Tables Many of the nodes in the MCL Ontology have

links whose conditional probabilities are 0.5/0.5. Having more realistic probabilities
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should improve the MCL repair suggestions. However, at this time, the setting of the

probabilities is more art than science.

Multiple Perturbations An agent with Evaluative MCL was able to recover from all of

the single perturbations. It was unable to complete the tour when two perturbations

were presented serially. An agent with Temporal MCL has been shown to handle

the problem of two serial perturbations, but would it do as well if both perturbations

were presented simultaneously? To make the performance measures comparable to

the experiments in this dissertation, there should be an unperturbed panoramic tour,

a second panoramic tour with both perturbations introduced at the start, and then a

final unperturbed tour.

12.2 Improving the Level 3 System

This section looks at improvements to the Level 3 MCL to make it more usable to the

designer of robotic agents.

12.2.1 Automatic Expectation Generation

The MCL NAG cycle starts when an exception has occurred. It is required that the

designer of the system specify the exception conditions. For many maintenance condi-

tions, these are fairly obvious and easy to create: internal temperature will not exceed 150

degrees, battery power will not drop below 5 percent.

Perhaps a better solution would be to specify a minimal set of absolute expectations

and then have MCL learn and incorporate additional expectations. This has several advan-

tages:

Minimizing human effort Since only a limited set of expectations would have to be given

to MCL, the domain programmer’s task would be limited to specifying that limited
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set and not a broad range of expectations.

Minimizing the exception-checking overhead A system can have a great many mainte-

nance expectations - most of which will never be violated. Such expectations degrade

the system as they need to be checked against the sensor values just as often as ex-

pectations that may be violated. By generating expectations through learning, only

expectations that have the potential for violation would be created.

Improve problem detection As problems are identified, expectations would be created to

detect them earlier. This could allow identification of a reoccurrence of a problem

early enough to avoid or lessen the consequences.

The automatic generation of expectations would have to be tempered with common-

sense reasoning or other heuristics to prevent generating expectations that do not improve

the efficiency of the host system.

12.2.2 Automatic Ontology Expansion/Linking

The structure (node and linkages) of the MCL ontologies were created based on ex-

perience in the initial problem domains and modified as additional domains and analysis

was undertaken. It is, however, a static model and is certainly not optimal for all situations.

As with the automatic generation of expectations, the automatic generation of ontology

nodes and linkages has the potential to improve the operation of MCL, particularly in new

domains. The same caveat applies that any changes must improve the efficiency of the host

system and may require extensive heuristics to implement.

12.2.3 Application to Multi-agent Systems

All of the problem domains discussed and evaluated in this proposal are with single

agents. MCL can be directly applied to individual agents in a multi-agent system. These
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agent can be either normal agents or sentinel agents.

When using MCL to monitor and control multiple agents, additional concrete re-

sponses would be needed along with the corresponding augmentations to the Response

ontology. The Failure ontology would need to be expanded to incorporate nodes for agent

communication and coordination failures. Agents can be treated as both sensors and effec-

tors of the sentinel agents.

12.2.4 Transferring Learning with MCL Networks

As MCL works with a host system, the conditional probabilities on the intra-

ontological and inter-ontological links change to reflect the experience of what suggestions

were effective strategies in coping with the failed expectations. Each host system is differ-

ent, with different expectations and available concrete responses, but there should be a way

to apply a tuned set of conditional probabilities from one system to another.

12.2.5 Modeling Dynamic Environments

A basic tenet of this paper is that MCL provides agents with a mechanism for coping

with dynamic environments so that such mechanisms do not need to be crafted into the

agents themselves. What exactly is a dynamic environment and how is it quantified? Is

it possible to create quantitative or predictive models of dynamic environments and how

could these models be used to improve the operation of the NAG cycle within MCL?

12.3 Developing Level 4: Evolving Systems

As in the temporal level, the agent’s metacognitive system evaluates the current excep-

tion(s) as well as any past exceptions and repair attempts when choosing the appropriate

response. Additionally, the metacognitive system adjusts its evaluation procedure/para-
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maters based on the success and failures of the repairs. While the goal of MCL is to make

the correct suggestion as often as possible, it is also important to make as few bad sugges-

tions as it can. Agents can more easily tolerate getting the second best suggestion than they

can getting the second worst one.

There are several items within MCL that could be changed if a learning mechanism is

in place that would examine the exceptions and the repair actions.

Repair costs The repair costs for the Mars Rover were defined in the repair nodes of the

Response Ontology (see Appendix B). These were set before the experiments were

run. They were loosely based on the energy cost for the Rover to implement them.

MCL could monitor the change in the agent from the time of the suggestion to the

time that the repair is acknowledged and adjust the repair cost accordingly. A sim-

ple learning method would be to have repairs that succeed have their costs adjusted

downward while ones that don’t would be moved upwards.

Revise expectations While it wasn’t used in the Mars Rover ontologies, MCL has a repair

that instructs an agent to “Revise Expectations.” The idea being that the agent may be

giving MCL too low a threshold in the expectation so that exceptions are occurring

where there really isn’t a problem. Expectation thresholds may need to be lowered,

as well, if the exception isn’t signaled until the problem grows large enough that it

might have been better handled at an earlier stage.

Update conditional probabilities The conditional probabilities of the MCL Ontologies

are set from configuration files when MCL is initialized. As MCL makes sugges-

tions and the agent replies that they were successful or not, MCL could adjust the

conditional probabilities tables to favor successful repair.

Update ontology links A more difficult change to the ontologies than adjusting the prob-
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abilities on existing ontology links is the addition and removal of ontology links.

If, however, experience shows that certain indications are best resolved with a spe-

cific repair, then adding a link to positively reinforce that dependency would improve

MCL’s response to the same problem in the future.

All of the approaches above may benefit from having a meta-MCL monitor and guide

the agent’s MCL as it alters itself to better serve the agent. The meta-MCL could suggest

when a change should be made and what part of MCL (expectations, ontology, or costs)

might be best changed.

12.4 Developing Level 5: Anticipating Systems

MCL reacts when the agent’s expectations are violated. The point at which the excep-

tion occurs may not be the point when the perturbation first caused an unnoticed problem.

If MCL could reason backward from the exception to the time of the initial problem, MCL

could then help the agent avoid the problem.

For example, if, when traveling between two specific points, the Rover always picked

up dust that would later cause a problem with the motors, MCL might be able to examine

the operational traces to determine that the cause of the motor performance exception was

traveling along a certain path and suggest that the agent choose a different path from now

on. Rather than just treating the symptom of the problem (slow motor performance cor-

rectable by blowing away the dust), MCL would be helping the agent avoid the cause of

the problem (a dusty path).

12.5 Alternative Domains

All of the above research can be done within the Mars Rover domain used in this dis-

sertation. Even given the limited locations and actions of the Rover, there is still enough



193

depth that much can be done with it. However, many domains have been used in AI plan-

ning, problem solving, and learning. It would be interesting to apply MCL to those domains

as well.

Chippy The Chippy grid world was used as an example in the beginning of this disser-

tation. It was the subject of much of the early pre-ontology MCL work (Anderson

et al. 2006). Now that a temporal, ontology-based MCL is available, it would be

interesting to revisit Chippy and see if the latest MCL approaches meet or exceed the

earlier ones.

WinBolo A domain used in MCL research as the transition was being made from hard

coded metacognition to ontologies was the game Bolo (Anderson et al. 2007). The

MCL Bolo player used a hierarchical task network (HTN) planner (Ghallab, Nau, &

Traverso 2004; Lekavỳ & Návrat 2007; Nau et al. 2003). When MCL detected an

expectation exception, it could use means-end analysis and operator refinement in its

repairs (Gil 1994; Wang 1995).

WinBolo (a Windows implementation of the game) has multiple players (or AIs)

driving tanks to explore the landscape and destroy other tanks, individually or in

teams. This domain is much like the Mars Rover domain in that there are multiple

goals in play, planning needs to be done to achieve those goals, and a dynamic envi-

ronment (mainly the other tanks and the building and destruction of buildings, roads,

and stationary defenses.) With team play, WinBolo can be a platform for research in

the use of MCL with multiple agents.

Wumpus The game of “Hunt the Wumpus” has been around since the early days of inter-

active computing. Russell and Norvig (1995) describe simplified variation that on a

rectangular grid. A metacognitive agent call INTRO has already been developed to
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explore that version (Cox 2005a; 2007). As with the Chippy grid world, the challenge

will be to see how well the latest MCL compares to previous work.

FreeCiv The open source close of Sid Meier’s CivilizationTM, FreeCiv1 has been used for

AI learning by researchers at Georgia Tech (Jones & Goel 2005) and others (Hinrichs

& Forbus 2007). It is a multiplayer game implemented with a server and multiple

clients. It comes bundled with a set of AI players and is supported on a number of

platforms. Unlike the Mars Rover, Chippy, and Wumpus domains where the agent

is directed to move through and react with the environment, FreeCiv casts the agent

in the role of a supervisor who directs many others to build cities, explore, and de-

velop resources, all the while competing with other agents attempting to do the same

things. The task will be to learn and evolve strategies for playing the game with MCL

suggesting when current strategies need revising or when the focus should shift to a

different set of tasks.

