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The world in which a commonsense reasoning agent reasons, that is, the everyday world, is continually
changing. These changes occur as the agent proceeds, and must be taken into account as the agent reasons.
An often overlooked, but extremely important, change that occurs is simply the passage of time as the agent
reasons.

A commonsense reasoner is frequently limited in the amount of time it has to reason. Conclusions that
may be logically (or otherwise) entailed by the agent’s information take time to be derived. But time spent
in such derivations is concurrent with changes in the world. This limitation must be recognized by the
reasoner himself; that is, the agent should be able to reason about its ongoing reasoning efforts themselves.
To do this, the agent’s reasoning must be ‘‘situated’’ in a temporal environment.

The problem that I address is that of defining a formalism in which the on-going process of deduction
itself is part of that very same reasoning. This involves focusing on individual deductive steps, rather than
the collection of all conclusions ever reached. This has led to the formulation of step (or situated) logic, an
approach to reasoning in which the formalism has a kind of real-time self-reference that affects the course
of deduction itself. Such a notion of logic deviates in a crucial way from traditional formal deductive
mechanisms, for the proof process becomes part of the available information used in forming proofs.

A precise characterization of step-logic is given, with details of two particular step-logics. Two
commonsense reasoning problems, the Brother problem and the Three-wise-men problem, are modelled
using step-logic, providing real-time formal solutions to these commonsense reasoning problems. These
solutions were then implemented on an IBM PC-AT.

It appears that step-logic is a promising formalism for modelling the fact that reasoning takes time.
Contradictions can arise and be subsequently resolved within the logic itself, permitting a genuinely
computational solution to certain types of default reasoning.



STEP-LOGIC:
Reasoning Situated in Time

by
Jennifer J. Elgot-Drapkin

Dissertation submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

1988

Advisory Committee:

Associate Professor Donald Perlis
Professor Jack Minker
Associate Professor Dana Nau
Assistant Professor William Gasarch
Professor Edgar Lopez-Escobar



c
�

Copyright by
Jennifer J. Elgot-Drapkin

1988



To my dad, Calvin C. Elgot.

ii



Acknowledgements

I would like to thank my husband, Michael S. Drapkin, for his continued love, patience, and support
over the last few years. On many occasions our discussions centered on my research endeavors, forcing his
problems to take a back seat. He spent many a late night discussing step-logic with me, even though he had
to be in to work first thing in the morning. Even when we were living three states apart, he would spend
countless hours on the telephone keeping me going (and the phone company in business). I never would
have been able to complete this degree without his help.

Special thanks go to my advisor, Don Perlis. He was amazingly patient and never seemed to lose faith
in me. He survived the long late hours that resulted when our ‘‘one-hour meeting’’ stretched into eight.
Don has been an inspiration to me all these years. I can only hope that some day I too may be as helpful to
my students as he was to me.

I would like to thank the members of my advisory committee, Don Perlis, Jack Minker, Bill Gasarch,
Dana Nau, and Ken Lopez-Escobar, for their time, efforts, and criticisms. They truly helped shape this
dissertation.

I would also like to thank my family and friends who were always there when I needed them---thanks
for putting up with me.

Finally, I wish to express my thanks to my daughter Amy who forced me to wrap things up---I’m so
glad you waited until eleven days after my defense to be born!

iii



� �����������
	

List of Figures vi

1 Introduction 1
1.1 Statement of the Problem �����
���
���������������������
���������������������
���
��������� 1
1.2 Accomplishments �
���������������������
���������������������
���
�����������������
���
� 2
1.3 Outline of Thesis �������������������
���
�����������������
���
���������������������
������� 3

2 A Time-situated View of Reasoning 4
2.1 Background ���������������
���������������������
���
�����������������
���
��������������� 4

2.1.1 Logical omniscience vs. Limited reasoning �
�����������������
���
��������������� 4
2.1.2 Reasoning about Time and Action ���������������������
���
�����������������
���
� 6

2.2 The Idea �����
���������������������
���
�����������������
���
���������������������
������� 6
2.3 Applications to Commonsense Reasoning �������
���
�����������������
���
��������������� 8

2.3.1 The Three-wise-men problem �����
���
���������������������
��������������������� 8
2.3.2 The Brother problem �
���
���������������������
���������������������
���
��������� 9
2.3.3 Little Nell ���
���
�����������������
���
���������������������
��������������������� 9

3 The Details 11
3.1 Basics �������
���������������������
���
�����������������
���
���������������������
������� 11
3.2 Technical Definitions �������
���
���������������������
���������������������
���
��������� 12
3.3 Summary ���
�����������������
���
���������������������
���������������������
���
��������� 14

4 SL0 and SL0 15
4.1 Introduction ���
���
���������������������
���������������������
���
�����������������
���
� 15
4.2 The Theory �����������������
���������������������
���
�����������������
���
��������������� 16

4.2.1 Axioms �����������
���������������������
���
�����������������
���
��������������� 16
4.2.2 Theorems ���������
���������������������
���
�����������������
���
��������������� 17

4.3 Implementation of ��� 0 �����
���������������������
���
�����������������
���
��������������� 18
4.4 Summary ���
�����������������
���
���������������������
���������������������
���
��������� 18

5 SL7 19
5.1 Introduction ���
���
���������������������
���������������������
���
�����������������
���
� 19
5.2 The Theory �����������������
���������������������
���
�����������������
���
��������������� 19
5.3 Implementation of ��� 7 �����
���������������������
���
�����������������
���
��������������� 21
5.4 Summary ���
�����������������
���
���������������������
���������������������
���
��������� 22

6 The Brother Problem 23
6.1 Statement of the Problem �����
���
���������������������
���������������������
���
��������� 23
6.2 Three Scenarios �����
���
�����������������
���
���������������������
��������������������� 24

6.2.1 Simple negative introspection succeeds �������
���������������������
���
��������� 24
6.2.2 Simple negative introspection fails (appropriately) �������������
���
��������������� 24
6.2.3 Introspection contradicts other deduction �������������
���
�����������������
���
� 25

6.3 Discussion �����������
���
�����������������
���
���������������������
��������������������� 25
6.4 Implementation of ��� 7( ������� 3 ������� � ) �
���
���������������������
��������������������� 27
6.5 Summary ���
�����������������
���
���������������������
���������������������
���
��������� 27

iv



7 The Wise-men Problem(s) 28
7.1 Statement of the Problem �����
���
���������������������
���������������������
���
��������� 28
7.2 The Two-wise-men Problem ���������������������
���
�����������������
���
��������������� 28

7.2.1 Statement of the Problem ���������������
���
�����������������
���
��������������� 28
7.2.2 Solution �����
���
�����������������
���
���������������������
��������������������� 30
7.2.3 Discussion ���
���
�����������������
���
���������������������
��������������������� 32
7.2.4 Implementation of ��� 7( ������� 2 � � ��� � 2 ) �������������������
��������������������� 32

7.3 The Three-wise-men Problem �������������������
���
�����������������
���
��������������� 33
7.3.1 Statement of the Problem ���������������
���
�����������������
���
��������������� 33
7.3.2 Solution �����
���
�����������������
���
���������������������
��������������������� 35
7.3.3 Discussion ���
���
�����������������
���
���������������������
��������������������� 37
7.3.4 Implementation of ��� 7( ����� � 3 � � ��� � 3 ) �������������������
��������������������� 37

7.4 Summary ���
�����������������
���
���������������������
���������������������
���
��������� 38

8 Summary, Discussion and Future Work 39
8.1 Summary ���
�����������������
���
���������������������
���������������������
���
��������� 39
8.2 Discussion �����������
���
�����������������
���
���������������������
��������������������� 39
8.3 Future Directions �������������������
���
�����������������
���
���������������������
������� 43

A Proofs of Theorems about SL0 44
A.1 The Workings �������
���
�����������������
���
���������������������
��������������������� 44
A.2 Axioms of ��� 0 �������������
���������������������
���
�����������������
���
��������������� 44
A.3 Analytic Completeness �������
���
���������������������
���������������������
���
��������� 44

A.3.1 Preliminary Lemmas �������
���
�����������������
���
���������������������
������� 44
A.3.2 The Main Theorem �����������������
���
���������������������
��������������������� 53

A.4 Other results ���������
���
�����������������
���
���������������������
��������������������� 55

B Proofs of Theorems about SL7 57
B.1 Theorem 5.4 ���������������
���������������������
���
�����������������
���
��������������� 57

C Sample Runs of Programs 61
C.1 ��� 0 �
���������������������
���������������������
���
�����������������
���
��������������� 61
C.2 Two-wise-men �������
���
�����������������
���
���������������������
��������������������� 62
C.3 Three-wise-men �����
���
�����������������
���
���������������������
��������������������� 66

D Programs (PROLOG Code) used in Implementations 75
D.1 ��� 0 �
���������������������
���������������������
���
�����������������
���
��������������� 75
D.2 ��� 7( ����� � 3 � � � � � ) ���
�����������������
���
���������������������
��������������������� 76
D.3 ��� 7( ������� 2 ������� � 2 ) ���
�����������������
���
���������������������
��������������������� 79
D.4 ��� 7( ������� 3 ������� � 3 ) ���
�����������������
���
���������������������
��������������������� 82

Bibliography 87

v



� � 	 � ��� � ����� 	 � 	

2.1 Final-tray logical studies �
�����������������
���
���������������������
��������������������� 4
2.2 Step-like logical studies ���
���������������������
���
�����������������
���
��������������� 7

3.1 Example of ����� and ����� ���������������
���
���������������������
��������������������� 13

5.1 Rules of inference corresponding to � ��� � �����
���
�����������������
���
��������������� 20

6.1 Negative introspection succeeds �����������
���
���������������������
��������������������� 24
6.2 Negative introspection fails appropriately �
���
���������������������
��������������������� 24
6.3 Introspection conflicts with other deduction and resolves �����
���
�����������������
���
� 25

7.1 ����� � 2 and ����� � 2 for the Two-wise-men Problem ���������������
��������������������� 29
7.2 Solution to the Two-wise-men Problem---Part I �������
���������������������
���
��������� 31
7.3 Solution to the Two-wise-men Problem---Part II �������
���������������������
���
��������� 31
7.4 ����� � 3 for the Three-wise-men Problem �
���
���������������������
��������������������� 33
7.5 � � � � 3 for the Three-wise-men Problem �
���
���������������������
��������������������� 34
7.6 Solution to the Three-wise-men Problem---Part I �������
���������������������
���
��������� 35
7.7 Solution to the Three-wise-men Problem---Part II �����
���������������������
���
��������� 36

8.1 Bird example in which contradiction handling works �
���������������������
���
��������� 40
8.2 Bird example in which contradiction handling does not work �
���
�����������������
���
� 41

vi



� �������	��

�����������

This dissertation attempts to construct an appropriate deductive formalism for real-time commonsense
reasoners (frequently referred to in this thesis as ‘‘reasoning agents’’, or more simply, ‘‘agents’’). This
chapter provides an introduction to and motivation for the work. Section 1.1 describes what the problem
is and what I intend to do about it. Section 1.2 sketches my major contributions to the problem. A brief
synopsis of the chapters is given in Section 1.3.

1.1 Statement of the Problem

What is meant by a real-time commonsense reasoner? The world in which a commonsense reasoning agent
reasons, that is, the everyday world, is continually changing. These changes occur as the agent proceeds,
and must be taken into account as the agent reasons. An often overlooked, but extremely important, change
that occurs is simply the passage of time as the agent reasons. By ‘‘real-time commonsense reasoner’’ I
mean one that takes this passage of time into account.

A real-time commonsense reasoning agent’s logic must be able to evolve and represent the evolving
history at the same time. That is, since time goes on as the agent reasons, and since this phenomenon is
part of that about which the agent must reason, the agent will need to take note of facts that come and
go. This immediately puts us in a non-traditional setting, for we lose monotonicity: as the history evolves,
some conclusions are lost. As an example, the agent may have the belief that ‘‘It’s currently 12:00.’’ We
do not want this to remain a belief when it is 12:15. It is thus important for the reasoning agent to be able
to recognize this passage of time.

The issue of representing time within a logic has been studied intensively, e.g., by Allen [All84],
McDermott [McD82], and McKenzie and Snodgrass [MS87]. However, such representations of time are
not related in any obvious way to the process of actually producing theorems in that same logic. We might
call this type of time study static, for it does not require non-monotonicity. What we are studying in this
thesis is quite a different sort of time.

A commonsense reasoner is frequently limited in the amount of time it has to reason. Conclusions
that may be logically (or otherwise) entailed by the agent’s information (beliefs) take time to be derived.
But time spent in such derivations is concurrent with changes in the world. Thus, for example, it is not
appropriate to spend hours figuring out a plan to save Nell from an onrushing train; she will no longer
need saving by then (see [McD82] and [Haa85]). Even if the only changes are within the agent, this is still
important, for it may be useful to know whether a problem is nearing solution, or if one has only begun
initial explorations, and so on.

This limitation must be recognized by the reasoner himself; that is, the agent should be able to reason
about its ongoing reasoning efforts themselves. Its reasoning must be ‘‘situated’’ in a temporal environment
(see [Suc86]). The paradigm for such an agent would seem to be that suggested by [Nil83], namely, a
computer individual with a lifetime of its own. What is of interest for such an agent is not its ‘‘ultimate’’
set of conclusions, but rather its changing set of conclusions over time. In fact there will be, in general, no
ultimate or limiting set of conclusions.

Already existent formalisms for commonsense reasoning do not give the reasoner the ability to recognize
that its reasoning takes time. The problem then that I address is that of defining a formalism in which the
on-going process of deduction itself is part of that very same reasoning. Step-logic is proposed as such a
model of reasoning.

Such a notion of logic deviates in a crucial way from traditional formal deductive mechanisms, for the
proof process will now be made part of the available information used in forming proofs. In simple terms,
there will be a notion of ‘‘now’’. Just how this can be formalized and applied to Artificial Intelligence
is the principal theme of this dissertation. It is this introduction of ‘‘now’’ that creates the built-in kind
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of non-monotonicity that we mentionned earlier. This is quite different from the usual default kind of
non-monotonicity. Yet this temporal kind of non-monotonicity lends itself to a treatment of the default
kind, as we will see in Chapter 6.

Commonsense reasoners must deal with a world about which incomplete information is known. Hence
conclusions are frequently derived without total information. These default conclusions may later contradict
inferences that are based on new information. In traditional logics, contradictions must be avoided at
all costs for they cause what we call the swamping problem: from a contradiction, all wffs come to be
theorems. This obviously is inappropriate for our commonsense reasoner. A suitable formalism must
provide a method for resolving the resulting contradictions.1 This may require retracting prior conclusions.
Because of this, traditional monotonic logics are unsuitable for formalizing these agents; we are again forced
into a non-monotonic setting. Although several formalisms for non-monotonic reasoning have already been
proposed (see [MD80, Rei80, McC80]), they do not address the issue of real-time commonsense reasoning.

1.2 Accomplishments

The primary contributions of this work are the following:
� A precise characterization of step-logic, a formalism designed to take into account the fact that

reasoning occurs over time, is given.

Two distinct types of formalisms are given: the meta-theory ��� �
about the reasoning

agent, and the agent-theory ��� � itself. The agent-theory is step-like; the meta-theory is
simply our assurance that we have been honest in describing what we mean by a particular
agent’s reasoning. The two theories together form a step-logic pair. The subscript � serves
to distinguish different versions of the step-logics. The versions differ in the mechanisms
that the agent has at its disposal: self-knowledge, time, and retraction. Self-knowledge
gives the agent the capability to introspect and determine what it does and does not know.
The time mechanism allows the on-going process of deduction to be part of the agent’s
own reasoning. Retractions are necessary because our logic is non-monotonic.

� Theorems about step-logics are stated and proven.

The most notable theorem perhaps is that of analytic completeness. A meta-theory is
analytically complete if for each natural number

�
and for each � in the agent’s language,

the meta-theory either can prove that � is a theorem of the agent’s at step
�

or can prove
that � is not a theorem of the agent’s at step

�
. ��� 0 is shown to be analytically complete

(see Chapter 4).
� Step-logic is shown to be a formalism in which contradictions can arise and be subsequently resolved

within the formalism itself.

Contradictions do not need to be avoided since they do not cause the swamping problem.
Indirect contradictions are allowed to persist. Direct contradictions, which are easily
identified, are resolved in a simple manner.2

� Two step-logics ( ��� 0 and ��� 7) are studied in detail.

��� 0 is the meta-theory corresponding to the simplest agent-theory, ��� 0 . � � 0 is a mere
propositional reasoner. ��� 0 was studied to gain an understanding of step-logic in general.
See Chapter 4. ��� 7 is the most sophisticated agent-theory: it has all three of the proposed
mechanisms, self-knowledge, time, and retraction. It is described in Chapter 5.

1Note that in general, the problem of identifying implicit contradictions is undecidable. In the formalism that we propose, only
direct contradictions need to be identified.

2Only certain types of direct contradictions are currently resolved.
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� Step-logics are applied to two commonsense reasoning situations.

Moore’s Brother problem is described and a formal solution is presented in Chapter 6.
The Three-wise-men problem is formalized and a solution using step-logic is given in
Chapter 7.

� Implementations for several step-logics are given.

Prolog implementations were written for ��� 0 and two different � � 7 logics: one used
to solve the Brother problem, and one used to solve the Three-wise-men problem. All
programs were run on a DEC VAX 11-780 as well as an IBM PC-AT. The implementations
are described in Appendix D and sample runs are given in Appendix C.

We will see then that step-logic provides a promising formalism for modelling the fact that reasoning
takes time. Contradictions can arise and be subsequently resolved within the logic itself. This permits
a genuinely computational solution to certain types of default reasoning. Two commonsense reasoning
problems, the Brother problem and the Three-wise-men problem, are modelled using step-logic.

1.3 Outline of Thesis

In this section I briefly sketch the research which this dissertation encompasses. Some of the work reported
on includes work done jointly with my advisor; see [DP86b, DP86a, EDP88].

Chapter 2 provides an overview of step-logic. I describe how it is different from traditional logic, and
why it is that this new logic is needed. Reasoning agents that are logically omniscient are described and
contrasted with those that have limited reasoning capabilities. Step-logic is then contrasted with already
existent approaches to limited reasoning.

Chapter 3 describes the proposed step-logics in detail. It is postulated that an agent requires at least three
major mechanisms to be able to deal with most commonsense reasoning issues. Each of the step-logics
differs in the mechanisms that the agent has at its disposal. Each step-logic which models an agent-theory
can have a corresponding step-logic for the meta-theory; the two step-logics together form what is called a
step-logic pair. This chapter also discusses the notion of completeness of the various step-logics.

� ��� 0 � ��� 0 � is the first of the step-logic pairs. It is the simplest. The agent’s theory, ��� 0, is merely
propositional logic, but the meta-theory, � � 0, incorporates the idea that reasoning occurs in steps. Chapter 4
provides details of the operation of � � 0 and ��� 0. A theorem about the completeness of � � 0 is proven.
As practical evidence that, in fact, ��� 0 correctly describes the operation of ��� 0 , an implementation is also
given.��� 7 is the most sophisticated agent-theory: it has all three proposed mechanisms. It has successfully
been used to model both Moore’s Brother problem and the Three-wise-men problem. Chapter 5 describes
��� 7 in detail, and Chapters 6 and 7 describe how ��� 7 is used to solve the Brother problem and the
Three-wise-men problem, respectively. Implementations are given for each of the two problems.

Chapter 8 summarizes the research, and discusses some of the difficulties with and limitations of the
particular step-logics studied. Possible areas for further research are then suggested.

Appendices A and B contain the proofs of various theorems of ��� 0 and ��� 7 , respectively. Appendix C
contains actual runs for the various implementations of the step-logics, and Appendix D contains the code
for the various implementations.

3
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This chapter provides an overview of step-logic. Step-logic is intended as a formalism for commonsense
reasoners. As such, we would like it to serve as a model of an agent with limited capabilities whose
reasoning is situated in a temporal environment. Logical omniscience is not an appropriate assumption for
such reasoners. Section 2.1.1 contrasts logical omniscience with limited reasoning, and describes some of
the work that has been done in the area of limited reasoning. Section 2.1.2 sketches the work that has been
done in temporal reasoning. Section 2.2 describes the general idea behind step-logic, and explains how
it is different from any other limited or temporal reasoning formalism. Section 2.3 reviews several key
problems in commonsense reasoning, explaining why step-logic may be a useful tool for modelling these
problems.

2.1 Background

2.1.1 Logical omniscience vs. Limited reasoning

Traditional logics are not suitable for modelling beliefs of reasoning agents with limited capabilities because
they suffer from the problem of logical omniscience: if an agent has � 1 � � � � � � � in its belief set, and if � ,
a wff of the agent’s language, is logically entailed by � 1 � � � � � � � , then the agent will also believe � . As a
specific example, if an omniscient agent believes � , and also believes ����� , then the agent will believe � .

As an illustration of this conventional omniscient approach, refer to Figure 2.1. Here we see that the

� �
� �
� �
�

��
��

��
�axioms

�

time

�

�

�

�

�	�! 

�	�! 

�

 

 " final tray

Figure 2.1: Final-tray logical studies

reasoner begins with an initial set of axioms, and the deductive mechanism generates theorems along the
way. The agent concludes � , and �#�$� ; later on, since the agent is logically omniscient, it will conclude
� . One typically views the logic, however, in terms of a final tray of conclusions; this is the bar at the
bottom of the figure. One is not generally aware that � , for instance, is being deduced ‘‘before’’ �%�&� .
We can think of the theorems as ‘‘dropping down’’ and being ‘‘caught’’ by the tray. One notes that � ,

����� , and � are all theorems of the logic, and is not concerned with the order in which each wff is
deduced. This is the traditional omniscient approach.
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Commonsense reasoners have limited reasoning capabilities because they must deal with a world about
which they have incomplete knowledge. Hence traditional logics cannot be used as satisfactory models of
these agents. This has brought about tremendous strides in the area of limited reasoning. We describe here
several such approaches.

[Kon84] includes work based on the fact that people are not always aware of all the relevant rules. A
small child, for instance, may be trying to solve the equation ‘‘ � + 2 = 5’’. If the child does not know
that, in order to solve for � , he must subtract two from both sides of the equation, he may be unable to
solve it. His capabilities may be limited by the fact that he does not know all the possible rules. Konolige
used this idea of relevance incompleteness to get an interesting solution to the Three-wise-men problem. In
Chapter 7 we present our own solution to this problem.

[Kon84] also discusses two other types of limited reasoning. The first is resource-limited incompleteness,
in which an agent may have the inferential capability to derive some consequence of his beliefs, yet does
not have the computational resources to do so. This is a difficulty that arises, for instance, in a chess-playing
program.

The final type of limited reasoning that [Kon84] mentions is that of fundamental logical incompleteness.
It may be, for example, that an agent simply does not reason about beliefs of other agents at all. This would
make a solution to the Three-wise-men problem impossible.

Levesque ([Lev84]) has given an intuitively plausible semantic account of implicit and explicit beliefs.
An agent’s implicit beliefs include all valid formulas, his explicit beliefs, and the logical consequences of
his explicit beliefs. His explicit beliefs, on the other hand, are closed under a much weaker set of conditions.
An agent does not necessarily explicitly believe all valid formulas, nor does it necessarily explicitly believe
� , simply because it explicitly believes � and �#� � . Using the set of explicit beliefs, Levesque is able to
describe an agent who is not logically omniscient.

Levesque’s logic, however, does not allow meta-reasoning about one’s own beliefs or reasoning about
other agents’ beliefs. These abilities are needed in many situations, including planning and goal-directed
behavior, where one may have to reason about the knowledge that one has as well as the knowledge that
others may possess. Fagin and Halpern ([FH88]) extend Levesque’s notion of implicit and explicit beliefs
to allow for multiple agents and beliefs of beliefs.

[FH88] propose a logic of awareness (again with explicit and implicit beliefs) which is based on the
idea that one cannot have beliefs about something of which one has no knowledge. Intuitively, given a
primitive proposition � , if the agent explicitly believes ������� then the agent is aware of � . As in [Lev84]’s
logic, an agent’s implicit beliefs include all valid formulas and all the logical consequences of his implicit
beliefs. The explicit beliefs, on the other hand, are generated by awareness of primitive propositions. As in
[Lev84], the explicit beliefs do not necessarily include all valid formulas but, unlike [Lev84], are closed
under implication.

[FH88] extend their logic of awareness to include awareness of arbitrary formulas (not just primitive
propositions). In addition to the operators for implicit and explicit belief ( ��� and �	� , respectively), an
operator for awareness, 
�� , is introduced. An agent explicitly believes a formula � if he implicitly believes

� and he is aware of � (that is, ��� ��
	� ��� ����
�� � ). As in the previous logic, an agent does not explicitly
believe all valid formulas; however, unlike the previous logic, an agent’s explicit beliefs are not necessarily
closed under implication. Thus it is possible for an agent to explicitly believe � and � ��� without explicitly
believing � . The intuitive explanation given for this is that the agent is not aware of � .1 It is interesting to
note that ��� acts like the classical belief operator, so that, for instance, if one assumes that the agents are
aware of all formulas, the logic reduces to the classical logic of belief, weak S5 (see [Che80]).

[FH88] also present a logic of local reasoning which allows agents to hold inconsistent beliefs. It is
based on the fact that humans don’t focus on all issues simultaneously. Thus one can view a reasoning agent
as a society of minds, each with its own set of beliefs. Unlike the previous logics that [FH88] propose, in
this logic there is not necessarily only one set of states that an agent thinks possible, but rather many sets,
each one corresponding to a different set of beliefs. That is, each set represents the ‘‘worlds’’ the agents

1This author feels that it is a little odd to say that we can be aware of ����� (which the agent must, since he explicitly believes
����� ) without being aware of � . The notion of awareness which is presented in this dissertation does not allow this peculiarity.
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thinks are possible in a given frame of mind, when focusing on a certain set of issues. It is then possible for
conclusions that are drawn in one world to be inconsistent with conclusions drawn in another.

Although these approaches all model limited reasoning, the process is still in terms of the standard mold
of static reasoning. We do indeed have a restricted view of what counts as a theorem, but the logic is still
final-tray-like. Although the final tray is smaller than in the conventional omniscient approach (it is catching
less, if you will), it is still only the final set of consequences that are evident. In Fagin and Halpern’s logic
of general awareness ([FH88]), for example, � � ��� � � � ��� and � may all appear in the tray without � ,
given that the agent is unaware of � . Although the tray is catching less here, the over-simplification of a
‘‘final’’ state of reasoning is nonetheless maintained. All the conclusions are still drawn instantaneously.
The effort involved in actually performing the deductions is not taken into consideration.

2.1.2 Reasoning about Time and Action

Formal reasoning about time and action is not new. A great deal of research has been devoted to this
field. Perhaps the two most influential temporal formalisms are those of Allen ([All84]) and McDermott
([McD82]).

In [All84], Allen develops a logic which permits reasoning about time. Time intervals are the principal
objects in the domain. Three basic entities are associated with time: properties, events, and processes.� ����� (� � �

), where � is a property type (e.g. red) and
�

is an interval of time, is used to denote the fact that
property � holds for the interval

�
. A property is true for an interval iff it holds for every subinterval. The

fact that an event � occurred over an interval
�

is denoted by �����	��
 ( � � �
). Finally, ��������


 � � � (� � �

)
denotes the fact that process � occurred over interval

�
. A process is said to occur over an interval

�
iff

it occurs over some subinterval of
�
. Having set up a way to handle temporal information, [All84] then

proceeds to handle actions, causation, intentions, and plans.
[McD82] constructs his theory using fact types and event types. Unlike Allen, McDermott uses time

points as primitive. � (� � � ) denotes the fact that fact type � holds at time � . ����� ( � 1 � � 2 � � ) denotes the fact
that event type � occurred over the interval � � 1 � � 2 � . [McD82] then uses these primitives to reason about
temporal information and events.

Many others have contributed formalisms for reasoning about time and action including [Haa86, HS86,
MB83, MS87, Moo85, Lif87, Sho88]. In contrast to these theories, the focus of this thesis is not primarily
to be able to reason about time, but rather to be able to reason in time. That is, step-logic is introduced as
a time-situated view of reasoning, where the fact that the reasoning process itself takes time is part of that
very same reasoning. We expand on this in the next section.

2.2 The Idea

Step-logic is proposed as an alternative to the approaches to limited reasoning discussed in Section 2.1.1,
where it is not a final tray of conclusions in which one is interested, but rather the ever-changing set of
conclusions drawn along the way. That is, step-logic is designed to model reasoning that focuses on the
on-going process of deduction, where there is no final tray; see Figure 2.2.

The reasoner starts out with an empty set of beliefs at step 0. ‘‘Observations’’ (that is, external inputs to
the system) may arise at discrete time-steps. When an observation appears, it is considered a belief. From
these beliefs, new beliefs may be concluded. So at some step

�
the reasoner may have belief � , concluded

based on earlier beliefs or arising at step
�

directly as an observation. Since the process of deduction is part
of the same reasoning, these time parameters can figure in the on-going reasoning itself. As an example,
we might see ����� (

�
), intuitively ‘‘the time is now

�
’’, as a conclusion at step

�
. At some later step � , the

reasoner might no longer have the belief ����� (
�
), but would now believe ����� (� ). The set of beliefs at any

step � , together with their sub-formulas, are regarded as the wffs of which the agent is aware at step � .2

2We deal with this in more detail in Chapter 5.
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Figure 2.2: Step-like logical studies

We think of each step of reasoning as representing a given fixed interval of time, so that for instance,
after 10 steps of reasoning have occurred, so have 10 units of time. Because there are in general a growing
number of conclusions at later steps, we would not see this one-to-one correspondence between steps and
actual elapsed time in an implementation; the length of time taken to make all deductions for a given step
would in general grow in later steps. In our idealization, however, we think of a step as being one unit of
time. The long-range focus of this work is to build a ‘‘retraction’’ device that would keep the current belief
set of reasonable size.3

Ordinary logic can be used to model a reasoning agent’s activity, but this must be done from afar; that
is, the logic serves as a meta-theory about the agent. If one wanted to have a direct representation of the
evolving process of the very reasoning itself, a time argument to a predicate representing the agent’s proof
process could be added. The most elementary step-logic proposed ( ��� 0) is just of this sort. However, if
we want the agent to reason about the passage of time that occurs as it reasons, time arguments must be
put into the agent’s language. We could then have such an agent’s logic evolving and representing that
evolving history at the same time.

There are important differences from ordinary logic, however. Since time goes on as the agent reasons,
and since this phenomenon is part of what is to be reasoned about, the agent will need to take note of facts
that come and go, e.g., ‘‘It is now 12:00 and I am just starting this task � � � Now it is no longer 12:00, but
rather it is 12:15, and I still have not finished the task I began at 12:00.’’ This immediately puts us in a
non-traditional setting, for we lose monotonicity: as the history evolves, conclusions may be lost. Their
loss, however, need not be considered a weakness, but rather a strength, based on a reasoned assessment of
a changing situation. It is clear, then, that a step-logic cannot in general retain or inherit all conclusions
from one step to the next. The reader is cautioned to keep this in mind in the examples. Despite this feature,
we will see that step-logic is primarily a deductive apparatus.