1freeciv.wikia.com
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CONCLUSIONS

The six-level taxonomy (from Bereft to Anticipating), that I developed to divide

metacognitive systems according to their capabilities, provided me with a way to decon-

struct MCL in order to analyze MCL’s ability to assist agents. In the Mars Rover domain,

the limitations of the Level 0: Bereft, Level 1: Instinctive, and Level 2: Evaluative were

easily demonstratable. A Motivated Mars Rover with no MCL assistance (Level 0: Bereft)

was unable to complete its task when either the P1: Partial charging or P7: Block path per-

turbations were present. A Rover with Level 1: Instinctive assistance also failed with either

of those two perturbations. And, while a Rover with Level 2: Evaluative assistance was

able to successfully overcome the P1: Partial charging perturbation, it failed with P2: Re-

duced capacity and P7: Blocked path. It was only when the MCL level was raised to Level

3: Temporal that the Mars Rover was able to complete its task with any single perturbation.

The research presented here focused on identifying a temporal comparison function

that would allow a Level 3: Temporal MCL to successfully assist a Mars Rover in the

face of multiple perturbations presented serially. Instead, four such functions were found.

One function compared domain-specific items directly related to the exceptions while a

second compared the translation of the exception onto the domain-independent Indications

ontology of MCL. A third function combined these two tests. These three functions also
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performed well when there was only a single perturbation. A fourth function randomly

announced that two exceptions were the same or different. This function did not perform

as well with a single perturbation, however, it was the only function that assisted the Mars

Rover to complete all tasks given any combination of two perturbations.

For the Mars Rover simulations with multiple perturbations, MCL Level 1: Instinc-

tive (replanning only) is incapable of completing about 41% of the trials. MCL Level 2:

Evaluative is slightly worse with 43% of the trials failing. This is due to bad advice being

given in some cases and repeated until the end of the experiment. Such problems have been

suggested (Wilson & Schooler 1991) as a reason to avoid too much introspection. MCL

Level 3: Temporal using any one of the several top temporal comparison functions, fails

less than 1% as they only rarely continuously offered the same bad advice. Hopefully, fu-

ture research will determine a temporal comparison function that will always offer good

advice or, at least, never repeats the same bad advice.
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Appendix A

TABLES WITH EXPERIMENT RESULTS

The Mars Rover experiments were run in two parts of 50 repetitions. The main set was

started on the May 8, 2010 and were completed May 31, 2010. A second set of experiments

using just MCL level 1, that only issued a re-planning suggestion, were started on October

26, 2010 and were completed November 3, 2010. The tables in this appendix and in the

Results chapter were all created directly from all 100 experiment CSV files.

To rerun the experiments and recreate the latex figures and tables issue the command

below. When running on OSX (instead of Linux) change /home to /Users).

MCL_CONFIG_PATH=/home/dean3/lib/mcl
export MCL_CONFIG_PATH
rm *.csv
rm *.zip
python Dissertation.py -x -o5150 -3 -r50
python Results.py -t current.tex -s ../current *.csv
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1/2 P0 P1 P2 P3 P4 P5 P6 P7 Avg
P0 145 473 157 144 148 153 147 458 228
P1 448 500 454 440 446 446 446 498 459
P2 154 480 159 154 158 163 153 493 239
P3 147 454 155 149 149 146 146 429 221
P4 147 474 155 148 151 162 147 472 232
P5 155 447 158 151 156 156 147 458 228
P6 145 433 153 147 147 156 147 457 223
P7 466 493 465 478 472 454 473 500 475
Avg 226.0 469.0 232.0 226.0 228.0 230.0 226.0 471.0 288.5

Table A.1. Average steps for perturbed Panoramic Tour with M0: Bereft

1/2 P0 P1 P2 P3 P4 P5 P6 P7 Avg
P0 147 474 151 147 148 153 146 450 227
P1 481 495 467 440 479 458 486 500 475
P2 155 453 163 152 154 158 156 492 235
P3 146 467 153 147 145 154 146 478 229
P4 146 459 154 146 145 161 145 493 231
P5 148 466 155 151 154 158 149 493 234
P6 146 446 153 150 146 153 147 471 226
P7 450 493 466 471 478 466 471 500 474
Avg 227.0 469.0 233.0 226.0 231.0 233.0 231.0 485.0 291.875

Table A.2. Average steps for perturbed Panoramic Tour with M1: Instinctive

1/2 P0 P1 P2 P3 P4 P5 P6 P7 Avg
P0 145 159 500 234 146 153 146 457 242
P1 155 170 500 244 157 163 160 500 256
P2 500 500 500 500 500 500 500 500 500
P3 232 244 500 319 229 238 232 477 308
P4 148 156 500 237 149 153 146 500 248
P5 150 163 500 240 147 157 151 452 245
P6 147 159 500 237 145 154 147 493 247
P7 493 500 500 484 500 473 493 500 492
Avg 246.0 256.0 500.0 312.0 247.0 249.0 247.0 485.0 317.75

Table A.3. Average steps for perturbed Panoramic Tour with M2: Evaluative
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1/2 P0 P1 P2 P3 P4 P5 P6 P7 Avg
P0 148 159 163 148 149 154 146 158 153
P1 156 168 171 158 160 166 156 170 163
P2 161 182 177 160 164 170 163 171 168
P3 151 157 163 147 151 163 147 156 154
P4 149 169 161 148 147 158 149 155 154
P5 151 160 164 148 152 158 150 162 155
P6 148 159 163 145 147 153 148 156 152
P7 158 423 168 156 160 165 159 157 193
Avg 153.0 197.0 166.0 151.0 154.0 161.0 152.0 161.0 161.875

Table A.4. Average steps for perturbed Panoramic Tour with M3: Temporal

1/2 P0 P1 P2 P3 P4 P5 P6 P7 Avg
P0 147 158 160 148 147 156 147 316 172
P1 156 170 173 158 157 159 156 199 166
P2 159 179 177 159 162 169 161 212 172
P3 149 158 165 148 149 154 149 281 169
P4 147 164 164 147 145 153 148 275 167
P5 149 164 168 151 150 156 148 281 170
P6 146 425 155 146 149 156 147 465 223
P7 309 463 473 332 288 342 257 347 351
Avg 170.0 235.0 204.0 174.0 168.0 181.0 164.0 297.0 199.125

Table A.5. Average steps for perturbed Panoramic Tour with F1: First

1/2 P0 P1 P2 P3 P4 P5 P6 P7 Avg
P0 147 160 500 230 148 154 148 486 246
P1 157 168 500 241 156 167 157 479 253
P2 500 500 500 500 500 500 500 500 500
P3 231 250 500 326 235 241 227 478 311
P4 149 162 500 243 148 153 144 500 249
P5 154 163 500 244 153 161 155 485 251
P6 147 160 500 227 149 154 147 471 244
P7 486 474 500 494 493 480 493 500 490
Avg 246.0 255.0 500.0 313.0 248.0 251.0 246.0 487.0 318.25

Table A.6. Average steps for perturbed Panoramic Tour with F2: New
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1/2 P0 P1 P2 P3 P4 P5 P6 P7 Avg
P0 147 164 161 147 148 153 147 166 154
P1 164 185 172 161 165 174 160 181 170
P2 158 180 168 160 158 164 158 184 166
P3 147 171 160 149 152 150 148 157 154
P4 145 167 159 149 147 153 147 162 153
P5 155 171 167 156 150 157 153 164 159
P6 146 166 160 146 148 150 147 167 153
P7 167 224 202 172 172 172 169 164 180
Avg 154.0 179.0 169.0 155.0 155.0 159.0 154.0 168.0 161.625

Table A.7. Average steps for perturbed Panoramic Tour with F3: Random

1/2 P0 P1 P2 P3 P4 P5 P6 P7 Avg
P0 145 159 161 147 148 153 145 157 151
P1 159 170 172 156 158 170 159 166 163
P2 160 187 175 162 163 164 160 171 167
P3 148 158 162 148 147 148 147 159 152
P4 147 163 159 147 145 155 149 155 152
P5 149 157 163 158 148 160 149 164 156
P6 148 160 160 147 146 155 147 157 152
P7 157 401 167 159 159 167 159 158 190
Avg 152.0 194.0 165.0 153.0 152.0 159.0 152.0 161.0 161.0

Table A.8. Average steps for perturbed Panoramic Tour with F4: EVS

1/2 P0 P1 P2 P3 P4 P5 P6 P7 Avg
P0 147 156 157 147 148 155 146 156 151
P1 160 172 168 159 155 160 154 168 162
P2 157 470 163 158 155 163 157 169 199
P3 146 160 157 146 147 157 147 158 152
P4 148 159 157 148 150 156 146 158 152
P5 152 161 160 157 153 158 151 161 156
P6 147 156 157 148 148 153 146 155 151
P7 157 175 166 156 162 161 158 159 161
Avg 152.0 201.0 161.0 152.0 152.0 158.0 151.0 161.0 161.0

Table A.9. Average steps for perturbed Panoramic Tour with F5: IIS
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1/2 P0 P1 P2 P3 P4 P5 P6 P7 Avg
P0 146 164 154 149 147 151 146 159 152
P1 157 168 167 156 160 162 156 168 161
P2 158 455 160 156 155 164 158 166 196
P3 147 160 156 149 147 153 144 157 151
P4 146 162 156 147 148 154 148 159 152
P5 154 163 160 150 153 165 153 162 157
P6 146 159 156 149 144 147 150 154 150
P7 157 170 169 156 159 170 158 157 162
Avg 151.0 200.0 160.0 152.0 152.0 158.0 152.0 160.0 160.625

Table A.10. Average steps for perturbed Panoramic Tour with F6: EVS and IIS

1/2 P0 P1 P2 P3 P4 P5 P6 P7 Avg
P0 148 161 162 235 147 155 149 387 193
P1 158 174 177 244 157 170 157 177 176
P2 160 172 177 251 162 169 163 379 204
P3 232 247 248 320 229 238 230 386 266
P4 146 155 161 235 150 154 148 351 187
P5 155 167 168 230 153 157 153 370 194
P6 146 158 160 151 148 158 146 359 178
P7 353 420 358 417 358 356 347 389 374
Avg 187.0 207.0 201.0 260.0 188.0 195.0 187.0 350.0 221.875

Table A.11. Average steps for perturbed Panoramic Tour with F7: EVS but not IIS

1/2 P0 P1 P2 P3 P4 P5 P6 P7 Avg
P0 147 156 500 235 146 150 147 479 245
P1 158 168 500 241 158 160 156 480 252
P2 500 500 500 500 500 500 500 500 500
P3 231 249 500 317 228 238 225 478 308
P4 146 156 500 236 147 153 147 450 241
P5 147 164 500 241 153 161 150 466 247
P6 146 156 500 231 146 153 146 486 245
P7 486 479 500 483 492 493 500 500 491
Avg 245.0 254.0 500.0 311.0 246.0 251.0 246.0 480.0 316.625

Table A.12. Average steps for perturbed Panoramic Tour with F8: IIS but not EVS
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Appendix B

MCL ONTOLOGY USED FOR EXPERIMENTS

The following two listings comprise the MCL ontologies used for the Mars Rover

simulation. They were created by Matt Schmill of the UMBC/UMCP MCL working group.

They have been slightly modified from the version included with the MCL code. The main

changes are in the cost model which reflect the cost of implementing the repairs by the

Mars Rover.

Listing B.1. Basic MCL Ontology

# BASIC . ONT . . . . b a s i c MCL o n t o l o g y d e s c r i p t i o n f i l e
# m o d i f i e d f o r mars r o v e r s i m u l a t i o n

# node t y p e s :
#
# h o s t Pr o p − h o s t p r o p e r t i e s
# genInd − g e n e r a l purpose i n d i c a t i o n node
# conc Ind − c o n c r e t e ( f r i n g e ) i n d i c a t i o n d i r e c t l y a c t i v a t a b l e by↘

MCL
# iCore − i n d i c a t i o n core node
# HII − Host I n i t i a t e d I n d i c a t i o n
# f a i l u r e − g e n e r a l purpose f a i l u r e node
# genResponse − g e n e r a l purpose r e s p o n s e node
# i n t e r a c t i v e − boo lean i n t e r a c t i v e r e s p o n s e node
# concResponse − c o n c r e t e ( i m p l e m e n t a b l e ) r e s p o n s e node

# l i n k t y p e s :
#
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# > i n t r a o n t o l o g i c a l
# l i n k a b s t r a c t i o n ( s r c = , d s t =)
# − f rom s p e c i f i c ( s r c ) node t o more g e n e r a l ( d s t )
# l i n k IFC ( s r c = , d s t =)
# − I n d i c a t i o n Fr in ge t o Core
# l i n k s p e c i f i c a t i o n ( s r c = , d s t =)
# − f rom a b s t r a c t t o s p e c i f i c ( r e s p o n s e o n t o l o g y base t y p e )
#
# > i n t e r o n t o l o g i c a l
# l i n k d i a g n o s t i c ( s r c = , d s t =)
# − l i n k from i n d i c a t i o n t o f a i l u r e
# l i n k i n h i b i t o r y ( s r c = , d s t =)
# − l i n k from i n d i c a t i o n t o r e s p o n s e ( i n h i b i t i n g r e s p o n s e )
# l i n k s u p p o r t ( s r c = , d s t =)
# − l i n k from i n d i c a t i o n t o r e s p o n s e ( s u p p o r t i n g r e s p o n s e )

i n c l u d e C O R E _ i n d i c a t i o n F r i n g e

o n t o l og y i n d i c a t i o n s (

# much o f t h i s o n t o l o g y i s c u r r e n t l y i n CORE_iF
# i f i t i s i n d y n a m i c I L i n k s , i t s h o u l d be i n iF

node i C o r e ( name= resourceUnchanged ,
doc=" a r e s o u r c e l e v e l a p p a r e n t l y d i d n o t change . " )

node i C o r e ( name= s t u c k ,
doc=" a s p a t i a l s e n s o r / e x p e c t a t i o n i n d i c a t e s an ↘

e x p e c t e d movement d i d n o t o c c u r . " )

node HII ( name= s e n s o r V e r i f i e d B r o k e n ,
doc=" t h e h o s t i s v e r i f y i n g t h a t a s e n s o r a p p e a r s ↘

n o n f u n c t i o n a l . " )
node HII ( name= s e n s o r V e r i f i e d W o r k i n g ,

doc=" t h e h o s t i s v e r i f y i n g t h a t a s e n s o r o f i n t e r e s t ↘

a p p e a r s t o be working . " )

)

o n t o l og y f a i l u r e s (
node f a i l u r e ( name= f a i l u r e ,

doc=" t h e c l a s s o f a l l f a i l u r e s . " )
node f a i l u r e ( name= knowledgeEr ro r ,
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doc=" c l a s s o f f a i l u r e s p e r t a i n i n g t o i n t e r n a l ↘

knowledge and r e p r e s e n t a t i o n s . " )

node f a i l u r e ( name= p l a n t E r r o r ,
doc=" c l a s s o f f a i l u r e s p e r t a i n i n g t o t h e p h y s i c a l↘

a g e n t . " )
node f a i l u r e ( name= mode lEr ror ,

doc=" c l a s s o f f a i l u r e s p e r t a i n i n g t o i n t e r n a l ↘

r e p r e s e n t a t i o n s . " )
node f a i l u r e ( name= p r e d i c t i v e M o d e l E r r o r ,

doc=" c l a s s o f f a i l u r e s i n which i n a c c u r a t e ↘

p r e d i c t i o n s made by models a r e c a u s i n g ↘

a n o m a l i e s . " )
node f a i l u r e ( name= p r o c e d u r a l M o d e l E r r o r ,

doc=" c l a s s o f f a i l u r e s i n which i n a d e q u a c i e s i n a↘
p r o c e d u r a l model i s c a u s i n g a n o m a l i e s . " )

node f a i l u r e ( name= e f f e c t o r E r r o r ,
doc=" c l a s s o f f a i l u r e s i n which an e f f e c t o r i s ↘

n o t o p e r a t i n g t o spec . " )
node f a i l u r e ( name= s e n s o r E r r o r ,

doc=" c l a s s o f f a i l u r e s i n which a s e n s o r i s n o t ↘

o p e r a t i n g t o spec . " )
node f a i l u r e ( name= s e n s o r N o i s e ,

doc=" anomaly i s c au se d by n o i s e o u t s i d e o f ↘

s p e c i f i e d p a r a m e t e r s . " )
node f a i l u r e ( name= s e n s o r M i s c a l i b r a t e d ,

doc=" anomaly i s c au se d by m i s c o n f i g u r a t i o n o r ↘

c a l i b r a t i o n o f a s e n s o r . " )
node f a i l u r e ( name= s e n s o r M a l f u n c t i o n ,

doc=" anomaly i s c au se d by s e n s o r f a u l t o t h e r t h a n↘
n o i s e . " )

node f a i l u r e ( name= s e n s o r S t u c k ,
doc=" anomaly i s c au se d by a s e n s o r t h a t i s no ↘

l o n g e r c h a n g i n g a c c o r d i n g t o s p e c i f i c a t i o n . " )