We would like then to construct a logical formalism to serve as a model of a reasoning agent with
the ability to reason about the passage of time as it is reasoning. Therefore, we must have some way of
representing time within the logic which is related to the process of actually producing theorems in that
same logic.4 To do this we need to augment the logic with a notion of ‘‘now’’, which appropriately changes
as deductions are performed. It turns out that this is not an easy task. It is this introduction of a notion of
now that makes step-logic critically distinct from traditional logic. While there are many other issues that
are related to the general approach being advocated, this thesis concentrates on useful technical devices in
time-situated reasoning that pertain specifically to negative introspection.

This new approach to reasoning leads to differences in the meta-theorems that are proved. Those
theorems proved about conventional logics are asymptotic in nature, that is, they demonstrate useful
properties of the limiting case. Many meta-theorems we wish to prove about step-logics, on the other hand,
concern the bounded case. What is of interest is not that the agent may eventually know some � , but rather
that it knows � within some given time interval.

3See the discussion in Chapter 8.
4Could this be done via a ��
�� predicate; that is, ��
�� ( ��� ‘ � ’ ) would mean there is a proof of � of length � ? No, because having

a proof of length � does not force there to be a proof of length � + 1: � may no longer be a theorem in the next step.
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As an example, one of the meta-theorems we prove involves the notion of ‘‘analytic completeness’’. A
given meta-theory ��� �

is analytically complete if for an arbitrary agent formula � , and for any time
�
,

either ��� �����
(

� � � ) or ��� ��� � � (
� � � ) �

where
�

(
� � � ) is intended to mean that the agent knows � at time

�
. That is, analytic completeness holds

if the meta-theory can prove either that � is an agent theorem at time
�
, or that � is not an agent theorem

at time
�
. A meta-theory with this property is able to determine what the agent does or doesn’t know at

any given time, and hence can completely analyze the agent’s reasoning behavior.5 Note that we are not
concerned here with whether or not the agent will eventually know � (what we call an asymptotic result),
but rather whether � is known specifically at time

�
.

Although the emphasis in this thesis is on the bounded case, certain asymptotic results are sometimes
useful and/or interesting. For example, Theorem 4.6 in Section 4.2.2 says that all agent conclusions in ��� 0
are tautologies. This is used to arrive at the corollary, which states that a single propositional letter is never
proven by the agent. The contra-positive of Theorem 4.6 would be interesting to verify as well, namely,
that all tautologies are eventually proven.

2.3 Applications to Commonsense Reasoning

It is easy to provide examples in which the effort or time spent in reasoning is crucial. Three such problems
are presented here:

1. The Three-wise-men problem
2. The Brother problem
3. Little Nell
The step-logics investigated so far are not yet powerful enough to solve the third problem. However,

detailed solutions, including implementations, are provided for the first two: Chapter 6 contains the solution
to the Brother problem and Chapter 7 contains the solution to the Three-wise-men problem.

2.3.1 The Three-wise-men problem

We present a variation of this classic problem which was first introduced to the AI literature by [McC78].
A king wishes to know whether his three advisors are as wise as they claim to be. Three chairs are lined
up, all facing the same direction, with one behind the other. The wise men are instructed to sit down. The
wise man in the back (wise man #3) can see the backs of the other two men. The man in the middle (wise
man #2) can only see the one wise man in front of him (wise man #1); and the wise man in front (wise man
#1) can see neither wise man #3 nor wise man #2. The king informs the wise men that he has three cards,
all of which are either black or white, at least one of which is white. He places one card, face up, behind
each of the three wise men, explaining that each wise man must determine the color of his own card. Each
wise man must announce the color of his own card as soon as he knows what it is. (The first to correctly
announce the color of his own card will be aptly rewarded.) All know that this will happen. The room is
silent; then, after several minutes, wise man #1 says ‘‘My card is white!’’.

We assume in this puzzle that the wise men do not lie, that they all have the same reasoning capabilities,
and that they can all think at the same speed. We then can postulate that the following reasoning took place.
Each wise man knows there is at least one white card. If the cards of wise man #2 and wise man #1 were
black, then wise man #3 would have been able to announce immediately that his card was white. They all
realize this (they are all truly wise). Since wise man #3 kept silent, either wise man #2’s card is white, or
wise man #1’s is. At this point wise man #2 would be able to determine, if wise man #1’s were black, that

5 ��� 0 , the only meta-theory that we have constructed, is shown to be analytically complete in Chapter 4.
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his card was white. They all realize this. Since wise man #2 also remains silent, wise man #1 knows his
card must be white.

The reader should be able to see that it is important in this problem to be able to reason,
If such and such were true, then so and so would have realized it by now.

That is, if wise man #2, for instance, is able to determine that wise man #3 would have been able to figure
out by now that wise man #3’s card is white, and wise man #2 has heard nothing, then wise man #2 knows
that wise man #3 does not know the color of his card. Our model of reasoning is particularly well-suited
to this type of deduction. See Chapter 7 for a development of and solution to this problem. Others have
studied this problem as well (e.g. see [Kon84] and [KL87]), but from a final-tray perspective.

2.3.2 The Brother problem

[Moo83] presents the following problem.
Consider my reason for believing that I do not have an older brother. It is surely not that one of
my parents once casually remarked, ‘‘you know, you don’t have any older brothers,’’ nor have
I pieced it together by carefully sifting other evidence. I simply believe that if I had an older
brother I would surely know about it.

So one must be able to reason, ‘‘since I don’t know I have an older brother, I must not.’’
This problem can be broken down into two: the first requires that the reasoner be able to decide he

doesn’t know he has an older brother; the second that, on that basis, he, in fact, does not have an older
brother (from modus ponens and the assumption that ‘‘If I had an older brother, I’d know it.’’).

It is easy enough to provide a model of reasoning to account for this latter part of the problem. It is
the former part, however, that is more difficult. The reasoner must be able to determine that he doesn’t
know a particular piece of information. Step-logic, with its finitary introspective capabilities, allows this
determination to be made in real-time within the formalism itself. ([Moo83] and [Per88a] have developed
formalisms for such reasoning, although both work within a final-tray setting.) The reasoner is able to
introspect and determine that he does not have the knowledge of an older brother. With the rule, ‘‘If I have
an older brother, I know I have an older brother,’’ the reasoner can then deduce that he, in fact, does not
have an older brother. This problem is tackled in detail in Chapter 6, where both a formal solution and an
implementation of that solution are given.

2.3.3 Little Nell

Consider Little Nell who has been tied to the railroad tracks. A train is quickly approaching, and Dudley
must determine how to save her. [McD82] discusses this problem in terms of prevention of an act---one
must prevent Nell from being destroyed by the train. [Haa85] expands upon this work; he distinguishes
between possible and actual situations. What we find pertinent is the fact that Dudley has a limited amount
of time in which he must find a solution. It is fruitless to go through a lengthy process to determine what
should be done, only to find that Nell has meanwhile been mashed.

It is thus important for Dudley to both figure out how to save Nell and to do so before it is too late.
This requires Dudley to assess how much time he has available, as well as to estimate how long it will take
to solve the problem. If his first attempts at a solution seem to him to require more time than appears to be
available, he must work on another solution. So, for instance, he might determine that going home to get
a pair of scissors in order to cut the rope would be futile, whereas making a call on the emergency phone
nearby to alert the engineer is far more reasonable. Dudley must realize that all this must be done as the
train is drawing nearer. This then requires Dudley to recognize that his thought processes take time.

This problem is similar to that encountered by a student while taking an exam. The student, knowing
there is a limited amount of time in which to answer all questions, must continually assess how many
questions he has answered and how many remain, as well as working on actually answering the questions
themselves.
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Step-logic provides a model for the reasoning needed by the student and Dudley. A particular step-logic
modelling this problem, however, is not currently provided.
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This chapter describes the technical details of step-logic. Section 3.1 describes the basic components
of a step-logic and Section 3.2 contains the precise technical definitions. Several interesting theorems
concerning consistency and soundness are also stated and proven.

3.1 Basics

A step-logic is characterized by a language, observations, and inference rules. We emphasize that step-logic
is deterministic in that at each step �

all possible conclusions from one application of the rules of inference
applied to the previous steps are drawn (and therefore are among the wffs at step

�
). However, for real-time

effectiveness and cognitive plausibility, at each step we want only a finite number of conclusions to be
drawn. We would like this set to be not only finite, but quite small. Although the set of conclusions is
kept finite, the current formulation of step-logic does not deal with the problem of keeping the set small.
Instead we are principally concerned with studying negative introspection and default reasoning in terms of
contradiction-handling. That is, we want step-logic to allow contradictions to arise as defaults are invoked
and yet also we want the consequences of contradictions to be controlled in a reasonable manner consistent
with commonsense.

We return now to the idea that there are two distinct types of formalisms of interest, that occur in pairs:
the meta-theory ��� �

about an agent, and the agent-theory ��� � itself. Here � is simply an index serving
to distinguish different versions of step-logics. It is the latter, ��� � , that is to be step-like; the former,
��� �

, is simply our assurance that we have been honest in describing what we mean by a particular agent’s
reasoning. Thus the meta-theory is to be a scientific theory subject to the usual strictures such as consistency
and completeness. The agent theory, on the other hand, may be inconsistent and incomplete; indeed if the
agent is an ordinary fallible reasoner it will be so. The two theories together form a step-logic pair.

We propose three major mechanisms to study as possible aspects of an agent-theory: self-knowledge,
time, and retraction. Since it is important for the agent to reason about its own processes, a self, or belief,
predicate is needed. We employ a predicate symbol,

�
, for this purpose:

�
(

� � ‘ � ’ ) is intended to mean that
the agent knows wff � at time

�
.1
�

may or may not be part of the agent’s own language; however, many
kinds of reasoning require that it be. Note that ‘ � ’ is a name for � , i.e., a constant term, where the quotes
are intended to be quasi-quotes. We drop the quotes in

�
(

� � ‘ � ’ ) in the remainder of the dissertation.
In order for the agent to reason about time, a time predicate is needed. This not only amounts to a

parameter such as � in � ( � � � ) as we just saw, but information as to how � relates to the on-going time
as deductions are performed. Thus the agent should have information as to what time it is now, and this
should change as deductions are performed. This feature is what makes step-logic distinctly different from
ordinary logic. We use the predicate expression ����� ( � ) to mean the time currently is � . Again, this may or
may not be part of the agent’s language, but in many cases of interest it is.

Finally, since we want to be able to deal with commonsense reasoning, the agent will have to use
default reasoning. That is, a particular fact may be believed if there is no evidence to the contrary; however,
later, in the face of new evidence, the former belief may be retracted. For this, we need some kind of a
retraction device. Retraction will be facilitated by focusing on the dual: inheritance. We do not assume that
all deductions at time

�
are inherited (retained) at time

�
+ 1. By carefully restricting inheritance we achieve

a rudimentary kind of retraction. The most obvious case is that involving the predicate � ��� : if at a given
step the agent knows the time to be

�
, by having the belief ����� (

�
), then that belief shall not be inherited to

the next time step.
1We are not distinguishing here between belief and knowledge. See [Get63] for a discussion of belief vs. knowledge.
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In [DP86b] we proposed eight step-logic pairs, arranged in increasing sophistication with respect to
the three mechanisms above (self-knowledge (S), time (T), and retraction (R)). The agent-theories and the
mechanisms that they include are as follows:

� � � 0: none
� � � 1: S
� � � 2: T
� � � 3: R
� � � 4: S, R
� � � 5: S, T
� � � 6: R, T
� � � 7: S, T, R

��� 0 has none of the three mechanisms, and ��� 7, the most sophisticated agent-theory, has all three. Of the
eight agent-theory/meta-theory pairs, only � � 0 and � � 7, the simplest meta-theory and the most complex
agent-theory, have been studied in any detail.2 The meta-theories are all consistent, first-order theories;
however, their associated agent-theories are another matter. These we do not even want in general to be
consistent, for they are (largely) intended as formal counterparts of the reasoning of fallible agents. ��� 0 is
an exception, for it, as an initial effort, was constructed to do merely propositional (tautological) reasoning
so we could more easily test its meta-theory, � � 0.

3.2 Technical Definitions

In order to precisely define step-logic, we now present several definitions.
Intuitively, we view an agent as an inference mechanism that may be given external inputs or

observations. Inferred wffs are called beliefs; these may include certain observations.
Let � be a first-order or propositional language, and let � be the set of wffs of � .

Definition 3.1 An observation-function is a function ����� : N ��� ( � ), where � ( � ) is the powerset of
� , and where for each

���
N , the set ����� (

�
) is finite. If �

� ����� (
�
), then � is called an

�
-observation.

Definition 3.2 A history is a finite tuple of pairs of finite subsets of � . � is the set of histories.

Definition 3.3 An inference-function is a function � ��� : ����� ( � ), where for each � � � , � ��� ( � ) is
finite.

Intuitively, a history is a conceivable temporal sequence of belief-set/observation-set pairs. The history
is a finite tuple; it represents the temporal sequence up to a certain point in time. The inference-function
extends the temporal sequence of belief sets by one more step beyond the history. In the example in
Figure 3.1 we see that these ideas are used to generate an actual history based on an inference-function and
an observation-function. Definitions 3.4 and 3.5 formalize this in terms of a step-logic ��� � .

Definition 3.4 An ��� � -theory over a language � is a triple,
� � � ����� ������� � , where � is a first-order

language, ����� is an observation-function, and � � � is an inference-function. We use the notation,
��� � ( ����� � � � � ), for such a theory (the language � is implicit in the definitions of ����� and � � � ). If
we wish to consider a fixed � ��� but varied ����� , we write ��� � ( 	 ������� ).

Let ��� � ( ����� ������� ) be an ��� � -theory over � .
2We describe ��� 0 in Chapter 4 and ��� 7 in Chapter 5.
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The history � of the first five steps then would be:� =
*�*

� � ��
 �A��� ( � ) �B�C� �D��� ( � ) �E2 �* ��
 �
���
( � ) ����� ����� ( � ) � � � 2 �* ��
 �
���
( � ) ����� ����� ( � ) � � ��
 �
���

( � � ��� �D� ) � 2 �* ��
 �
���
( � ) ����� ����� ( � ) � 
 �
��� ( � � ��� �D� ) �4�C� �D��� ( � � ��� �D� ) � � � 2 �* ��
 �
���
( � ) ����� ����� ( � ) � 
 �
��� ( � � ��� �D� ) �4�C� �D��� ( � � ��� �D� ) � � � 2�2

Figure 3.1: Example of ����� and � � �

Definition 3.5 Let the set of 0-theorems, denoted � �CF 0, be empty. For
� � 0, let the set of i-theorems,

denoted � �CF � , be � ��� ( � � � ��F 0 � ����� (1) � � � � ��F 1 � ����� (2) � � � � � � � � �CF �HG 1 � ����� ( � ) � � ).
We write ��� � ( ����� � � ��� ) � � � to mean � is an

�
-theorem of ��� � ( ����� � � ��� ).3

Definition 3.6 Given a theory ��� � ( ����� � � ��� ), a corresponding ��� �
-theory, written ��� �

( ����� ������� ),
is a first-order theory having binary predicate symbol

�
,4 numerals, and names for the wffs in � , such that

��� �
( ����� � � � � )

���
(

� � � ) iff ��� � ( ����� � � ��� )
�
� � .

Thus in ��� �
( ����� ������� ),

�
(

� � � ) is intended to express that � is an
�
-theorem of ��� � ( ����� � � ��� ).

A notion of completeness for a meta-theory can be defined as follows:

Definition 3.7 A meta-theory ��� �
is analytically complete, if for every positive integer

�
, and every constant

� naming an agent wff of the corresponding agent-theory, either � � �����
(

� � � ) or ��� ��� � � (
� � � ).