)

o n t o l og y r e s p o n s e s (
node genResponse ( name= r e s p o n s e ,

doc=" r o o t o f a l l r e s p o n s e s . " )
node genResponse ( name= i n t e r n a l R e s p o n s e ,

doc=" r e s p o n s e t a k e n i n t e r n a l l y t o t h e h o s t . " )
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node genResponse ( name= e x t e r n a l R e s p o n s e ,
doc=" r e s p o n s e t a k e n wi th e x t e r n a l h e l p . " )

node genResponse ( name= p l a n t R e s p o n s e ,
doc=" r e s p o n s e p e r t a i n i n g t o t h e p h y s i c a l ↘

a g e n t . " )

node genResponse ( name= sys temResponse ,
doc=" r e s p o n s e p e r t a i n i n g t o t h e s o f t a g e n t . " )

node genResponse ( name= r u n D i a g n o s t i c ,
doc=" pe r fo rm a d i a g n o s t i c o f t h e a g e n t ↘

a p a r a t u s . " )

node genResponse ( name=amendKnowledgeBase ,
doc=" g e n e r a l changes t o t h e hos t ’ s KB. " )

node genResponse ( name= am endPre d i c t i veMode l s ,
doc=" modify / r e v i s e p r e d i c t i v e models . " )

node genResponse ( name= amendProcedura lModels ,
doc=" modify / r e v i s e p r o c e d u r a l models . " )

node i n t e r a c t i v e ( name= r u n S e n s o r D i a g n o s t i c , c o s t =100 ,
doc=" i n s t r u c t s t h e a g e n t t o check f o r s e n s o r ↘

f a u l t s . " ,
code= c r c _ s e n s o r _ d i a g ,
runOnce= t r u e ,
yes = s e n s o r V e r i f i e d B r o k e n ,
no= s e n s o r V e r i f i e d W o r k i n g )

node concResponse ( name= r e s e t S e n s o r , c o s t =100 ,
code= c r c _ s e n s o r _ r e s e t ,
doc=" p h y s i c a l r e s t a r t o f s e n s o r . " )

node concResponse ( name= r u n E f f e c t o r D i a g n o s t i c , c o s t =100 ,
doc=" i n s t r u c t s t h e a g e n t t o check f o r ↘

n o n f u n c t i o n a l e f f e c t o r s . " ,
code= c r c _ e f f e c t o r _ d i a g )

node concResponse ( name= r e s e t E f f e c t o r , c o s t =100 ,
doc=" p h y s i c a l r e s t a r t o f an e f f e c t o r /↘

e f f e c t o r group . " ,
code= c r c _ e f f e c t o r _ r e s e t )

node concResponse ( name= r e b u i l d P r e d i c t i v e M o d e l s , c o s t =50 ,
doc=" r e r u n ba tch−mode p r e d i c t i v e model ↘

g e n e r a t o r s . " ,
code= c r c _ r e b u i l d _ m o d e l s )

node concResponse ( name= t ryAga in , c o s t =5 ,
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doc=" i n s t r u c t t h e h o s t t o r e t r y t h e f a i l e d ↘

a c t i v i t y . " ,
code= c r c _ t r y _ a g a i n )

)

l i n k a g e a l l (

# I−>F I l i n k s

l i n k IFC ( s r c = r e s o u r c e , d s t = re so u r ce Un ch an ge d )
l i n k IFC ( s r c =missed−unchanged , d s t = re so u r ce Un ch an ge d )
l i n k IFC ( s r c = s p a t i a l , d s t = s t u c k )
l i n k IFC ( s r c =missed−unchanged , d s t = s t u c k )

# i n t r a F l i n k s

l i n k a b s t r a c t i o n ( s r c = knowledgeEr ro r , d s t = f a i l u r e )
l i n k a b s t r a c t i o n ( s r c = p l a n t E r r o r , d s t = f a i l u r e )
l i n k a b s t r a c t i o n ( s r c = mode lEr ror , d s t = k n o w l e d g e E r r o r )
l i n k a b s t r a c t i o n ( s r c = p r e d i c t i v e M o d e l E r r o r , d s t = m o d e l E r r o r )
l i n k a b s t r a c t i o n ( s r c = p r o c e d u r a l M o d e l E r r o r , d s t = m o d e l E r r o r )
l i n k a b s t r a c t i o n ( s r c = s e n s o r E r r o r , d s t = p l a n t E r r o r )
l i n k a b s t r a c t i o n ( s r c = s e n s o r N o i s e , d s t = s e n s o r E r r o r )
l i n k a b s t r a c t i o n ( s r c = s e n s o r S t u c k , d s t = s e n s o r E r r o r )
l i n k a b s t r a c t i o n ( s r c = s e n s o r M i s c a l i b r a t e d , d s t = s e n s o r E r r o r )
l i n k a b s t r a c t i o n ( s r c = s e n s o r M a l f u n c t i o n , d s t = s e n s o r E r r o r )
l i n k a b s t r a c t i o n ( s r c = e f f e c t o r E r r o r , d s t = p l a n t E r r o r )

# i n t r a R l i n k s

l i n k s p e c i f i c a t i o n ( s r c = r e s p o n s e , d s t = i n t e r n a l R e s p o n s e )
l i n k s p e c i f i c a t i o n ( s r c = i n t e r n a l R e s p o n s e , d s t = p l a n t R e s p o n s e )
l i n k s p e c i f i c a t i o n ( s r c = i n t e r n a l R e s p o n s e , d s t = sys temResponse )
l i n k s p e c i f i c a t i o n ( s r c = p l a n t R e s p o n s e , d s t = r u n D i a g n o s t i c )
l i n k s p e c i f i c a t i o n ( s r c = p l a n t R e s p o n s e , d s t = r e s e t E f f e c t o r )
l i n k s p e c i f i c a t i o n ( s r c = p l a n t R e s p o n s e , d s t = r e s e t S e n s o r )
l i n k s p e c i f i c a t i o n ( s r c = r u n D i a g n o s t i c , d s t = r u n S e n s o r D i a g n o s t i c )
l i n k s p e c i f i c a t i o n ( s r c = r u n D i a g n o s t i c , d s t = r u n E f f e c t o r D i a g n o s t i c↘

)
l i n k s p e c i f i c a t i o n ( s r c = sys temResponse , d s t =amendKnowledgeBase )
l i n k s p e c i f i c a t i o n ( s r c =amendKnowledgeBase , d s t =↘

a m e n d P r e d i c t i v e M o d e l s )
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l i n k s p e c i f i c a t i o n ( s r c =amendKnowledgeBase , d s t =↘
amendProcedura lMode l s )

l i n k s p e c i f i c a t i o n ( s r c =amendKnowledgeBase , d s t =↘
r e b u i l d P r e d i c t i v e M o d e l s )

l i n k s p e c i f i c a t i o n ( s r c = r e s p o n s e , d s t = e x t e r n a l R e s p o n s e )
l i n k s p e c i f i c a t i o n ( s r c = sys temResponse , d s t = t r y A g a i n )

# i n t e r l i n k s

l i n k d i a g n o s t i c ( s r c = i n d i c a t i o n , d s t = f a i l u r e )
l i n k d i a g n o s t i c ( s r c = s e n s o r s C a n F a i l , d s t = s e n s o r M a l f u n c t i o n )
l i n k i n h i b i t o r y ( s r c = s e n s o r V e r i f i e d B r o k e n , d s t =↘

r u n S e n s o r D i a g n o s t i c )
l i n k i n h i b i t o r y ( s r c = s e n s o r V e r i f i e d W o r k i n g , d s t =↘

r u n S e n s o r D i a g n o s t i c )
# l i n k s u p p o r t ( s r c=s e n s o r V e r i f i e d B r o k e n , d s t= f i x S e n s o r )
# l i n k i n h i b i t o r y ( s r c=s e n s o r V e r i f i e d W o r k i n g , d s t= f i x S e n s o r )
l i n k d i a g n o s t i c ( s r c = resourceUnchanged , d s t = p r e d i c t i v e M o d e l E r r o r↘

)
l i n k d i a g n o s t i c ( s r c = s t u c k , d s t = s e n s o r S t u c k )
l i n k d i a g n o s t i c ( s r c = s t u c k , d s t = e f f e c t o r E r r o r )

l i n k p r e s c r i p t i v e ( s r c = s e n s o r M a l f u n c t i o n , d s t =↘
r u n S e n s o r D i a g n o s t i c )

l i n k p r e s c r i p t i v e ( s r c = p r e d i c t i v e M o d e l E r r o r , d s t =↘
a m e n d P r e d i c t i v e M o d e l s )

)

Listing B.2. Core MCL Ontology

# CORE . ONT . . . . MCL o n t o l o g y f r i n g e l e s s d e s c r i p t i o n f i l e

# node t y p e s :
#
# h o s t Pr o p − h o s t p r o p e r t i e s
# genInd − g e n e r a l purpose i n d i c a t i o n node
# conc Ind − c o n c r e t e ( f r i n g e ) i n d i c a t i o n d i r e c t l y a c t i v a t a b l e by↘

MCL
# iCore − i n d i c a t i o n core node
# HII − Host I n i t i a t e d I n d i c a t i o n
# f a i l u r e − g e n e r a l purpose f a i l u r e node
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# genResponse − g e n e r a l purpose r e s p o n s e node
# i n t e r a c t i v e − boo lean i n t e r a c t i v e r e s p o n s e node
# concResponse − c o n c r e t e ( i m p l e m e n t a b l e ) r e s p o n s e node

# l i n k t y p e s :
#
# > i n t r a o n t o l o g i c a l
# l i n k a b s t r a c t i o n ( s r c = , d s t =)
# − f rom s p e c i f i c ( s r c ) node t o more g e n e r a l ( d s t )
# l i n k IFC ( s r c = , d s t =)
# − I n d i c a t i o n Fr in ge t o Core
# l i n k s p e c i f i c a t i o n ( s r c = , d s t =)
# − f rom a b s t r a c t t o s p e c i f i c ( r e s p o n s e o n t o l o g y base t y p e )
#
# > i n t e r o n t o l o g i c a l
# l i n k d i a g n o s t i c ( s r c = , d s t =)
# − l i n k from i n d i c a t i o n t o f a i l u r e
# l i n k i n h i b i t o r y ( s r c = , d s t =)
# − l i n k from i n d i c a t i o n t o r e s p o n s e ( i n h i b i t i n g r e s p o n s e )
# l i n k s u p p o r t ( s r c = , d s t =)
# − l i n k from i n d i c a t i o n t o r e s p o n s e ( s u p p o r t i n g r e s p o n s e )

o n t o l og y i n d i c a t i o n s (
# h o s t p r o p e r t i e s . . .

node h o s t P r o p ( name= s e n s o r s C a n F a i l ,
prop= p c i _ s e n s o r s _ c a n _ f a i l )

node h o s t P r o p ( name= e f f e c t o r s C a n F a i l ,
prop= p c i _ e f f e c t o r s _ c a n _ f a i l )

node h o s t P r o p ( name= a c t i o n I n P l a y ,
prop= p c i _ a c t i o n _ i n _ p l a y )

node genInd ( name= hos tP rop ,
doc=" s u p e r n o d e f o r h o s t p r o p e r t i e s t o e n s u r e f u l l ↘

l i n k a g e . " )

# provenance ( what t h e s e n s o r i s a t t a c h e d t o )
node conc Ind ( name= p r o v e n a n c e : o b j e c t )
node conc Ind ( name= p r o v e n a n c e : s e l f )

# s e n s o r c l a s s e s

node conc Ind ( name= s t a t e )
node conc Ind ( name= c o n t r o l )
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node conc Ind ( name= s p a t i a l )
node conc Ind ( name= t e m p o r a l )
node conc Ind ( name= r e s o u r c e )
node conc Ind ( name= reward )
node conc Ind ( name= ambien t )
node conc Ind ( name= o b j e c t p r o p )
node conc Ind ( name=message )
node conc Ind ( name= c o u n t e r )
node conc Ind ( name= u n s p e c i f i e d _ s c )

node i C o r e ( name= o b s e r v a b l e )

node i C o r e ( name= i n d i c a t i o n ,
doc=" r o o t i n d i c a t i o n f o r t e m p o r a r i l y o rphaned ↘

f r i n g e nodes . " )

# v i o l a t i o n t y p e

node genInd ( name= d i v e r g e n c e ,
doc=" o b s e r v a b l e d i d n o t do what was e x p e c t e d ( t h i s↘

i s g e n e r a l ) " )
node genInd ( name= a b e r r a t i o n ,

doc=" o b s e r v a b l e changed when i t was n o t supposed ↘

t o . " )
node genInd ( name= b r e a k o u t−low ,

doc=" o b s e r v a b l e f e l l t h r o u g h a f l o o r e x p e c t a t i o n . "↘
)

node genInd ( name= b r e a k o u t−high ,
doc=" o b s e r v a b l e exceeded a c e i l i n g e x p e c t a t i o n . " )

node genInd ( name=missed−t a r g e t ,
doc=" o b s e r v a b l e was supposed t o change b u t missed ↘

t h e t a r g e t . " )
node genInd ( name= s h o r t−of−t a r g e t ,

doc=" o b s e r v a b l e lower t h a n e x p e c t e d t a r g e t . " )
node genInd ( name=long−of−t a r g e t ,

doc=" o b s e r v a b l e h i g h e r t h a n e x p e c t e d t a r g e t . " )
node genInd ( name=missed−unchanged ,

doc=" was supposed t o change t o t a r g e t b u t didn ’ t ↘

change a t a l l . " )

node conc Ind ( name=outOfRange ,
doc=" v a l u e o u t o f s p e c i f i e d r a n g e of a c c e p t a b l e ↘

v a l u e s . " )
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node conc Ind ( name= n o t I n S e t ,
doc=" v a l u e n o t i n s p e c i f i e d s e t o f a c c e p t a b l e ↘

v a l u e s . " )

node conc Ind ( name= i l l e g a l V a l u e ,
doc=" v a l u e was n o t i n t h e s p e c i f i e d l e g a l r a n g e /↘

s e t . " )

node conc Ind ( name= unreachab leMCLs ta t e ,
doc=" a s u p p o s e d l y u n r e a c h a b l e MCL s t a t e was ↘

r e a c h e d . " )

)

l i n k a g e a l l (
# i n t r a I l i n k s

l i n k a b s t r a c t i o n ( s r c = s t a t e , d s t = o b s e r v a b l e )
l i n k a b s t r a c t i o n ( s r c = c o n t r o l , d s t = o b s e r v a b l e )
l i n k a b s t r a c t i o n ( s r c = s p a t i a l , d s t = o b s e r v a b l e )
l i n k a b s t r a c t i o n ( s r c = tempora l , d s t = o b s e r v a b l e )
l i n k a b s t r a c t i o n ( s r c = r e s o u r c e , d s t = o b s e r v a b l e )
l i n k a b s t r a c t i o n ( s r c =reward , d s t = o b s e r v a b l e )
l i n k a b s t r a c t i o n ( s r c = ambient , d s t = o b s e r v a b l e )
l i n k a b s t r a c t i o n ( s r c = o b j e c t p r o p , d s t = o b s e r v a b l e )
l i n k a b s t r a c t i o n ( s r c =message , d s t = o b s e r v a b l e )
l i n k a b s t r a c t i o n ( s r c = c o u n t e r , d s t = o b s e r v a b l e )
l i n k a b s t r a c t i o n ( s r c = u n s p e c i f i e d _ s c , d s t = o b s e r v a b l e )

l i n k a b s t r a c t i o n ( s r c = o b s e r v a b l e , d s t = i n d i c a t i o n )
l i n k a b s t r a c t i o n ( s r c = d i v e r g e n c e , d s t = i n d i c a t i o n )
l i n k a b s t r a c t i o n ( s r c = hos tP rop , d s t = i n d i c a t i o n )

l i n k a b s t r a c t i o n ( s r c = s e n s o r s C a n F a i l , d s t = h o s t P r o p )
l i n k a b s t r a c t i o n ( s r c = e f f e c t o r s C a n F a i l , d s t = h o s t P r o p )
l i n k a b s t r a c t i o n ( s r c = a c t i o n I n P l a y , d s t = h o s t P r o p )

l i n k a b s t r a c t i o n ( s r c = a b e r r a t i o n , d s t = d i v e r g e n c e )
l i n k a b s t r a c t i o n ( s r c = b r e a k o u t−low , d s t = a b e r r a t i o n )
l i n k a b s t r a c t i o n ( s r c = b r e a k o u t−high , d s t = a b e r r a t i o n )

l i n k a b s t r a c t i o n ( s r c =missed−t a r g e t , d s t = d i v e r g e n c e )
l i n k a b s t r a c t i o n ( s r c =missed−unchanged , d s t =missed− t a r g e t )
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l i n k a b s t r a c t i o n ( s r c = s h o r t−of−t a r g e t , d s t =missed− t a r g e t )
l i n k a b s t r a c t i o n ( s r c =long−of−t a r g e t , d s t =missed− t a r g e t )

)
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Appendix C

MCL TEMPORAL COMPARISON FUNCTIONS

The two listings in this appendix contain the major pieces of the C++ code I wrote

to implement the MCL Temporal comparison functions for the experiments. They are the

header file (DWtestREB.h) and the implementation file (DWtestREB.cc).
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Listing C.1. Header File for MCL Frame Comparison Functions
# i f n d e f MCL_DW_TEST_REB_H
# d e f i n e MCL_DW_TEST_REB_H

# i n c l u d e " r e e n t r a n c y . h "

namespace metacog {

us ing namespace s t d ;

/∗ ∗
M u l t i p l e REBs b e i n g t e s t e d by Dean Wrigh t f o r PhD ↘

d i s s e r t a i o n
∗ /
c l a s s DWtestREB : p u b l i c Selec tBes tREB {
p u b l i c :