In Chapter 4 we show that � � 0 is in fact analytically complete. But what kind of completeness might
be wanted for an agent-theory? In ��� 0, it is desirable that every tautology be (eventually) provable. This
is the case, since every tautology has a proof in propositional logic and, for a sufficiently large value of

�
,

all axioms (i.e., the ‘‘observations’’) in such a proof will have appeared (by design of ��� 0) by step
�
. Thus��� 0 is complete with respect to the intended domain, namely, tautologies. However, for other step-logics

the case is not so simple, for the intended domain, namely, the commonsense world, has no well-understood
precise definition. Nevertheless, we can isolate special cases in which certain meta-theorems are possible.
In particular, if no non-logical axioms (beliefs) are given to an agent at step 0 (or any later time), then it is
reasonable to expect the agent to remain consistent. This we establish for ��� 7 in which the logical axioms
do not contain the predicate symbol ‘‘ ����� .’’

Let �JI be the language having the symbols of � and the (possibly additional) predicate symbols
�

and
����� . Thus �JI may be � itself.

Definition 3.8 A step-interpretation for �KI is a sequence L =
� L 0 � L 1 � � � � � L � � � � � � , where

1. Each L � is an ordinary first-order interpretation of �KI .
2. L �KM= ����� (

�
).

3Note the non-standard use of the turnstile here.
4We see that the predicate letter N has two roles: in ���

7
and in ��� 7 . The context will make the role clear.
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Definition 3.9 A step-model for � � � ( ����� � � � � ) is a step-interpretation L satisfying

1. L � M= � (
� � � ) iff ��� � ( ����� � � � � )

�
� � .

2. L �KM= � whenever ��� � ( ����� ������� )
� � � .

Condition 1 insures that an historical record of the
�
-theorems exists; and Condition 2 insures that the

�
-theorems are in fact true.

Definition 3.10 A wff � is
�
-true in a step-model L (written L M= � � ) if L�� M= � .

Definition 3.11 ��� � ( ����� ������� ) is step-wise consistent if for each
� �

N , the set of
�
-theorems is

consistent.

Definition 3.12 ��� � ( ����� ������� ) is eventually consistent if
� �

such that � � � �
, the set of � -theorems is

consistent.

Definition 3.13 An observation-function OBS is finite if
� �

such that � � � �
, ����� (� ) = � .

Definition 3.14 ��� � ( 	 � � ��� ) is self-stabilizing if for every finite OBS, � � � ( ����� , ����� ) is eventually
consistent.

Remark 3.15 Note the following:

1. Even if ��� � ( ����� ������� ) is step-wise consistent, it can have conflicting wffs at different steps, e.g.,
��� � ( ����� � � � � )

�
10 ����� (10) and ��� � ( ����� � � ��� )

�
11 � ����� (10).

2. Any step-wise consistent theory is eventually consistent.

3. Intuitively a self-stabilizing theory ��� � ( 	 ������� ) corresponds to a fixed agent that can regain and retain
consistency after being given arbitrarily (but finitely) many contradictory initial beliefs.

Theorem 3.16 If � � � ( ����� ������� ) has a step-model, then it is step-wise consistent.

Proof: Let ��� � ( ����� � � ��� ) have a step-model L = � L 0 � L 1 � � � � � L � � � � � � . Let � � N be
arbitrary. Then for each � in the set of � -theorems, L��-M= � . This means that the set of � -theorems is
consistent, since it has a (standard first-order) model L�� . �

Theorem 3.17 (Soundness) Every step-logic ��� � ( ����� � � ��� ) is sound with respect to step-models. That
is, every

�
-theorem � of ��� � ( ����� ������� ) is

�
-true in every step-model L of ��� � ( ����� ������� ), i.e., if

��� � ( ����� � � � � )
�
� � then L M= � � .

Proof: Let � be an
�
-theorem of ��� � ( ����� ������� ), and let L be a step-model of � � � ( ����� ������� ).

��� � ( ����� ������� )
� � � , so by definition of step-model, L �?M= � , and hence (by definition of

�
-true)L M=� � . �

3.3 Summary

In this chapter we described the technical details of step-logic. Precise definitions were given and several
theorems concerning the consistency and soundness of step-logics were stated and proven.
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� ����� 
 ��
 ���
�

We turn now to a specific step-logic pair: � ��� 0 � ��� 0 � . This is the simplest of the step-logic pairs. The
agent’s theory, ��� 0, is merely propositional logic. The meta-theory, � � 0 , however, is based on the idea
that reasoning occurs in steps.

4.1 Introduction

We reiterate the sharp distinction between the agent’s language and theory ( � � 0), and our (the scientist’s)
language and theory ( ��� 0). The agent has one set of symbols, axioms, and rules, while we have another.
��� 0 has neither self-knowledge (S), time (T), nor retraction (R). To simplify it even more, � � 0 contains
only propositions; it has no variables. (For definiteness, we have arbitrarily selected one of the standard
axiomatizations in the literature.) As such, then, � � 0 is basically a formalism to help us, as scientists, to
understand the reasoner. It does not allow the agent to do any reasoning about his own reasoning.

As before, we use the notation
�

(
� � � ) to indicate that the agent has proven � in

�
steps. ‘‘ � ’’ is any

formula in the agent’s language, but is treated as a constant in ��� 0 . In ��� 0 , the ‘‘
�
’’ is just our notation;

the agent has no way of knowing that it is at time
�

that it has proven � (it just ‘‘knows’’ � at time
�
). For

example, it might be the case that we have been able to prove that the agent has been unable to prove ‘‘ � ’’
in time

�
, where � is a predicate letter in the agent’s language. (This in particular would be the case for an

agent using ordinary propositional logic.) We write this
� � � (

� � � ).
We will continue the convention of using Greek letters for the agent’s wffs. These also serve as terms

of ��� 0. To further distinguish � � 0 and ��� 0 , we use ‘‘implies’’ and ‘‘not’’ as function symbols of ��� 0

to designate implication and negation, respectively, of the agent’s wffs. The goal is to design ��� 0 to be
strong enough so that it is analytically complete, that is, for each

� ���
, and for each �

� � ( ��� 0) (where
� ( ��� 0) is the agent’s language), we can say

either ��� 0 ��� (
� � � ) or ��� 0 � � � (

� � � ) �
We have been able to achieve analytic completeness for propositional agents; that is, for any wff � in

the agent’s language and any time � , ��� 0 can either prove � ( � � � ) or can prove its negation. This means
that the agent’s reasoning over time is completely characterized, in the sense that we know what it has and
has not established at each moment. As might be expected, the difficult part is determining when a wff of
� ( ��� 0) is not deduced after

�
steps. (Intuitively, showing

�
(

� � � ) requires exhibiting a single proof of � ,
whereas showing �

�
(

� � � ) requires exhibiting that no proof of � exists.)
We now sketch the intuitive operation of our intended agent. For each wff � in the agent’s language

� ( ��� 0), and for each time-step
� �	�

,
�

(
� � � ) is to hold (i.e., the agent has deduced � by time

�
) if and

only if there is a formal proof of � in
�

or fewer steps using only modus ponens and whatever axioms can
be retrieved in

�
steps. Here axioms are conceived to be constructed by the agent little by little. That is, the

agent begins with no axioms at all, and at any step
�

has access to all old conclusions as well as any axioms
using no more than the first

�
proposition letters and no more than

�
connectives (instances of � and � ).

We must ‘‘feed in’’ the axioms a few at a time because we do not want the agent to have an infinite
number of axioms at any given step. We can say then that the agent is ‘‘aware of’’ only certain axioms
at any given step. This has some similarity to Fagin and Halpern’s notion of awareness (see [FH88] and
Section 2.1.1).

In order to distinguish the agent’s wffs from our own (i.e., wffs of � � 0 from wffs of ��� 0), we write
� � � ( � ) for the agent’s negation of � , and

� F���
 � �
� ( � � � ) for the agent’s representation of ( ��� � ). In ��� 0 ,
then, not and implies become function symbols. Also, for an agent’s wff to appear as a constant term in
��� 0 , proposition letters must be constant symbols of � ( � � 0).
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4.2 The Theory

4.2.1 Axioms

��� 0 is given enough arithmetic to reason about steps as integers. In addition, the following principal
axioms and axiom schemata are given.

AX: (� � )[ 
�� ( � ) 
	�
[(
� � )(
� � )( � =

� F � 
 � �
� (� � � F���
 � � � (� � � ))) �
(
� � )(
� � )( � =

� F � 
 � �
� ( � F ��
 � �
� ( � � � (� ) � � � � (� )) � � F � 
 � �
� ( � F���
 � �
� ( � � � (� ) � � ) �
� ))) �
(
� � )(
� � )(
���

)( � =
� F ��
 � �
� ( � F���
 � � � (� � � F � 
 � �
� (� � � )) � � F � 
 � �
� ( � F���
 � � � (� � � ) �� F���
 � � � (� � � ))))]]

*AX says that axioms are the usual three tautology types, as in [Men87].*
THM: ( � � )( � � )(

�
(

� � � ) 
	� [ � � ��� ( � � � ) � L � ( � � � )])
*THM defines what it means for � to be proven by the agent at time-step

�
: either � has been ‘‘fed

in’’ ( � � ��� ( � � �
)), or � has been derived through modus ponens from previous steps ( L � ( � � �

)).*
ALP: (� � )(� �

)[ � � ��� ( � � �
) 
	� ( 
 � ( � ) � 
 ( � ) � � � � ( � ) � �

)]
*Those wffs which are fed in at time-step

�
are exactly the axioms of length less than or equal to

�
,

with a maximal index strictly less than
�
.*

MP: ( � � )( � �
)[ L � ( � � �

) 
	� (
� � )( ��� )(

� � )(
�

(� � � ) �
�

(
� � � F���
 � � � (� � � )) � ( � � �

) � (
� � �

))]
*This is a version of modus ponens.*

FEED: ( � � )[ � � ��� ( � � �
) 
	� ( � = 	 1 � � = 	 2 ��� � � � � = 	�
 � )], for all

��

2.

*This lists exactly those axioms that are fed in at time-step
�
. 	 1 thru 	�
 � are wffs in � ( ��� 0) that are

axioms (according to AX), have length(i.e., number of connectives) less than or equal to
�
, and have

a maximal index of
�
. Note that the number of axioms that are fed in monotonically increases, i.e.,


 � +1 is greater than 
 � , for all
�
.*

TABULARASA: ( � � )( � �
)[
�

(
� � � ) � ��


0]
*The agent knows nothing before time step 0.*

TFCN1: (� � )[ ����� � ( � ) �
(� � )(� � )[ ����� � ( � � � F � 
 � �
� ( � � � )) 
	� ( ����� � ( � � � ) � � ����� � ( � � � ))]]

TFCN2: (� � )[ ����� � ( � ) � (� � )[ ����� � ( � � � � � ( � )) 
	� � ����� � ( � � � )]]
*TFCN1 and TFCN2 say that truth-functions behave properly with respect to connectives.*

TAUT1: (� � )[ ����� � ( � ) 
	� ( � � )[ ����� � ( � ) � ����� � ( � � � )]]
TAUT2: (� � )[ 
�� ( � ) � ����� � ( � )]

*TAUT1 and TAUT2 say, respectively, that tautologiesare wffs that are true under all truth-functions,
and that axioms are tautologies.*

PL1: � 
 ( � � ), for all
� ���

.
PL2: (� � )[ � 
 ( � ) � (

�
� )[ ����� � ( � ) � � ����� � ( � � � )]]

*PL1 says that � 0 � � 1 � � 2 � � � � are propositional letters. PL2 says that for each propositional letter
there is a truth-function making it false. Note that this does not give all the usual truth-functions, but
it is sufficient for our purposes.*

LN1: (� � )( � 
 ( � ) 
	� 
 ( � ) = 0)
LN2: (� � )[ 
 ( � � � ( � )) = 
 ( � ) + 1]
LN3: (� � )(� � )[ 
 ( � F � 
 � �
� ( � � � )) = 
 ( � ) + 
 (� ) + 1]
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LN4: (� � )( 
 ( � )



0)
*The function 
 ( � ) returns the length of � , i.e., the number of connectives in � (this being 0 for
propositional letters).*

P1: ( � � )( � �
)[( � 
 ( � ) ��� ( � ) =

�
) 
	� � = � � ]

P2: ( � � )[� ( � � � ( � )) = � ( � )]
P3: ( � � )( � � )[� (

� F���
 � � � ( � � � )) = F � � (� ( � ) � � (� ))]
P4: ( � � )[� ( � )



0]

*The function � ( � ) returns the maximum index of all the propositional letters in � .*
MAX1: ( � �

)(� � )[ ��
 � 
	�	F � � (
� � � ) =

�
]

MAX2: ( � �
)(� � )[ F � � (

� � � ) = F � � ( � � �
)]

*The function max returns the maximum of its two arguments.*
EQ1: � �

= � , for all distinct propositional letters � � � � � ( � � 0).
EQ2: (� � )(� � )(� � )[ � 
 ( � ) � �

�
=

� F���
 � � � (� � � )]
EQ3: (� � )(� � )[ � 
 ( � ) � �

�
= � � � (� )]

EQ4: (� � )(� � )(� � )[
� F���
 � � � ( � � � )

�
= � � � (� )]

EQ5: (� � )(� � )(� � )( � � )[ � F���
 � �
� ( � � � ) = � F���
 � �
� ( � � � ) 
	� � = ��� � =
�
]

EQ6: (� � )(� � )[ � � � ( � ) = � � � (� ) 
	� � = � ]
*EQ1, EQ2, and EQ3 say that distinct agent wffs represent distinct objects. EQ4 says that a wff
whose main connective is an implication arrow cannot be equal to a wff whose main connective is
a negation symbol. EQ5 (EQ6) says that in order for two wffs to be equal, where the implication
arrow(negation symbol)is the main connective, their arguments must be equal.*

4.2.2 Theorems

The following are some of the interesting results which were obtained for ��� 0 .

Theorem 4.1 (Analytic Completeness Theorem) For each
��� �

, and for each �
� � ( ��� 0),

either ��� 0 ��� ( � � � ) or ��� 0 � � � ( � � � ) �
* ��� 0 can characterize exactly what has and has not been proved at any given time

�
.*

Lemma 4.2 (Newborn Lemma) ��� 0 � ( � � )( �
�

(0 � � )).
*The agent initially can prove nothing.*

Lemma 4.3 (Monotonicity Lemma) � � 0 � (� �
)(� � )[

�
(

� � � ) � �
(

�
+ 1 � � )].

*Once a belief is held, it remains.*

Lemma 4.4 (Boundedness Lemma) Let
��� �

,
��
 2. Then

�
� 1 � � � � � � � � ( ��� 0), such that

� � 0 � (� � )[
�

(
� � � ) 
	� ( � = � 1 � � � � � � = � � � )] �

Theorem 4.5 ��� 0 � ( � � )( � � )[[ ��� � � ( � ) � ����� � ( � F � 
 � �
� ( � � � ))] � ����� � (� )].

Theorem 4.6 For any
��� �

, ��� 0 � (� � )[
�

(
� � � ) � ����� � ( � )].

*The only wffs an agent can prove are those that are tautologies.*

Lemma 4.7 ��� 0 � � ����� � ( � � ), for any propositional letter ��� � � ( ��� 0).
* � � is not a tautology, for all propositional letters � � .*
Corollary 4.8 ��� 0 � � � (

� � � � ), for any
� � � � � .

*The agent can never prove � � , where � � is a propositional letter.*

Proofs of the above results tend to be rather long, and proceed mainly by induction on
�

and/or the
number of connectives in � . The details of the proofs can be found in Appendix A.
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4.3 Implementation of ��� 0

��� 0 has been implemented on an IBM PC-AT using Arity Prolog. The agent’s propositions are represented
as � (0) � � (1) � � (2) � � � � Valid formulas are built up from the propositions using � ��� and

� F�� in the expected
way.

�
(

� � � ) is represented as � � � � � ( � � � ). As anticipated, the only formulas that are derived are those
that are tautologies, since the modelled agent is a propositional reasoner. One can query the system to
determine, among other things, when a given formula is derived. One can also ask for all the formulas that
are derived in a given step.

It was hoped that PROLOG, being a logic programming language, would work well as the implemen-
tation tool for � � 0 . It turns out that because PROLOG uses depth-first search, it is rather tricky to get the
axioms of � � 0 fed in as desired. It was necessary to alter slightly the order in which the axioms are fed in.
(It is still based on the formula’s length and the maximum subscript value within the formula, however.)

The program runs more slowly than desired. This is directly related to the manner in which
�

(
� � � ) is

defined in � � 0 . It may be that with suitable programming ‘‘tricks’’, the runtime speed can be drastically
improved.

PROLOG is also sufficient as the meta description of subsequent step-logics. We have been able to
implement a version of ��� 7 , and use it to provide a solution to the Brother problem and the Three-wise-men
problem.

Several example queries can be found in Appendix C. The PROLOG program is in Appendix D.

4.4 Summary

In this chapter we presented the simplest step-logic pair, � ��� 0 � ��� 0 � . The agent-theory, ��� 0 , has none
of the three mechanisms that we postulate are necessary to do commonsense reasoning (self-knowledge,
time, and retraction). It, in fact, models a mere propositional reasoner. Its intuitive operation is sketched.
The meta-theory is then formally defined. It has all the apparatus needed to describe the agent’s proof
process.

Meta-theorems about ��� 0 were presented, the most important of which is Analytic Completeness. This
theorem states that for any wff � and any time-step � , ��� 0 can prove that either � has indeed been proven
by the agent by step

�
, or that in fact the agent has not yet been able to prove � by step

�
. The fact that

we were able to prove this theorem indicates that we have been successful in building a formalism that
correctly characterizes the agent. Proofs of all the theorems can be found in Appendix A.
��� 0 has been implemented. A sample run can be found in Appendix C.
Indeed, � ��� 0 � ��� 0 � is not very interesting, as it does not allow the agent to do any reasoning about

its own reasoning. It was studied, however, to help us as scientists to understand the reasoner (which in this
case happened to be a very simple reasoner).
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� �����

In this chapter we describe what is so far the most ambitious step-logic: ��� 7. Unlike � � 0 , ��� 7 is intended
not for derivation of tautologies but rather for the study of particular default capabilities; in particular,
tautologies and other logical axioms are not generally employed in ��� 7 . We use the notation ��� 7 for any of
a family of step-logics whose ����� and � � � involve the predicates ����� and

�
and contain a retraction

mechanism. Choosing ����� and � � � therefore fixes the theory within the family.

5.1 Introduction

��� 7 , as stated earlier, is not intended in general to be consistent. If supplied only with logically valid
wffs that are Now-free on which to base its reasoning, then indeed � � 7 will remain consistent over time:
there will be no step

�
at which the conclusion set is inconsistent, for its rules of inference are sound

(see Theorem 5.4 in Section 5.2). However, virtually all the interesting applications of ��� 7 involve
providing the agent with some non-logical and potentially false axioms, thus opening the way to derivation
of contradictions. In traditional logics, the introduction of a contradiction immediately introduces all other
wffs into the system as theorems. We refer to this phenomenon as the swamping problem. The controlled
growth of deductions in step-logic provides a convenient tool for avoiding the swamping problem. This
behavior is what we are interested in studying.

5.2 The Theory

The language of ��� 7 is first-order, having unary predicate symbol, ����� , binary predicate symbol,
�

,
and ternary predicate symbol, � � � � ��� , for time, knowledge, and contradiction, respectively. We write
����� (

�
) to mean the time is now

�
;
�

(
� � � ) can be thought of as stating that � is known1 at step

�
; and

� � � � ��� (
� � � � � ) means that � and � are in direct contradiction (one is the negation of the other) and both

are
�
-theorems. Note that

�
is used here as a predicate of the agent-theory. Context should make clear

whether we are talking about the agent- or meta-theory.
The formulas that the agent has at step

�
(the

�
-theorems) are precisely all those that can be deduced

from step
���

1 using one application of the applicable rules of inference. As previously stated, the agent is
to have only a finite number of theorems (conclusions, beliefs, or simply wffs) at any given step. We write:

�
: �

�
+ 1 : �

to mean that � is an
�
-theorem, and � is an

�
+ 1-theorem. There is no implicit assumption that � (or any

other wff other than � ) is present (or not present) at step
�

+ 1. Wffs are not assumed to be inherited or
retained in passing from one step to the next, unless explicitly stated in an inference rule. In Figure 5.1 on
page 20, we illustrate one possible inference function, denoted ����� � , involving a rule for special types of
inheritance; see Rule 7.
��� 7 has all three mechanisms that we have proposed: time, self-knowledge, and retraction. For time,

we envision a clock which is ticking as the agent is reasoning. At each step in its reasoning, the agent looks
at this clock to obtain the time. The wff � ��� ( � ) is an � -theorem. ����� ( � ) corresponds intuitively to the
statement ‘‘The time is now i.’’

Self-knowledge involves the predicate
�

, and (in ����� � ) a new rule of inference, namely a rule of
(negative) introspection; see Rule 5 in Figure 5.1 below. This rule is intended to have the following effect.

1known, believed, or concluded. The distinctions between these (see [Get63, Per86, Per88b]) will not be addressed here.
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� � (
� � � ) is to be deduced at step

�
+ 1 if � is not an

�
-theorem, but does appear as a closed sub-formula at

step
�
.2 We regard the closed sub-formulas at step

�
as approximating the wffs that the agent is ‘‘aware of’’

at
�
.3 Thus the idea is that the agent can tell at

�
+ 1 that a given wff it is aware of at step

�
is not one of

those it has as a conclusion at
�
. We will use the

�
concept to allow the agent to negatively introspect, i.e.,

to reason at step
�

+ 1 that it did not know � at step
�
. Thus, using � ��� � , if � and � � � are

�
-theorems,

then � and �
�

(
� � � ) will be

�
+ 1-theorems (concluded via Rules 3 and 5, respectively). Currently we do

not employ positive introspection (i.e., from � at
�

infer
�

(
� � � ) at

�
+ 1), although it can be recaptured from

axioms if needed.
Retractions are used to facilitate removal of certain conflicting data. Handling contradictions in a

system of this sort can be quite tricky. The fact that contradictions can arise without upsetting the system
(that is, without causing the swamping problem) is a major focus of this work. Currently we handle
contradictions by simply not inheriting the formulas directly involved. In future work we hope to have a
more sophisticated mechanism. See Section 8.2 for a discussion of this.
��� 7( 	 � � ��� � ) was formulated with applications such as the Brother problem (see Chapter 6) in mind.

This led to the rules of inference listed in Figure 5.1. Rule 3 states, for instance, that if � and �����
are � -theorems, then � will be an � + 1-theorem. Rule 3 makes no claim about whether or not � and/or

��� � are � + 1-theorems. The axioms (i.e., the ‘‘observations’’) are listed in Chapter 6, where we discuss
specifically, the Brother problem.

The inference rules given here correspond to the inference-function . �10�� . For any given history, . �10�� returns the
set of all immediate consequences of Rules 1--7 applied to the last step in that history. Recall from page 19 that there
is no implicit assumption that wffs are inherited from one step to the next; this must be explicitly stated in an inference
rule. Note that Rule 5 is the only default rule.

Rule 1 :

�
:�

+ 1 : ���	� (
�

+ 1) Agent looks at clock

Rule 2 :

�
:�

+ 1 : � If � > ���;� (
�

+ 1)

Rule 3 :

�
: ��� �	�! �

+ 1 :  Modus ponens

Rule 4 :

�
:
�

1 � ��35353 � � 7 � � ( � � )[(
�

1 ��� 35353 � � 7 � ) �	� � ]�
+ 1 : � �

Extended modus ponens

Rule 5 :

�
:�

+ 1 : 
�� (
� �  )

Negative introspection 


Rule 6 :

�
: ��� 
 ��

+ 1 : � �
, � � � (

� � ��� 
 � ) Contradiction is noted

Rule 7 :

�
: ��

+ 1 : � Inheritance �


 where � is not an � -theorem, but is a closed sub-formula at step � .
� where nothing of the form ����������� (��� 1 � � ��� ) nor ����������� (��� 1 � � � � ) is an � -theorem, and where � is not of the form !"�$# (� ).

That is, direct contradictions and time are not inherited.

Figure 5.1: Rules of inference corresponding to � ��� �
Unlike ��� 0 which is monotonic (that is, if � is an

�
-theorem, then � is also an

�
+ 1-theorem), ��� 7

2A sub-formula of a wff is any consecutive portion of the wff that itself is a wff. Note that there are only finitely many such
sub-formulas at any given step. Rule 5 formalizes the introspective time-delay discussed in Section 3.1.

3‘‘You can’t know you don’t know something, if you never heard of it.’’ Fagin and Halpern ([FH88]) have a different treatment
of awareness. See Section 2.1.1 for a discussion of their notion.
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is non-monotonic. In ��� 7( 	 � � � � � ), a conclusion in a given step
�
, is inherited to step

�
+ 1 if it is not

contradicted at step
�

and it is not the predicate ����� ( � ), for some � ; see Rule 7 in Figure 5.1. The intuitive
reason time is not inherited is that time changes at each step. The intuitive reason contradicting wffs �

and � are not inherited is that not both can be true, and so the agent should, for that reason, be unwilling
to simply assume either to be the case without further justification. This does not mean, however, that
neither will appear at the next step, for either or both may appear for other reasons, as will be seen. Note
also that the wff � � � � ��� (

� � � � � � ) will be inherited, since it is not itself either time or a contradiction, and
(intuitively) it expresses a fact (that there was a contradiction at step

�
) that remains true.

Note that central to our approach is the idea that, for at least some conclusions that our agent is to
make, the time the conclusion is drawn is important. For instance, if it concluded at time (step) 5 that �
is unknown, we prefer the agent to conclude � � (5 � � ) rather than simply � � ( � ). The reason for this is
that it may indeed be true that � is unknown at time 5, but that later � becomes known; this latter event
however should not force the agent to forget the (still true) fact that at time 5, � was unknown. On the other
hand, if we put time stamps on all conclusions, then � itself, once concluded, will require more complex
inheritances in order to carry � on from step to step as a continuing truth. Thus it seems preferable not
to time-stamp every conclusion. This leaves us with the problem of deciding which conclusions to stamp;
currently we are stamping only introspections, contradictions, and ‘‘clock look-ups’’.

It is worth amplifying on the use of Contra. Suppose that at step � the agent has the wffs � � � � � , and
� � � . (They are all � -theorems.) While these are indeed mutually inconsistent, they do not form a direct
contradiction; it takes some further work to see the contradiction. If, for instance, at step � + 1 the agent
deduces � (say, from a further wff � � � ( ��� � ) ��� also present at step

�
), then at step

�
+1 there would be a

direct contradiction. This would then be noticed (via Rule 6) at step
�
+ 2 with the wff � � � � ��� (

�
+ 1 � � � � � ).

Then (by Rule 7) neither � nor � � would be inherited to step
�

+ 3. Note that what is not inherited is
context-dependent: if a slightly different line of reasoning had led from the same wffs at step

�
to a different

contradiction at
�

+ 1, different wffs would fail to be inherited. Thus it is the actual time-trace of past
reasoning that is reflected in the decision as to what wffs to distrust. Also note that if the extra wff that
allowed the implicit contradiction to become direct had not been present, the implicit contradiction might
have remained indefinitely. This behavior we regard as within the spirit of the reasoning we wish to study,
since it follows real-time vagaries of what is actually done rather than an externally proscribed notion of
validity.

We define several terms before presenting a theorem about the consistency of � � 7( 	 � � ��� � ).

Definition 5.1 A wff is said to be P-free if it does not contain the predicate letter P.

Definition 5.2 An observation-function ����� is said to be P-free if � � � � ( �
� ����� ( � ) � � is P-free ).

Definition 5.3 An observation-function ����� is said to be valid if � � � � ( �
� ����� ( � ) � � is logically

valid ).

Theorem 5.4 ��� 7( ����� ������� � ) is step-wise consistent if OBS is both valid and Now-free.

Proof: See Appendix B for the details. The idea is to show � � 7( ����� ������� � ) has a step-model, and
apply Theorem 3.16 (see page 14). �

Remark 5.5 When OBS is empty (i.e. � � � ����� (
�
) = � ), � � 7( ����� ������� � ) reduces to a ‘‘clock’’, i.e.

� �
, ��� 7( ����� � � ��� � )

�
� � iff � = � ��� (

�
).

5.3 Implementation of ��� 7

��� 7 , as stated earlier, represents a family of step-logics. Fixing the observation- and inference-functions
fixes the theory. Implementations and sample runs are given for three of these theories. See Appendix C
for the example runs and Appendix D for the PROLOG code.
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5.4 Summary

In this chapter we presented the most sophisticated agent-theory, � � 7 . ��� 7 has all three of the mechanisms
that we postulate are necessary to do commonsense reasoning: self-knowledge, time, and retraction.��� 7 actually represents a family of step-logics. The step-logics differ in the particular observation- and
inference-functions that are used in the definition of the specific step-logic. In this chapter we described
one particular inference-function, which was designed with the Brother problem in mind.

A meta-theorem about the consistency of particular ��� 7-theories was stated and proved.
��� 7 is far more interesting than the agent-theory ��� 0 which was described in the previous chapter.

��� 7 is a useful model for several types of commonsense reasoning problems. Because it allows the agent to
introspect on his own beliefs within the formalism itself, and because contradictions are allowed to occur, a
computationally tractable solution to default reasoning becomes possible.

Chapters 6 and 7 define particular � � 7-theories which are suitable for the Brother problem and the
Three-wise-men problem, respectively.
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� � ��� � �	� � ��� � � � ��� ���!�

In this chapter I report on work done in [EDP88] in which we presented a real-time solution to the Brother
problem (see [Moo83]). An implementation for this problem can be found in Appendix D.

6.1 Statement of the Problem

We reiterate the problem which was described above in Section 2.3. Moore explains:
Consider my reason for believing that I do not have an older brother. It is surely not that one of
my parents once casually remarked, ‘‘you know, you don’t have any older brothers,’’ nor have
I pieced it together by carefully sifting other evidence. I simply believe that if I had an older
brother I would surely know about it.

So one must be able to reason, ‘‘since I don’t know I have an older brother, I must not.’’ We break this
problem into two parts: the first requires that the reasoner be able to decide he doesn’t know he has an older
brother; the second that, on that basis, he, in fact, does not have an older brother. This latter part requires
modus ponens and the assumption ‘‘If I had an older brother, I’d know it.’’ The former part, however, is not
so straightforward. It requires the reasoner to determine that he doesn’t know something. Step-logic allows
this negative reflection within the logic itself, and thus can provide a convincing model for this problem.1

In the next section we present three different scenarios. In each the agent must determine whether or
not an older brother exists. Let � be a 0-argument predicate letter representing the proposition that an
older brother exists. Let � be a 0-argument predicate letter (other than � ) that represents a proposition that
implies that an older brother exists.2 In each case, at some step � the agent has the axiom � � � , and
also the following autoepistemic axiom which represents the belief that not knowing � ‘‘now’’ implies its
negation.