DWtestREB ( ) : Se lec tBes tREB ( ) { method_number = 0 ; } ;
DWtestREB ( i n t num ) : Se lec tBes tREB ( ) { method_number = num ; } ;
v i r t u a l bool s e l e c t F r a m e s F o r R e E n t r y ( mc lFrameEnt ryVec to r& fev ↘

,
f rameVec& a l l F r a m e s ,
frameVec& s e l e c t o n V e c t o r↘

) ;
v i r t u a l bool s e l e c t C a n d i d a t e F r a m e s F o r R e E n t r y (↘

mclFrameEnt ryVec to r& fev ,
frameVec& a l l F r a m e s ,
frameVec& s e l e c t o n V e c t o r ↘

,
bool s i n g l e ) ;

v i r t u a l bool s e l e c t F o r S u c c e s s ( mc lFrameEnt ryVec to r& fev ,↘
mclFrame∗ frame ,

double ∗ s c o r e ) ;
v i r t u a l bool s e l e c t F o r F a i l u r e ( mc lFrameEnt ryVec to r& fev ,↘

mclFrame∗ frame ,
double ∗ s c o r e ) ;

v i r t u a l s t r i n g d e s c r i b e ( ) ;
v i r t u a l s t r i n g name ( ) ;

p r i v a t e :
i n t method_number ;
i n t random_frame ( mclFrameEnt ryVec to r& fev ,

frameVec& c a n d i d a t e s ,
bool addNone= f a l s e ) ;

i n t f i r s t _ f r a m e ( mclFrameEnt ryVec to r& fev ,



214

frameVec& c a n d i d a t e s ) ;
} ;

} ;

# e n d i f

Listing C.2. Implementation File for MCL Frame Comparison Functions
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Implemen t R e n e t r a n t B e h a v i o r f o r D i s s e r t a t i o n
∗
∗ Dean Ear l Wr igh t
∗ F a l l 2010
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

F0 : No MCL ( P a s s i v e )
F1 : Always t h e same frame
F2 : Always use a new frame
F3 : Random
F4 : r e u s e frame i f EVS e q u a l
F5 : I I S e q u a l
F6 : bo th I I S and EVS e q u a l
F7 : EVS e q u a l b u t I I S d i f f e r e n t
F8 : I I S e q u a l b u t EVS d i f f e r e n t
F9 : C u r r e n t a l g o r i t h m ( P a s s i v e )

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

# i n c l u d e " r e e n t r a n c y . h "
# i n c l u d e " mclFrame . h "
# i n c l u d e " DWtestREB . h "
# i n c l u d e " s t d l i b . h "
# i n c l u d e " mclLogging . h "
# i n c l u d e " umbc / t e x t _ u t i l s . h "

us ing namespace s t d ;
us ing namespace umbc ;
us ing namespace metacog ;

bool DWtestREB : : s e l e c t F r a m e s F o r R e E n t r y ( mc lFrameEnt ryVec to r& fev ,
frameVec& a l l F r a m e s ,
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frameVec& s e l e c t i o n V e c t o r↘
) {

/ / 1 . S t a r t w i t h no frame s e l e c t e d f o r r e e n t r y
mclFrame∗ bes tF rame = NULL;
frameVec c a n d i d a t e s ;
frameVec : : i t e r a t o r f v i ;
i n t i ;

/ / 2 . Log t h e r e q u e s t
# i f n d e f NO_DEBUG

/ / 2a . Outpu t header w i t h method number
char char_num [ 3 1 ] ;
/ / s n p r i n t f ( char_num , 30 , "%d " , method_number ) ;
uLog : : a n n o t a t e (ULAT_NORMAL, " [ DWtestREB ] : : s e l e c t F r a m e s F o r R e t r y (↘

"+ d e s c r i b e ( ) +" ) " ) ;

/ / 2b . Outpu t Frame E n t r y V e c t o r y
s t r i n g d e s c _ f e v = f e v . d e s c r i b e ( ) ;
uLog : : a n n o t a t e (ULAT_NORMAL, " [ DWtestREB ] : : "+ d e s c _ f e v ) ;

/ / 2 c . Outpu t number o f f r am es i n a l l F r a m e s
s n p r i n t f ( char_num , 30 , "%d " , ( i n t ) a l l F r a m e s . s i z e ( ) ) ;
uLog : : a n n o t a t e (ULAT_NORMAL, " [ DWtestREB ] : : a l l F r a m e s ( " + ( ( s t r i n g )↘

char_num ) +" ) " ) ;

/ / 2d . Loop f o r a l l o f t h e Frames
f o r ( f v i = a l l F r a m e s . b e g i n ( ) ;

f v i != a l l F r a m e s . end ( ) ;
f v i ++) {

/ / 2 e . Outpu t t h e frame
s t r i n g d e s c _ f r a m e = (∗ f v i )−> d e s c r i b e ( ) ;
uLog : : a n n o t a t e (ULAT_NORMAL, " [ DWtestREB ] : : "+ d e s c _ f r a m e ) ;

} / / end f o r
# e n d i f

/ / 3 . S e l e c t c a n i d a t e f r am es
bool s i n g l e = f a l s e ;
i f ( method_number == 0 | | method_number == 9) s i n g l e = t rue ;
s e l e c t C a n d i d a t e F r a m e s F o r R e E n t r y ( fev , a l l F r a m e s , c a n d i d a t e s , ↘

s i n g l e ) ;
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/ / 4 . S e l e c t f rame ( i f any ) based on b e h a v i o r
sw i t ch ( method_number ) {

/ / F0 : No MCL ( P a s s i v e )
/ / F9 : C u r r e n t a l g o r i t h m ( P a s s i v e )
case 0 :
case 9 :

f o r ( f v i = c a n d i d a t e s . b e g i n ( ) ;
f v i != c a n d i d a t e s . end ( ) ;
f v i ++) {

s e l e c t i o n V e c t o r . push_back (∗ f v i ) ;
} / / end f o r
re turn s e l e c t i o n V e c t o r . empty ( ) ;

/ / F1 : Always t h e same frame
case 1 :

i f ( ! c a n d i d a t e s . empty ( ) )
be s tF rame = c a n d i d a t e s [ 0 ] ;

break ;

/ / F2 : Always use a new frame
case 2 :

break ;

/ / F3 : Random frame
case 3 :

i = random_frame ( fev , c a n d i d a t e s , t rue ) ;
i f ( i >= 0)

bes tF rame = c a n d i d a t e s [ i ] ;
break ;

/ / F4 : r e u s e frame i f EVS e q u a l
case 4 :

i = random_frame ( fev , c a n d i d a t e s ) ;
i f ( i >= 0)

bes tF rame = c a n d i d a t e s [ i ] ;
break ;

/ / F5 : I I S e q u a l
case 5 :

i = random_frame ( fev , c a n d i d a t e s ) ;
i f ( i >= 0)
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bes tF rame = c a n d i d a t e s [ i ] ;
break ;

/ / F6 : bo th I I S and EVS e q u a l
case 6 :

i = random_frame ( fev , c a n d i d a t e s ) ;
i f ( i >= 0)

bes tF rame = c a n d i d a t e s [ i ] ;
break ;

/ / F7 : EVS e q u a l b u t I I S d i f f e r e n t
case 7 :

i = random_frame ( fev , c a n d i d a t e s ) ;
i f ( i >= 0)

bes tF rame = c a n d i d a t e s [ i ] ;
break ;

/ / F8 : I I S e q u a l b u t EVS d i f f e r e n t
case 8 :

i = random_frame ( fev , c a n d i d a t e s ) ;
i f ( i >= 0)

bes tF rame = c a n d i d a t e s [ i ] ;
break ;

d e f a u l t : / / I n v a l i d method_number
break ;

} / / end s w i t c h

/ / 5 . Re tu rn t h e frame and t r u e i f we found one
i f ( be s tF rame ) {

s e l e c t i o n V e c t o r . push_back ( bes tF rame ) ;
# i f n d e f NO_DEBUG

s t r i n g d e s c _ f r a m e = bes tFrame−> d e s c r i b e ( ) ;
uLog : : a n n o t a t e (ULAT_NORMAL, " [ DWtestREB ] : : s e l e c t e d "+↘

d e s c _ f r a m e ) ;
# e n d i f

re turn true ;
}

/ / 6 . Re tu rn F a l s e i f no frame f o r re−e n t r y
# i f n d e f NO_DEBUG

uLog : : a n n o t a t e (ULAT_NORMAL, " [ DWtestREB ] : : s e l e c t e d none " ) ;
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# e n d i f
re turn f a l s e ;

}

bool DWtestREB : : s e l e c t C a n d i d a t e F r a m e s F o r R e E n t r y (↘
mclFrameEnt ryVec to r& fev ,

frameVec& ↘

a l l F r a m e s ,
frameVec& ↘

s e l e c t i o n V e c t o r ↘
,

bool s i n g l e ) {
/ / 1 . S t a r t w i t h no b e s t c a n i d a t e
double b e s t _ s c o r e = −1;
mclFrame∗ bes tF rame = NULL;