Axiom 1 ( � � )[( ����� ( � ) � � � ( � � 1 � � )) � � � ]3

This axiom actually says that if I didn’t know at the previous step that I have an older brother, then conclude
that I have no older brother. The reason for this delay in time is discussed below in Section 6.3.

The scenarios illustrate the following behaviors:
� If � is among the wffs of which the agent is aware at step

�
, but not one that is believed at step

�
, then

the agent will come to know this fact ( �
�

(
� � � ), that it was not believed at step

�
) at step

�
+ 1. As a

consequence of this, other information may be deduced. In this case, the agent concludes � � from
the autoepistemic axiom (Axiom 1). Clearly the � ��� predicate plays a critical role. Section 6.2.1
below illustrates this case.

� The agent must refrain from such negative introspection when in fact � is already known; see
Section 6.2.2.

� A conflict may occur if something is coming to be known while negative introspection is simulta-
neously leading to its negation. The third illustration (see Section 6.2.3 below) shows this being
resolved in an intuitive manner (though not one that will generalize as much as we would like; see
Section 8.2 for a discussion of this).

1This problem is used although, according to Moore, it technically does not involve ‘‘true’’ default reasoning. In Chapter 8 we
discuss a standard simple default about birds typically flying.

2P might be something like ‘‘My parents have two sons,’’ together with appropriate axioms.
3It appears that some arithmetic is involved here, although our reasoner has no arithmetic capabilities. Simple syntactic devices

can be used to avoid this difficulty. For instance, N (� � 1 � � ) can be replaced by � ( ��� � ), with the intuitive meaning that � was known
‘‘just a moment ago’’, i.e., at � � 1. Alternatively, we can use successor notation for natural numbers.
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6.2 Three Scenarios

Each scenario presented is a synopsis of actual computer-generated results (the code for which can be found
in Appendix D). Refer to page 20 for the inference-function � ��� � .

6.2.1 Simple negative introspection succeeds

In this example the agent is not able to deduce the proposition � , that he has an older brother, and hence is
able to deduce � � , that he does not have an older brother. See Figure 6.1. Here, and in Figures 6.2 and 6.3,
for ease of reading we underline in each step those wffs which are new (i.e., which appear through other
than inheritance). For the purposes of illustration, let

�
be arbitrary, but fixed, and let

����� � 1 (� ) = ��� � � � � (� � )[( ����� ( � ) � � � ( � � 1 � � )) � � � ] � if � =
�

� otherwise
Since � is not an

�
-observation (and thus is not an

�
-theorem), the agent uses Rule 5, the negative

introspection rule, to conclude � � (
� � � ) at step

�
+ 1. At step

�
+ 2 the agent concludes � � from the

autoepistemic knowledge stated above (Axiom 1) and the use of the extended version of modus ponens,
Rule 4.

�
: ����� (

�
) � � � � � ( � � )[( ����� ( � ) � 
�� ( ��� 1 � � )) � 
 � ]

�
+ 1 : ����� (

�
+ 1) � � � � � (��� )[( ����� ( � ) � 
�� ( ��� 1 � � )) � 
 � ] � 
�� (

� � � ) �

�� (

� � 
 � ) � 
�� (
� � � )

�
+ 2 : ����� (

�
+ 2) � � � � � (��� )[( ����� ( � ) � 
�� ( ��� 1 � � )) � 
 � ] � 
�� (

� � � ) �

�� (

� � 
 � ) � 
�� (
� � � ) � 
 � � 
�� (

�
+ 1 � � ) � 
�� (

�
+ 1 � 
 � ) � 
�� (

�
+ 1 � � )

Figure 6.1: Negative introspection succeeds

6.2.2 Simple negative introspection fails (appropriately)

In this example, let

����� � 2 ( � ) = � � ��� � � ( � � )[( ����� ( � ) � � � ( � � 1 � � )) � � � ] � ��� if � =
�

� otherwise
Thus the agent has � at step � , and is blocked (appropriately for this example) from deducing the wffs
�
� ( � � � ) and � � . See Figure 6.2.

�
: ����� (

�
) � � � � � ( � � )[( ����� ( � ) � 
�� ( ��� 1 � � )) � 
 � ] � �

�
+ 1 : ����� (

�
+ 1) � � � � � (��� )[( ���	� ( � ) � 
�� ( ��� 1 � � )) � 
 � ] � � � 
�� (

� � 
 � ) �

�� (

� � � )

Figure 6.2: Negative introspection fails appropriately

Note that a traditional final-tray-like approach could produce quite similar behavior to that seen in
Figures 6.1 and 6.2 if it is endowed with a suitable introspection device, although it would not have the
real-time step-like character we are trying to achieve. A traditional final-tray-like approach would have
severe difficulties with this next example, however.
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6.2.3 Introspection contradicts other deduction

In this example, let

����� � 3 (� ) = � � � � � � (� � )[( ����� ( � ) � � � ( � � 1 � � )) � � � ] � ��� if � =
�

� otherwise

In Figure 6.3 we see then that the agent does not have � at step
�
, but is able to deduce � at step

�
+ 1

from � � � and � at step
�
. Since the agent is aware (in our sense) of � at step

�
, and yet does not have

� as a conclusion at
�
, it will deduce � � (

� � � ) at step
�

+ 1. Thus both � and � � (
� � � ) are concluded at

step
�

+ 1. At step
�

+ 2 Axiom 1, together with ����� (
�

+ 1) and � � (
� � � ) and Rule 4, will produce � � . A

conflict results, which is noted at step
�

+ 3. This then inhibits inheritance of both � and � � to step
�

+ 4.
Although neither � nor � � is inherited to step

�
+ 4, � is re-deduced at step

�
+ 4 via modus ponens. Thus

� ‘‘wins out’’ over � � due to its existing justification in other wffs, while � � ’s justification is ‘‘too old’’:
� � (

�
+ 2 � � ), rather than �

�
(

� � � ), would be needed. We see then that the conflict resolves due to the
special nature of the time-bound ‘‘now’’ feature of introspection.

�
: ����� (

�
) � � � � � (��� )[( ���	� ( � ) � 
�� ( � � 1 � � )) � 
 � ] � �

�
+ 1 : ����� (

�
+ 1) � � � � � ( � � )[( ����� ( � ) � 
�� ( � � 1 � � )) � 
 � ] � � � � � 
�� (

� � � ) �

�� (

� � 
 � )
�

+ 2 : ����� (
�

+ 2) � � � � � ( � � )[( ����� ( � ) � 
�� ( � � 1 � � )) � 
 � ] � � � � � 
�� (
� � � ) �


�� (
� � 
 � ) � 
 � � 
�� (

�
+ 1 � 
 � )

�
+ 3 : ����� (

�
+ 3) � � � � � ( � � )[( ����� ( � ) � 
�� ( � � 1 � � )) � 
 � ] � � � � � 
�� (

� � � ) �

�� (

� � 
 � ) � 
 � � 
�� (
�

+ 1 � 
 � ) � � �
, � � � (

�
+ 2 � � � 
 � )

�
+ 4 : ����� (

�
+ 4) � � � � � ( � � )[( ����� ( � ) � 
�� ( � � 1 � � )) � 
 � ] � � � 
�� (

� � � ) �

�� (

� � 
 � ) � 
�� (
�

+ 1 � 
 � ) � � �
, � � � (

�
+ 2 � � � 
 � ) � � � � � , � � � (

�
+ 3 � � � 
 � )

Figure 6.3: Introspection conflicts with other deduction and resolves

A traditional final-tray-likeapproach would encounter difficultieswith this third example, for at step
�
+2

there is a contradiction. This means that the final tray for a tray-like model of a reasoning agent would
simply be filled with all wffs in the language---and no basis for a resolution possible within such a logic.

6.3 Discussion

We see then that ��� 7( ����� ��� ������� � ) is a promising theory for handling simple default cases involving
negative introspection such as we have encountered with the Brother problem. When it’s appropriate
to make the default conclusion (that no older brother exists), the conclusion is indeed inferred. When
circumstances should block the default conclusion (when in fact it is known that an older brother exists),
the conclusion is not inferred. In the third case where self-reflection allows the default inference at the same
time that another inference leads to the conclusion that an older brother does truly exist, a contradiction
results. The logic allows the contradiction to be sorted out; after only a couple of steps the situation
stabilizes, with � being believed, and � � not being believed.

It is worth noting that, although this simple method of contradiction-handling produces the correct
results in this particular scenario, it is due to the fact that one of the contradictory beliefs was inferred
through the use of a default rule involving negative introspection. It may be, for example, that a direct
contradiction arises due to a series of inferences, none of which involves negative introspection. In this
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case, although neither belief would be inherited to the next step (once the contradiction was noted), both
would possibly be re-deduced in the next step.

Typicalities (such as birds typically flying) can lead to such difficulties. Complex interacting defaults
must be sorted out and contradiction resolution is not so easily done. A more sophisticated method of
contradiction-handling is necessary. If the bird example, however, is formulated in a similar fashion to the
Brother problem, then the simple contradiction-handlingmechanism presented here works well. The details
and complexities of this distinction, using the bird example for illustration, are discussed in Chapter 8.

The curious reader may be puzzled by the particular formulation of Axiom 1 that was used in this
problem. (See page 23.) Why was it necessary for the reasoner to introspect on the previous step, instead
of the current one? This is a general phenomenon of temporal constraint that pervades our development.
Consider the process of concluding by default, on the basis of not knowing

�
‘‘now,’’ that

�
is false

(where
�

is any assertion, possibly dependent on time). This requires the agent to determine at time
�

that
it does not know

�
at time

�
. Intuitively, certain beliefs have accumulated at time

�
, and it is only after

these beliefs are formed (say at time
�

+ 1) that the new belief, that
�

is not among the former, can be
formed. If this conclusion were to be drawn at time � instead, then we would not be dealing with a fixed set
of beliefs for time � . We, in fact, would have a two-stage production in which beliefs are gathered initially
and then an introspective process is allowed to add to that set. But this leads to severe ambiguities, for the
very process of inserting, say, � � ( � � � ) into the beliefs at time � results in something new being known,
something that was not really known at time � , namely � � ( � � � ) itself.

Now suppose we grant that some oracle manages to place all negative introspective conclusions about
the time-

�
belief set into that very same set. This unfortunately forces an infinite set of beliefs into that set,

since there are infinitely many unknown formulas at any given step. Our approach of real-time reasoning
requires a finite belief set at all steps. Thus this approach cannot be taken, and we must forego the luxury
of having the agent be able to know that it doesn’t know a given fact now; instead the best that can be done
is to know that it didn’t know the fact a moment ago, when it last was able to scan its belief set. Thus the
agent’s self-knowledge must lag slightly behind. Hence the formulation of Axiom 1 which was given.

We now present a theorem about the consistency of the three step-logics which were defined in this
chapter. All three step-logics share the same inference-function, � ��� � (defined on page 20). The
observation-functions, ����� � 1 , � � � , ����� � 3 , are as defined in Sections 6.2.1 thru 6.2.3.

Theorem 6.1 The following are true about the consistency of each of the ��� 7 theories given in the brother
examples:

1. ��� 7( ����� � 1 � � ��� � ) is step-wise consistent.

2. ��� 7( ����� � 2 � � ��� � ) is step-wise consistent.

3. ��� 7( ����� � 3 � � ��� � ) is eventually consistent (but not step-wise consistent4).

Proof: We briefly sketch the proof of part 1 of this theorem. Parts 2 and 3 are similar; part 3 involves
constructing a model for each step after the last inconsistent step (step

�
+ 3).

Since ����� � 1 ( � ) = � , for � � �
, by Remark 5.5 (page 21), if � � �

, �
� � � iff � = ����� (� ). Therefore

every step in ��� 7( ����� � 1 � � ��� � ) up to and including step
� �

1 is consistent. From step
�

on we have
additional theorems which must be considered, due to the fact that ����� � 1 (

�
) is not empty. Note that

����� � 1 (
�
) itself is consistent.

To show that step � and all subsequent steps are consistent, we propose a model L � for each step � . In eachL � interpret the predicates in the following way: ��� ��� 
 � � � � � ��� 
 � � � � � ��� 
 � � � ����� (
�

) �
�

= � ,
where � is any predicate other than � , � , or ����� . We can then see that we have a model for each of
steps

�
thru

�
+ 2. Noting that for an arbitrary step

�
+
� � � � 2,

4This is why a traditional final-tray-like approach would encounter difficulties with this example.
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� � + � =

���������� ���������

����� (
�

+
�

) �� � � �
(��� )[( ����� ( � ) � � � ( � � 1 � � )) � � � ] �
� � �
� � (

� � � � ) � � � (
�

+ 1 � � � ) �
� � (

� � � ) � � � � � � � (
�

+
� �

1 � � ) �
� � (

� � � ) � � � � � � � (
�

+
� �

1 � � )

� ���������
���������

we see that, again, L � + � is an appropriate model. Therefore, by Theorem 3.16 (page 14),
��� 7( ����� � 1 ������� � ) is step-wise consistent. �

6.4 Implementation of ��� 7( �
	 � � 3 �
����� � )
The code for the implementation of the Brother problem can be found in Appendix D.

6.5 Summary

In this chapter we demonstrated that ��� 7( ����� � � ������� � ) is a suitable theory for handling a simple
default involving negative introspection. Three separate ��� 7-theories were presented. Each was suitable
for modelling a particular scenario involving the Brother problem. The three scenarios differed in
the information that was given to each agent. Therefore, although each step-logic shared the same
inference-function ����� � , they differed in the definition of the observation-function. The three scenarios
demonstrated the following:

� When it was appropriate to make a default conclusion (that no older brother exists), the conclusion
was inferred.

� When circumstances should block the default conclusion, the conclusion was not inferred.
� When the default conclusion was inferred at the same time that another inference led to the conclusion

that an older brother existed, a contradiction resulted which was subsequently resolved in favor of
the conclusion that an older brother exists.
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� � ��� � ������� � � � � � ��� ���!� � ���

7.1 Statement of the Problem

We reiterate the problem which was described in Section 2.3. A king wishes to know whether his three
advisors are as wise as they claim to be. Three chairs are lined up, all facing the same direction, with one
behind the other. The wise men are instructed to sit down. The wise man in the back (wise man #3) can see
the backs of the other two men. The man in the middle (wise man #2) can only see the one wise man in
front of him (wise man #1); and the wise man in front (wise man #1) can see neither wise man #3 nor wise
man #2. The king informs the wise men that he has three cards, all of which are either black or white, at
least one of which is white. He places one card, face up, behind each of the three wise men, explaining that
each wise man must determine the color of his own card. Each wise man must announce the color of his
own card as soon as he knows what it is. (The first to correctly announce the color of his own card will be
aptly rewarded.) All know that this will happen. The room is silent; then, after several minutes, wise man
#1 says ‘‘My card is white!’’.

We assume in this puzzle that the wise men do not lie, that they all have the same reasoning capabilities,
and that they can all think at the same speed. We then can postulate that the following reasoning took place.
Each wise man knows there is at least one white card. If the cards of wise man #2 and wise man #1 were
black, then wise man #3 would have been able to announce immediately that his card was white. They all
realize this (they are all truly wise). Since wise man #3 kept silent, either wise man #2’s card is white, or
wise man #1’s is. At this point wise man #2 would be able to determine, if wise man #1’s were black, that
his card was white. They all realize this. Since wise man #2 also remains silent, wise man #1 knows his
card must be white.

In Section 7.2 we describe and propose a model for the version of this problem in which there are only
two men. Once the Two-wise-men version was tackled, it was easier to propose a model of the problem in
which there are three men. This is done in Section 7.3.

7.2 The Two-wise-men Problem

7.2.1 Statement of the Problem

In this puzzle the king has just two wise men and two cards, at least one of which is white. Wise man #2
sits behind wise man #1, so wise man #1 can see nothing, and wise man #2 can see wise man #1’s card.
Wise man #2 is unable to identify the color of his card. Wise man #1 is then able to determine that his card
must be white.

The reasoning involved in this version of the puzzle is much simpler than in the three-wise-men version.
Wise man #2 can see the color of wise man #1’s card. If it were black, then wise man #2 would know,
since there is at least one white card, that his card was white. Wise man #1 knows this. Wise man #2 says
nothing. Therefore, wise man #1’s card must not be black, but rather white.

The step-logic used to model this problem is defined in Figure 7.1 below. The problem is modelled
from wise man #1’s point of view. The observation-functioncontains all the axioms that wise man #1 needs
to solve the problem, and the inference-function provides the allowable rules of inference. The language is
that defined in Section 5.2 with the following additions:

� � � ( � � � ), instead of
�

(
� � � ) is used.

� � ( � � � ) is intended to mean ‘‘wise man � knows � at step
�
.’’

� � (
� � � ) expresses the fact that an utterance of � is made at step

�
.

� � ( � ) is the successor function (where � � (0) is used as an abbreviation for � ( � ( 	 	 	 ( �� ��� �� (0)) 	 	 	 ))).
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���;� is defined as follows.

����� (
�
) =

���������� ���������

������� ������
( �
�
)( � � )( � � )[ � 2 (

� � � � � ) � ( � 2(
� � � ) � � 2(

�
(
�
) � � ))]

� 2(
�
(0) � � 1

���
2)

( � 1
� � 2(

�
(0) � � 1))

( 
 � 1
���

1)
( �
�
)[ 
�� (

�
(
�
) ��� 2) � 
�� 2(

� ���
2)]

( �
�
)[ 
�� 1 (

�
(
�
) � � (

� ���
2)) � 
�� (

� ���
2)]

� ������
������

if
�

= 1

� otherwise

The inference rules given here correspond to an inference-function, . �10	� 2 . For any given history, . �10
� 2 returns
the set of all immediate consequences of Rules 1--6 applied to the last step in that history. Note that Rule 5 is the only
default rule.

Rule 1 :

�
: 35353�

+ 1 : 35353 � � if � > ����� (
�

+ 1)

Rule 2 :

�
: 35353 � ��� ( �	�  )�

+ 1 : 35343 �  Modus ponens

Rule 3 :

�
: 35353 � � 1 � �535353 � � 7 � � (� � )[(

�
1 ��� 3�353 � � 7 � ) �	� � ]�

+ 1 : 35353 � � �
Extended modus ponens

Rule 4 :

�
: 35353	� 
  � ( � �  )�

+ 1 : 35353 � 
 �
Rule 5 :

�
: 35353�

+ 1 : 35343 � 
�� 1(
� #

(0) � � (
� #
9

1(0) ��� 2)) if � (
� #A9

1(0) ��� 2) �>
� # ,� 2 1

Rule 6 :

�
: 35353 � ��

+ 1 : 35353 � � Inheritance

Figure 7.1: ������� 2 and � � � � 2 for the Two-wise-men Problem
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��� � and � � express the facts that
�
’s card is white, and

�
’s card is black, respectively.

The axioms of ����� � 2 (1) have the following intuitive meaning. (Refer to Figure 7.1.) Wise man #1
knows the following:

1. Wise man #2 uses the rule of modus ponens.
2. Wise man #2 knows at step � (0) that if my card is black, then his is white.
3. If my card is black, then wise man #2 knows this at step � (0).
4. If my card is not black, then it is white.
5. If there is no utterance of � 2 at a given time-step, then wise man #2 didn’t know that his card was

white (i.e. � 2) at the previous time-step.
6. If I don’t know at a given time-step that there has been an utterance of � 2, then there was no utterance

of � 2 at the previous time-step. (I would know that an utterance of � 2 was made one step after it is
uttered.)

The rules of inference are the same as those for the Brother problem (see Figure 5.1 on page 20), with
the following exceptions:

� The rule that infers ����� ( � ) is not needed.
� The rule that recognizes contradictions is not needed.
� The introspective rule has been replaced with a more specific introspective rule. (Wise man #1 can

only introspect on what utterances have been made, rather than on all sub-formulas of which he is
aware.)

� The rule of inheritance is more general: everything is inherited from one step to the next.
� The rule for extended modus ponens allows an arbitrary number of variables.
� Rule 4 is new.

7.2.2 Solution

The solution to the problem is given in Figures 7.2 and 7.3 below. The step number is listed on the left. The
reason (rule used) for each inference is listed on the right. Only those wffs which are of interest are shown.
(There are many wffs involving introspection which are left out of the figure for purposes of clarity.)

In step 1, we see that all the initial axioms ( ����� � 2 (1)) have been inferred through the use of Rule 1.
In step 2, (a) has been deduced through the use of Rule 3. (a) says that if wise man #2 knows � 1 at step
� (0), then wise man #2 will know � 2 at step � ( � (0)). The rest of the wffs listed in step 2 have been inferred
through Rule 6, the rule of inheritance. At step 5, wise man #1 negatively introspects to determine that no
utterance of � 2 was made at step 3. Note the time delay: wise man #1 is able to prove at step 5 that he did
not know at step 4 of an utterance made at step 3. This phenomenon is discussed in the previous chapter, in
Section 6.3. At step 6, wise man #1 can then conclude that indeed no utterance of � 2 was made at step 3.
The reasoning continues from step to step, and in step 10, wise man #1 is finally able to prove that his card
is white.
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Figure 7.2: Solution to the Two-wise-men Problem---Part I
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Figure 7.3: Solution to the Two-wise-men Problem---Part II
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7.2.3 Discussion

It may seem that the axioms with which wise man #1 is endowed are a bit contrived. Admittedly, perhaps
they are. I feel, however, that what should come across is the fact that step-logic has been a useful vehicle
for formulating and solving this problem in which the time that something occurs is important. Wise man
#1 does indeed determine that ‘‘if wise man #2 knew the color of his card, he would have announced it by
now.’’ (See steps 6 and 7.) Wise man #1 then reasons backwards from here to determine that his card must
not be black (step 9), and hence must be white (step 10).

It is interesting to note that wise man #1 needs to know very little about wise man #2 and how he
reasons. We could, for instance, have given wise man #1 the information that wise man #2 is just as clever
as he, and thus has all the same rules of inference. This much knowledge was not necessary, however. The
only rule of wise man #2’s that wise man #1 needed to know about was that of modus ponens.

Wise man #1 needed to know three additional facts about wise man #2: 1) that wise man #2 could see
the color of wise man #1’s card; 2) that wise man #2 knew there was at least one white card; and 3) that
wise man #2 would announce the color of his card as soon as he knew it. Let’s consider each of these in
turn.

1. Wise man #2 could see the color of wise man #1’s card. The third axiom of ����� � 2 (1) represents
this fact. It actually states that if wise man #1’s card is black, then wise man #2 would know this.
The analogous axiom for the situation where wise man #1’s card is white was not necessary for the
problem. To keep things symmetric, it could have been included, but I felt it was unnecessary since
it was not needed in the solution.

2. Wise man #2 knows there is at least one white card. The second axiom in ����� � 2 (1) is meant to
represent this. It doesn’t quite say this, however; it says instead that wise man #2 knows that if
wise man #1’s card is black, then his is white. The reader may feel that this perhaps short-circuits
the problem---wise man #2 should be able to determine this on his own based on an axiom such as
�

2( � (0) � � 1 � � 2). Wise man #2 has no tautologies (nor does wise man #1 for that matter) and
hence it was much easier to simply endow wise man #2 with this axiom directly. I felt this distinction
was not crucial to the problem. See Section 7.3.3 for a discussion of the difficulty with tautologies.

3. Wise man #2 would announce the color of his card as soon as he knew it. The fifth axiom of
����� � 2 (1) is meant to represent this fact. Again, as in point 1, only half of this fact is represented.
Wise man #1 does not need to know what wise man #2 would do in the case that wise man #2’s card
is black; it is sufficient for wise man #1 to know that if wise man #2 knew his card was white, he
would say so immediately (that is, in the step after he has determined that his card is indeed white).

Note that wise man #1 needs to know only that wise man #2 knows points 1 and 2 at step 1. Wise man
#1 doesn’t need to know that wise man #2 may know these two facts later in time as well. We will see that
this is not sufficient in the Three-wise-men problem.

It should also be pointed out that the step-logic described here, which I have labeled ��� 7( ����� � 2 � � � � � 2 ),
is not strictly an ��� 7 logic! That is to say that, although time and self-knowledge are critical components
of wise man #1’s reasoning, retraction is not used by wise man #1. (The rule of inheritance forces all wffs
to be inherited from one step to the next.) This logic should technically be labeled ��� 5( ����� � 2 � � � � � 2 ).
Since it seemed that it was only this particular formulation that didn’t happen to require retraction (because
wise man #1 can reason backwards instead of forwards), I chose to retain the � � 7 title.

7.2.4 Implementation of ��� 7( ������� 2 	

���
 � 2)

��� 7( ������� 2 ������� � 2 ) has been implemented on an IBM PC-AT using Arity Prolog. An example run can
be found in Appendix C. The code used to implement this solution can be found in Appendix D.
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7.3 The Three-wise-men Problem

7.3.1 Statement of the Problem

Now that the Two-wise-men problem has been modelled, the mechanics of that problem can be brought to
bear on the three-wise-men version. The Three-wise-men problem is described on page 28. Recall that we
are assuming that each wise man announces the color of his card as soon as he knows what it is. All know
that this will happen. Therefore, if wise man #2, for instance, is able to determine that wise man #3 would
have been able to figure out by now that wise man #3’s card is white, and wise man #2 has heard nothing,
then wise man #2 knows that wise man #3 does not know the color of his card. We therefore do not have
to know when exactly 30 minutes has gone by (as stated in the original problem). The step-logic used to
model this problem is defined in Figures 7.4 and 7.5 below.���;� �
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Figure 7.4: ����� � 3 for the Three-wise-men Problem

As in the two-wise-man version, the problem is modelled from wise man #1’s point of view. The
observation-function contains all the axioms that wise man #1 needs to solve the problem, and the
inference-function provides the allowable rules of inference. The language is the same as that for the
Two-wise-men problem (see page 28).

The axioms of ����� � 3 (1) have the following intuitive meaning. (Refer to Figure 7.4.) Wise man #1
knows the following:

1. Wise man #2 always knows (i.e. knows at every time-step) that wise man #3 uses the rule of modus
ponens.
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. �10 �
3 is the same as . �10
� 2 (see Figure 7.1, page 29) augmented with the following additional rules (where Rule 8

replaces Rule 5).

Rule 7 :

�
: 353�3 � 
 � � � (� � )(

� � � � � )�
+ 1 : 35353 � 
 �

�

Rule 8 :

�
: 35343�

+ 1 : 35353 � 
�� 1(
� #

(0) � � (
� #A9

1(0) � ��� )) if � (
� #A9

1(0) ����� ) �> � # ,

= 2 � 3,

� 2 1

Rule 9 :

�
: 3�353 � (� 
 ) � 2(


 � � )�
+ 1 : 353�3 � � 2(

� #
(0) � � )

Figure 7.5: � ��� � 3 for the Three-wise-men Problem

2. Wise man #2 always knows that wise man #3 knows at time-step � (0) that if both my card and wise
man #2’s card are black, then wise man #3’s card is white.

3. Wise man #2 always knows that if both my card and his card are black, wise man #3 would know
this fact at time-step � (0).

4. Wise man #2 always knows that if it’s not the case that both my card and his are black, then if mine
is black, then his is white.1

5. Wise man #2 always knows that if there’s no utterance of � 3 at a given time-step, then wise man #3
did not know � 3 at the previous step. (Wise man #2 always knows that there will be an utterance of
�

3 the step after wise man #3 has proved that his card is white.)
6. If I don’t know about a given utterance, then it has not been made at the previous step.
7. If there’s no utterance of � 3 at a given time-step, then wise man #2 will know this at the next step.
8. Wise man #2 uses the rule of modus ponens.
9. Same meaning as previous axiom. (This is necessary since wise man #1 and wise man #2 reason

within first-order logic.)
10. Wise man #2 uses the extended rule of modus ponens.
11. Same meaning as previous axiom. (Again necessary since wise man #1 and wise man #2 reason

within first-order logic.)
12. Wise man #2 uses the contra-positive of modus ponens.
13. Same meaning as previous axiom. (Again necessary since wise man #1 and wise man #2 reason

within first-order logic.)
14. If my card is black, then wise man #2 always knows this.
15. If my card is not black, then it is white.
16. If there is no utterance of � 2 at a given time-step, then wise man #2 doesn’t know at the previous

step that his card is white. (There would be an utterance of � 2 the step after wise man #2 knows his
card is white.)

Note that the first five axioms are analogous to those needed in the two-wise-men version, where wise
man #1 is reasoning about wise man #2’s reasoning about wise man #3, instead of wise man #1 reasoning
about wise man #2. Also note that all the axioms but one that were needed in the two-wise-men version are

1In other words, if wise man #2 knows that at least one of our cards is white, then my card being black would mean that his is
white. Indeed, this axiom gives wise man #2 quite a bit of information, perhaps too much. (He should be able to deduce some of this
himself.) This is discussed in more detail in Section 7.3.3.
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also needed here (although two of these are in slightly generalized form). The second axiom of ����� � 2 (1)
is not part of ����� � 3 (1), but is deduced by wise man #1 in a subsequent step. See Section 7.3.2 below.

The rules of inference are the same as those for the Two-wise-men problem (see Figure 7.1 on page 29),
with the following exceptions:

� The introspective rule allows wise man #1 to introspect on utterances of � 3 as well as � 2.
� An extended version of Rule 4 was added (Rule 7).
� Rule 9, a rule of instantiation, was added.

7.3.2 Solution

The solution to the problem is given in Figures 7.6 and 7.7 below. The step number is listed on the left.
The reason (rule used) for each inference is listed on the right. To allow for ease of reading, only the wffs
in which we are interested are shown at each step. In addition, none of the inherited wffs are shown. This
means that a rule appears to be operating on a step other than the previous one, but the wffs involved have,
in fact, actually been inherited to the appropriate step.
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Figure 7.6: Solution to the Three-wise-men Problem---Part I
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17: �
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Figure 7.7: Solution to the Three-wise-men Problem---Part II

In step 1 we see that all the initial axioms ( ����� � 3 (1)) have been inferred through the use of Rule 1.
Nothing of interest is inferred in steps 2 through 4. In step 5, wise man #1 is able to negatively introspect
and determine that no utterance of � 3 was made at step 3. Note the time delay. The rest of the wffs shown
in step 5 were all inferred through the use of Rule 9, the rule of instantiation. Wise man #1 needs to know
that wise man #2 knows these particular facts at step 4. The reasoning continues from step to step. Note
that at step 11, wise man #1 has been able to deduce that wise man #2 knows that if wise man #1’s card is
black, then his is white. This is the axiom of ����� � 2 (1) that is not in ����� � 3 (1). From this step on, we
essentially have the Two-wise-men problem. In step 17 wise man #1 is finally able to deduce that his card
is white.
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7.3.3 Discussion

Several points of contrast can be drawn between this version and the two-wise-men version.
1. Unlike the two-wise-men version, where wise man #1 needed only to know about a single rule of

inference used by wise man #2, in this version wise man #1 needs to know several rules used by wise
man #2: modus ponens, extended modus ponens, and the contra-positive of modus ponens. Because
wise man #1 reasons within first-order logic, these three rules required the use of six axioms.

2. In the three-wise-men version, unlike in the two-wise-men version, it is not sufficient for wise man
#1 to know that wise man #2 has certain beliefs at step 1. Wise man #1 must know that wise man #2
always holds these beliefs.