/ / 2 . De termine i f we are l o o k f o r s u c c e s s or f a i l u r e f ra mes
bool s u c c e s s = f e v . i s S u c c e s s f u l E n t r y ( ) ;

/ / 3 . Loop f o r a l l o f t h e f r am es
f o r ( frameVec : : i t e r a t o r a f i = a l l F r a m e s . b e g i n ( ) ;

a f i != a l l F r a m e s . end ( ) ;
a f i ++) {

/ / 4 . Get t h e s c o r e f o r t h i s f rame
double c u r r e n t = −1;
bool p o s s i b l e ;
i f ( s u c c e s s ) {

p o s s i b l e = s e l e c t F o r S u c c e s s ( fev , ( ∗ a f i ) ,& c u r r e n t ) ;
} e l s e {

p o s s i b l e = s e l e c t F o r F a i l u r e ( fev , ( ∗ a f i ) ,& c u r r e n t ) ;
}
i f ( p o s s i b l e ) {

i f ( s i n g l e ) {
i f ( c u r r e n t > b e s t _ s c o r e ) {

b e s t _ s c o r e = c u r r e n t ;
be s tF rame =(∗ a f i ) ;

}
} e l s e {

s e l e c t i o n V e c t o r . push_back (∗ a f i ) ;
} / / end e l s e i f ( s i n g l e )

} / / end i f ( p o s s i b l e )
}
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i f ( s i n g l e && bes tF rame ) {
s e l e c t i o n V e c t o r . push_back ( bes tF rame ) ;

}
re turn ! s e l e c t i o n V e c t o r . empty ( ) ;

}

bool DWtestREB : : s e l e c t F o r S u c c e s s ( mc lFrameEnt ryVec to r& fev ,
mclFrame∗ frame ,
double ∗ s c o r e ) {

uLog : : a n n o t a t e (ULAT_NORMAL, " DWtestREB : : s e l e c t F o r S u c c e s s ( "+
t e x t F u n c t i o n s : : n u m 2 s t r i n g ( method_number ) +" ) " ) ;

/ / 1 . An r e f e r e n t match i s a lways a c c e p t a b l e
i f ( frame−>m a t c h e s R e f e r e n t ( f e v . vRef ) ) {

i f ( s c o r e ) ∗ s c o r e = 1 . 0 ;
uLog : : a n n o t a t e (ULAT_NORMAL, " r e f e r e n t match " ) ;
re turn true ;

}

/ / 2 . De fermine a c c e p t a b i l i t y based on b e h a v i o r
sw i t ch ( method_number ) {

/ / F0 : No MCL − f l a g f o r FrameRover . py
/ / F9 : C u r r e n t a l g o r i t h m ( P a s s i v e )
case 0 :
case 9 :

i f ( ( f e v . vEG == frame−>get_vegKey ( ) ) &&
( frame−>isMos tRecen tFrame ( ) ) &&
( frame−> i n _ a d v i c e _ s t a t e ( ) ) ) {

i f ( s c o r e ) ∗ s c o r e = 1 . 0 ;
uLog : : a n n o t a t e (ULAT_NORMAL, " p a s s i v e match " ) ;
re turn true ;

}
break ;

/ / F1 : Always t h e same frame
/ / F2 : Always use a new frame
/ / F3 : Random
/ / F4 : Reuse frame i f EVS e q u a l
/ / F5 : I I S e q u a l
/ / F6 : bo th I I S and EVS e q u a l
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/ / F7 : EVS e q u a l b u t I I S d i f f e r e n t
/ / F8 : I I S e q u a l b u t EVS d i f f e r e n t
case 1 :
case 2 :
case 3 :
case 4 :
case 5 :
case 6 :
case 7 :
case 8 :

i f ( ( f e v . vEG == frame−>get_vegKey ( ) ) &&
( frame−>isMos tRecen tFrame ( ) ) &&
( frame−> i n _ a d v i c e _ s t a t e ( ) ) ) {

i f ( s c o r e ) ∗ s c o r e = 1 . 0 ;
uLog : : a n n o t a t e (ULAT_NORMAL, " r e b match " ) ;
re turn true ;

}
break ;

d e f a u l t :
uLog : : a n n o t a t e (ULAT_NORMAL, " i n v a l i d number " ) ;
break ;

}

/ / 3 . Didn ’ t l i k e t h i s f rame
uLog : : a n n o t a t e (ULAT_NORMAL, " no match " ) ;
re turn f a l s e ;

}

bool DWtestREB : : s e l e c t F o r F a i l u r e ( mc lFrameEnt ryVec to r& fev ,↘
mclFrame∗ frame ,

double ∗ s c o r e ) {

uLog : : a n n o t a t e (ULAT_NORMAL, " DWtestREB : : s e l e c t F o r F a i l u r e ( "+
t e x t F u n c t i o n s : : n u m 2 s t r i n g ( method_number ) +" ) " ) ;

/ / 1 . An r e f e r e n t match i s a lways a c c e p t a b l e
i f ( frame−>m a t c h e s R e f e r e n t ( f e v . vRef ) ) {

i f ( s c o r e ) ∗ s c o r e = 1 . 0 ;
uLog : : a n n o t a t e (ULAT_NORMAL, " r e f e r e n t match " ) ;
re turn true ;

}
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/ / 2 . De fermine a c c e p t a b i l i t y based on b e h a v i o r
sw i t ch ( method_number ) {

/ / F0 : No MCL − f l a g f o r FrameRover . py
/ / F9 : C u r r e n t a l g o r i t h m ( P a s s i v e )
case 0 :
case 9 :

i f ( ( f e v . vEG == frame−>get_vegKey ( ) ) &&
( frame−> e v S i g n a t u r e E x i s t s ( f e v . vEVS ) ) ) {

i f ( s c o r e ) ∗ s c o r e = 1 . 0 ;
f e v . vECode = REENTRY_RECURRENCE;
uLog : : a n n o t a t e (ULAT_NORMAL, " p a s s i v e match " ) ;
re turn true ;

}
break ;

/ / F1 : Always t h e same frame
case 1 :

i f ( s c o r e ) ∗ s c o r e = 1 . 0 ;
f e v . vECode = REENTRY_RECURRENCE;
uLog : : a n n o t a t e (ULAT_NORMAL, " a lways match " ) ;
re turn true ;

/ / F2 : Always use a new frame
case 2 :

uLog : : a n n o t a t e (ULAT_NORMAL, " n e v e r match " ) ;
re turn f a l s e ;

/ / F3 : Random
case 3 :

i f ( s c o r e ) ∗ s c o r e = 1 . 0 ;
f e v . vECode = REENTRY_RECURRENCE;
uLog : : a n n o t a t e (ULAT_NORMAL, " s h o u l d be random b u t a lways ↘

matches " ) ;
re turn true ;

/ / F4 : r e u s e frame i f EVS e q u a l
case 4 :

i f ( frame−> e v S i g n a t u r e E x i s t s ( f e v . vEVS ) ) {
i f ( s c o r e ) ∗ s c o r e = 1 . 0 ;
f e v . vECode = REENTRY_RECURRENCE;
uLog : : a n n o t a t e (ULAT_NORMAL, "EVS match " ) ;
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re turn true ;
}
break ;

/ / F5 : I I S e q u a l
case 5 :

i f ( frame−> i s S i g n a t u r e E x i s t s ( f e v . s t r i n g _ i i s ( ) ) ) {
i f ( s c o r e ) ∗ s c o r e = 1 . 0 ;
f e v . vECode = REENTRY_RECURRENCE;
uLog : : a n n o t a t e (ULAT_NORMAL, " I I S match " ) ;
re turn true ;

}
break ;

/ / F6 : bo th I I S and EVS e q u a l
case 6 :

i f ( ( frame−> i s S i g n a t u r e E x i s t s ( f e v . s t r i n g _ i i s ( ) ) ) &&
( frame−> e v S i g n a t u r e E x i s t s ( f e v . vEVS ) ) ) {

i f ( s c o r e ) ∗ s c o r e = 1 . 0 ;
f e v . vECode = REENTRY_RECURRENCE;
uLog : : a n n o t a t e (ULAT_NORMAL, " I I S and EVS match " ) ;
re turn true ;

}
break ;

/ / F7 : EVS e q u a l b u t I I S d i f f e r e n t
case 7 :

i f ( ( ! frame−> i s S i g n a t u r e E x i s t s ( f e v . s t r i n g _ i i s ( ) ) ) &&
( frame−> e v S i g n a t u r e E x i s t s ( f e v . vEVS ) ) ) {

i f ( s c o r e ) ∗ s c o r e = 1 . 0 ;
f e v . vECode = REENTRY_RECURRENCE;
uLog : : a n n o t a t e (ULAT_NORMAL, " ! I I S and EVS match " ) ;
re turn true ;

}
break ;

/ / F8 : I I S e q u a l b u t EVS d i f f e r e n t
case 8 :

i f ( ( frame−> i s S i g n a t u r e E x i s t s ( f e v . s t r i n g _ i i s ( ) ) ) &&
( ! frame−> e v S i g n a t u r e E x i s t s ( f e v . vEVS ) ) ) {

i f ( s c o r e ) ∗ s c o r e = 1 . 0 ;
f e v . vECode = REENTRY_RECURRENCE;
uLog : : a n n o t a t e (ULAT_NORMAL, " ! I I S and !EVS match " ) ;
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re turn true ;
}
break ;

d e f a u l t : / / I n v a l i d method_number
uLog : : a n n o t a t e (ULAT_NORMAL, " i n v a l i d number " ) ;
break ;

} / / end s w i t c h ( method_number )

/ / 3 . Didn ’ t l i k e t h i s f rame
uLog : : a n n o t a t e (ULAT_NORMAL, " n o t a match " ) ;
re turn f a l s e ;

}

/ / ↘

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−↘

/ / A l g o r i t h m s t o s e l e c t t h e b e s t f rame from a s e t o f c a n i d a t e s ↘

or n o t .
/ / ↘

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−↘

i n t DWtestREB : : random_frame ( mclFrameEnt ryVec to r& fev ,
frameVec& c a n d i d a t e s ,
bool addNone ) {

/ / 1 . No c a n i d a t e s , r e t u r n new frame
i f ( c a n d i d a t e s . empty ( ) ) {

re turn −1;
}

/ / 2 . Get method_number o f c h o i c e s ( s i z e maybe p l u s one )
long s i z e = c a n d i d a t e s . s i z e ( ) ;
long c h o i c e s = s i z e ;
i f ( addNone ) ++ c h o i c e s ;

/ / 3 . Get random c h o i c e
l d i v _ t m = l d i v ( random ( ) , c h o i c e s ) ;

/ / 4 . Re tu rn new frame i f n o t s e l e c t i n g a frame
i f ( ( unsigned i n t )m. rem >= c a n d i d a t e s . s i z e ( ) )



224

re turn −1;

/ / 5 . Re tu rn method_number o f c a n i d a t e f rame t o use
re turn m. rem ;

}

i n t DWtestREB : : f i r s t _ f r a m e ( mc lFrameEnt ryVec to r& fev ,
frameVec& c a n d i d a t e s ) {

/ / 1 . No c a n i d a t e s , r e t u r n new frame
i f ( c a n d i d a t e s . empty ( ) ) {

re turn −1;
}

/ / 2 . E l s e r e t u r n t h e f i r s t f rame
re turn 0 ;

}

s t r i n g DWtestREB : : d e s c r i b e ( ) {
s t r i n g what = " ??? " ;
sw i t ch ( method_number ) {

case 0 : what = " 0 : P a s s i v e " ; break ;
case 1 : what = " 1 : F i r s t " ; break ;
case 2 : what = " 2 : New" ; break ;
case 3 : what = " 3 : Random " ; break ;
case 4 : what = " 4 : EVS" ; break ;
case 5 : what = " 5 : I I S " ; break ;
case 6 : what = " 6 : EVS and I I S " ; break ;
case 7 : what = " 7 : EVS b u t n o t I I S " ; break ;
case 8 : what = " 8 : I I S b u t n o t EVS" ; break ;
case 9 : what = " 9 : P a s s i v e " ; break ;
d e f a u l t : what =" ? : I n v a l i d method_number " ; break ;

}
re turn "DW_REB=" + what ;

}

s t r i n g DWtestREB : : name ( ) {
sw i t ch ( method_number ) {

case 0 : re turn " z e r o " ;
case 1 : re turn " one " ;
case 2 : re turn " two " ;
case 3 : re turn " t h r e e " ;
case 4 : re turn " f o u r " ;
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case 5 : re turn " f i v e " ;
case 6 : re turn " s i x " ;
case 7 : re turn " seven " ;
case 8 : re turn " e i g h t " ;
case 9 : re turn " n i n e " ;

}
re turn " ??? " ;

}
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Appendix D

PYTHON CODE USED IN EXPERIMENTS

I wrote the Mars Rover domain, experiment scaffolding, and various utilities in

Python.1 There are four sets of python files.

Mars Rover Agent The files in Table D.1 implement a series of Mars Rovers. Each one

builds on the one before to implement additional features. R0, R1, and R2 imple-

ment the basic hardware of the Mars Rover. R3 and R4 add perturbations. R5 adds

the STRIPS planner creating a Level 0: Bereft agent with no metacognitive supervi-

sion. R6 and R7 implement the multi-level, goal-oriented, motivated Rover acting as

a Level 1: Instinctive metacognitive agent. R8 and R9 provide scripting to allow for

complicated experiments. RA provides a visualization of the Rover. RB interfaces

with MCL to get a Level 2: Evaluative Rover and RC, with selectable frame compar-

ison functions, provides a Level 3: Temporal Rover. Finally, RD implements a Rover

dedicated to running the triple panoramic tour used in the dissertation experiments.

Mars Rover Agent Utility Files These files are used by the Mars Rover agent. This set

(Table D.2) includes files that just enumerate constants as well as those that imple-

ment important sub-systems.

1www.python.org
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File Lines Description
BasicRover.py 972 R0: Implements the Coddington commands and en-

vironment
ExtendedRover.py 681 R1: Adds additional commands
SensorRover.py 345 R2: Provides sensor for use in motivations and ex-

pectations
NoisyRover.py 827 R3: Allow sensors to be less than perfect
PerturbRover.py 602 R4: Adds many possible perturbations to the Rover

and the environment
PlanRover.py 1062 R5: Adds STRIPS planner
MultiLevelRover.py 862 R6: Provides multi-level goals
MotivateRover.py 583 R7: Adds selectable sets of motivations (stimulus –>

response)
ScriptRover.py 1243 R8: Experiment setup and takedown
ChapterRover.py 564 R9: And then support for multiple scripts
VisualRover.py 1058 RA: GUI display and interface
MCLRover.py 1056 RB: Communicates to MCL via sockets
FrameRover.py 559 RC: Allows selecting frame comparison function to

use for experiment
DisseminationRover.py 774 RD: Runs triple panoramic tour experiment for dis-

sertation

Table D.1. Mars Rover Domain Experiments Python Files

Dissertation Related Programs The files listed in Table D.3 are not part of the Mars

Rover. They relate to running experiments, generating content for the dissertation,

and backing up the experiment and dissertation files.

Chippy Demonstration Programs The files in Table D.4 are for the Chippy grid world

used to demonstrate the metacognition levels in Chapter2.

Figure D.1 shows the import relationships between the Python code files for the Mars

Rover simulation. And Figure D.2 for the Python files for the Chippy demonstration.
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File Lines Description
Levels.py 32 Multilevel Rover goal hierarchy
MCLLevels 82 Metacognitive levels
MCLResponse.py 265 Decode and encapsulate suggestions from MCL
MCLServer.py 554 Manages socket connection to MCL
Motivation.py 166 Generic motivation: sensor, test, urgency and action
RoverAction.py 548 Describes a single Rover action
RoverMotivation.py 400 Rover motivation groups
RoverScript.py 1095 Implements mini-language to define Rover experi-

ments
Sensors.py 135 Defines single and multiple sensors
perturbations.py 468 Creates anomalies in Rover or environment
rstrips.py 1024 STRIPS planner
tokenizer.py 222 Simple parser for action scrips

Table D.2. Mars Rover Agent Utility Python Files

File Lines Description
ApproachTables.py 726 Generate LATEX tables for static evaluation of frame

comparison functions
Backupumbc.py 100 Tar, ZIP, and copy files from laptop to dated directo-

ries on network file server
Dissertation.py 805 Master script to run one or multiple sets of experi-

ments
Results.py 3179 Read experiment CSV files and generate LATEX tables

for results chapter
csv2tex.py 345 Create a LATEX table from an experiment CSV file
trace2tex.py 149 Convert Rover to MCL communication trace to a

LATEX tabular figure

Table D.3. Dissertation Related Python Programs
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File Lines Description
Dissertation.py 150 Executes experiments for dissertation
Experiments.py 158 Executes 22 Chippy experiments with a single runner
Experiment.py 134 Executes a single Chippy experiment
Runners.py 205 Run routines for Metacognition 0, 1, 2, and 3
Runner.py 124 Abstract Q-Learner that invokes metacognition
QLearner.py 213 A grid world walker that learns
Walker.py 168 Agent that walks a grid world
Grid.py 276 A x/y collection of Squares
Square.py 255 A single square of the grid
Constants.py 151 A “.h” file for the Chippy python files
Results.py 1001 Creates latex tables from Chippy experiment csv file

Table D.4. Chippy Demonstration Python Programs
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FIG. D.1. Dependency graph for Python implementation of the Mars Rover simulation.
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FIG. D.2. Dependency graph for Python implementation of the Chippy Q-Learner with
multiple metacognition levels.
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