3. What wise man #2 needs to know about wise man #3 is analogous to what wise man #1 needed to
know about wise man #2 in the two-wise-men version. So, for instance, wise man #2 must know that
wise man #3 uses the rule of modus ponens (and this is the only rule of wise man #3’s about which
wise man #2 must know). Also wise man #2 needs only to know that wise man #3 has certain beliefs
at step 1.

Again, as in the two-wise-men version, we are faced with the fact that the axioms aren’t very general.
In the two-wise-men version we could perhaps get away with it. Here it seems a great deal of work is
taken from the wise men and put into a few simple axioms. The problem is wise man #1 has no tautologies
available to him.

Adding tautologies provides for several complications. If we were to simply endow the agent with all
tautologies (through, for instance, the three axiom schemata used in ��� 0; see Chapter 4), the agent would
then have an infinite number of beliefs at each step. As we have previously discussed, this is something we
do not want. The agent can negatively introspect exactly because he has only a finite number of beliefs at
each step. We are not willing to give this up. We could ‘‘feed in’’ tautologies the way we did in ��� 0 (again
see Chapter 4), but this would give us an exceptionally large number of beliefs at each step. Although
this would work, the idea is to keep the number of beliefs at any given step to a minimum. Feeding in
tautologies, together with some mechanism for keeping the belief-set small, would be a very reasonable
solution. (See the discussion on relevance in Chapter 8.)

Another possible solution to the tautology problem is the use of resolution. If all wffs were put into
clause form, and then, instead of modus ponens, the agent were to use the resolution principle, it seems that
tautologies may not be needed. This idea, although quite promising, has not been investigated in any detail
by the author.

Many formulations of the Three-wise-men problem have involved the use of common knowledge
or common belief (see [Kon84] and [KL87] in particular). For instance, a possible axiom might be
� ( � 1 � � 2 � � 3): it is common knowledge that at least one card is white. I found adding the common
knowledge concept introduced unnecessary complications. This was to a large degree due to the fact that
I have modelled the reasoning from wise man #1’s point of view, rather than using a meta-language that
describes the reasoning of all three (as [Kon84, KL87] have both done). I feel that this is more in the
spirit of step-logics, where the idea is to allow the reasoner itself enough power (with no outside ‘‘oracle’’
intervention) to solve the problem. Thus we model the agent directly, rather than using a meta-theory as a
model.

7.3.4 Implementation of ��� 7( ������� 3 	

���
 � 3)

��� 7( ������� 2 ������� � 2 ) has been implemented on an IBM PC-AT using Arity Prolog. The example took
3 3

4 hours to run on an IBM PC-AT. (It took about 15 minutes on a VAX 11-785.) At step 17,the step in
which the wise man #1 is finally able to prove that his spot is white, there are a total of 259 wffs proven.2

An example run can be found in Appendix C. The code used to implement this solution can be found in
Appendix D.

2This could be drastically reduced if we were to employ some sort of relevance mechanism. See Chapter 8 for a discussion of this.
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7.4 Summary

In this chapter we defined ��� 7( ����� � 2 � � ��� � 2 ) and ��� 7( ����� � 3 � � ��� � 3 ) and showed that they were
suitable theories for modelling the Two-wise-men and the Three-wise-men problems, respectively. The
Two-wise-men problem was tackled to help us understand what was needed to solve the Three-wise-men
problem. Both problems were modelled from wise man #1’s point of view. ����� � 2 ( ����� � 3 ) represents
the information that wise man #1 needs to know in order to solve the problem.
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This chapter summarizes the work in this thesis and discusses several weaknesses with the current
formulation of step-logics. Several areas for further research are suggested.

8.1 Summary

The formulation of step-logics demonstrates that a formal treatment of commonsense reasoning situated
in time not only is possible, but can remain largely deductive in nature. Negative introspection becomes
computationally tractable, while forcing a time delay between knowledge and self-knowledge. See
Section 6.3 for a discussion of why this time delay is necessary.

Unlike traditional logic, step-logic can tolerate contradictions. A chief drawback of more traditional
logics is what we call the swamping problem: from a contradiction all wffs come to be theorems.1 In
step-logic, however, it is not at all critical whether a contradiction is instantly resolved. Inferences are
drawn step-by-step, and hence the possible spread of invalid conclusions based on a contradiction also
occurs only step-by-step. This makes it possible to effectively control the spread. This is illustrated with a
simple example of default reasoning (see Chapter 6).

We have formalized a form of introspection relevant to default reasoning, which occurs in real-time.
The introspective rule introduced demonstrates that it is possible to have real-time self-reference affecting
the very course of deduction itself.

We have presented both formal solutions and computer implementations of the Brother problem and
the Three-wise-men problem (see Chapters 6 and 7, respectively).

8.2 Discussion

We have illustrated that step-logic provides a formalism in which contradictions can arise and be
subsequently resolved. With the current mechanisms, however, only very special types of contradictions
can be resolved. We saw in the Brother problem (Chapter 6) that the reasoner could infer a belief � based
on the fact that he did not believe its negation. Later, however, through a sequence of inferences, he may
come to believe � � . The contradiction would be noted, causing neither � nor � � to be inherited to the next
step. The only way � or � � would again enter into his belief set would be through a deduction involving
any rule other than the rule of inheritance. In the Brother problem we saw that the justification for � still
existed, so the agent was able to re-deduce � . � � , on the other hand, which was inferred based on the lack
of � , could no longer be deduced. Thus the contradiction was resolved.

This simple mechanism of merely not inheriting the two contradictory beliefs works well in this
situation. But what happens when we are dealing with typicalities, such as the fact that birds typically fly?
If we formulate this problem using the following axiom:

(� � )( � � ��� ( � ) � ����� (
�
) � � � (

� �
1 � ��� 
 � � � ( � ))) � � 
 � � � ( � ) �

then we have an analogous situation to the Brother problem, and all works well. See Figure 8.1 for an
example. In step 3 both � 
 � � � ( � ) and ����
 � �
� ( � ) have been deduced, but by step 5 the contradiction has

1This is not a problem in implementations of standard logics, however, since the theorems of the logic are not all drawn
instantaneously.
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Let the inference-function be . �10 � (see Figure 5.1, page 20), and let
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We then have the following sequence of deductions:
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Note that at step 5 
 ��� ����� (� ) has been re-deduced, but ��� ����� (� ) has not.

Figure 8.1: Bird example in which contradiction handling works
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been resolved in favor of ��� 
 � � � ( � ); that is, ��
 � �
� ( � ) is no longer a theorem, but ��� 
 � � � ( � ) is. If, however,
we wish instead to use the simpler axiom,

(� � )( � � ��� ( � ) � � 
 � � � ( � )) �
the contradiction handling mechanism allows the contradiction to persist. See Figure 8.2. Obviously a more

Let the inference-function be . �10 � (see Figure 5.1, page 20), and let

���;� (
�
) =

������� ������

��� ��
�
�5,���� �
,

(� ) �
(��� )(�

�5,���� �A,
( � ) � 
 �
���

( � )) �
(��� )(�

�5,���� �A,
( � ) � 
 ��� ����� ( � )) �

(��� )(

 �A���

( � ) �B��� ����� ( � ))

� ��
�� if

�
= 1

� otherwise

We then have the following sequence of deductions:

0 : �
1 : ����� (1) ���

�5,���� �
,
( � ) �

(��� )(�
� ,���� �
,

( � ) � 
 �A���
( � )) �

(��� )(�
� ,���� �
,

( � ) � 
 �C� �D��� ( � )) �
(��� )(


 �
���
( � ) ����� ����� ( � ))

2 : 35353 � ����� (2) � �
�5,���� �
,

( � ) �
(��� )(�

� ,���� �
,
( � ) � 
 �A���

( � )) �
(��� )(�

� ,���� �
,
( � ) � 
 �C� �D��� ( � )) �

(��� )(

 �
���

( � ) ����� ����� ( � ))
 �
���
( � ) � 
 ��� ����� (� )

3 : 35353 � ����� (3) � �
�5,���� �
,

( � ) �
(��� )(�

� ,���� �
,
( � ) � 
 �A���

( � )) �
(��� )(�

� ,���� �
,
( � ) � 
 �C� �D��� ( � )) �

(��� )(

 �
���

( � ) ����� ����� ( � ))
 �
���
( � ) � 
 ��� ����� (� ) �4��� ����� (� )

4 : 35353 � ����� (4) � �
�5,���� �
,

( � ) �
(��� )(�

� ,���� �
,
( � ) � 
 �A���

( � )) �
(��� )(�

� ,���� �
,
( � ) � 
 �C� �D��� ( � )) �

(��� )(

 �
���

( � ) ����� ����� ( � ))
 �
���
( � ) � 
 ��� ����� (� ) �4��� ����� (� ) �	� �

, � � � (3 � �C� �D��� ( � ) � 
 ��� ����� (� ))

5 : 35353 � ����� (5) � �
�5,���� �
,

( � ) �
(��� )(�

� ,���� �
,
( � ) � 
 �A���

( � )) �
(��� )(�

� ,���� �
,
( � ) � 
 �C� �D��� ( � )) �

(��� )(

 �
���

( � ) ����� ����� ( � ))
 �
���
( � ) �
� �

, � � � (3 � ��� ����� (� ) � 
 ��� ����� ( � )) � � �
, � � � (4 � ��� ����� (� ) � 
 ��� ����� ( � )) �


 ��� ����� (� ) �4��� ����� (� )

Note that at step 5 both 
 ��� ����� (� ) and ��� ����� (� ) have been re-deduced.

Figure 8.2: Bird example in which contradiction handling does not work

sophisticated contradiction handling mechanism is needed.
This formulation of the bird problem points out a very important problem with the current method for

handling contradictions. Suppose (as in the bird problem) that � and � � are deducible from other beliefs
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� 1 � � � � � � � (without the use of the introspective rule, so that earlier steps contain indirect contradictions).
It is then not enough to merely block the inheritance of � and � � ; rather the roots of the contradiction,
� 1 � � � � � � � , must be investigated in order to unwind the contradiction.

Related to this is the problem of not inheriting the consequents of a contradictory belief. Although the
swamping problem is much less serious in step-logic than in final-tray-like logics (since invalid conclusions
spread only a step at a time), the problem is not completely eliminated. Since the agent can continue
reasoning step-by-step even if a contradiction exists, new conclusions based on the contradictory beliefs
may be made. These new (invalid) conclusions may then be the basis for further deductions. It is this
proliferation of invalid conclusions that needs to be curtailed. Currently the contradictory beliefs themselves
are the only beliefs which are retracted. A mechanism similar to that of [Doy82] and [deK86a], put into
a real-time framework, may be appropriate for handling both the consequents and the antecedents of the
contradictory beliefs.

One of the difficulties we encountered in our efforts to represent real-time reasoning involved the
concept of ‘‘now.’’ The approach we found most useful for the Brother problem is the one given in
Rules 1 and 7, coupled with Rules 3 and 4 for modus ponens (see Figure 5.1 on page 20), where �����
is a predicate symbol with special treatment regarding inheritance. There are, however, variations on this
example where this treatment is not completely satisfactory. In particular, a difficulty can arise when
there is a detachment of a ‘‘ ����� (� )’’ sub-formula from the rest of the formula, producing what we call a
‘‘dangling time-parameter.’’

As an example, consider what would happen in the scenario in Figure 6.3 (page 25) if, instead of
Axiom 1 (page 23), we had used the following:

Axiom 2 ( � � )[ � ��� ( � ) � ( � � ( � � 1 � � ) � � � )],

We would then get an intermediate conclusion at step
�

+ 2, namely,

� � (
� � � ) � � � � (8.1)

The problem is that (8.1) inherits to future steps, even though the intended significance of
�

in (8.1) was
that it was the current time-step (i.e., linked to ����� (

�
)) rather than any particular fixed step; by step

�
+ 2,

the term
�

has lost its tie to the wff � ��� (
�
), and so ‘‘dangles’’ inappropriately. Modus ponens can then

be used with (8.1) to conclude � � at any step after
�

+ 2 in which � � (
� � � ) appears. Since we do have

� � (
� � � ) at step

�
+ 1 and all subsequent steps (inherited via Rule 7), the conclusion � � is re-deduced

from step � + 3 on, despite the contradiction resolution mechanism.
This emphasizes that � ’s merely not being known some time ago is an insufficient reason to conclude

� � . That is, if we have deduced � � from � � ( � � � ) at step � + 2, but later (or in the meantime) we conclude
� , we no longer want to be able to deduce � � . Any satisfactory treatment, then, should refer to the fact
that the agent does not know � at the current time step, before autoepistemically deducing � � .

The particular formulation of the Brother problem that we presented in Chapter 6 satisfies this condition
due to the special form of the autoepistemic axiom (Axiom 1). A similar, but even safer, approach is that
of employing a special purpose inference rule (instead of the autoepistemic axiom) such as:

� ��� (
�
) � � � (

� �
1 � � )

� � (8.2)

However, we prefer a treatment that allows the agent to explicitly represent such a train of deduction, as in
Axiom 1, for then the agent also has the possibility of reasoning about this very process of reasoning. The
fact that the alternate version (Axiom 2) above is not satisfactory suggests that dangling time-parameters
be avoided in a more general (less syntax-dependent) way.
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8.3 Future Directions

There is still much to be done with step-logics. In Section 8.2 we discussed the need for more general
contradiction-handling mechanisms. We also pointed out the need to treat dangling time-parameters in a
less syntax-dependent way. There are many other areas for further research.

As mentionned earlier, we would like to make broad use of a retraction mechanism to keep the number
of beliefs at any given step to a reasonable size. One of the crucial features of step-logic is the finiteness of
the belief-set at any given step. But when this set becomes overwhelmingly large (which seems to happen
rather quickly in the step-logics we have investigated), although it is still finite, it is no longer a cognitively
plausible model.

We can think of retraction in terms of lack of inheritance. Introducing a notion of relevance along the
lines pursued in [DMP86a], where a computational model of memory was proposed, would help in this
regard. We envision a given step as being a sort of short-term memory (STM) as in [DMP86a], where
only a very small number of beliefs are held at any given time. This would be the working set of beliefs.
This requires the use of a notion of relevance: those beliefs relevant to the current task at hand would be
retained; all others would not. This of course would require a mechanism for retrieving beliefs which later
do become relevant---it would no longer be sufficient to merely inherit beliefs from one step to the next.
Step-logics as defined are sufficiently general to allow for this sort of change.

Having such a mechanism in place would help to make the Three-wise-men model more plausible:
tautologies could be fed in, with those that are relevant being inherited, and those that are not being retracted.
With the introduction of tautologies we could then make our three-wise-men axioms more general, and
hence more intuitively appealing.

The current formulation of step-logic is not sufficient to handle the Little Nell problem discussed in
Section 2.3. Although the theory allows the agent to recognize that its reasoning takes time, there currently
is no mechanism in place to estimate how long it will take to solve a particular problem. This involves
reasoning about actions and plans. Suitable axioms need to be developed to handle this.

Any new theory is better understood with an appropriate associated semantics. In Section 3.2 we defined
the notion of a step-model, and with it were able to prove several important theorems: every step-logic is
sound with respect to step-models; and a step-logic that has an associated step-model is step-wise consistent
(at each step, the set of beliefs is consistent). We see then that our notion of step-model was sufficient
to show that certain step-logics are consistent. But, since step-logics are supposed to be able to model
the reasoning of a fallible agent, we find that many interesting step-logics are in fact inconsistent. The
current formulation of step-models must be generalized to provide an appropriate semantics for these more
interesting inconsistent theories.

It appears that any step-logic appropriate for broad commonsense reasoning should be self-stabilizing,
where, after a period of time, the steps would become and remain consistent. The idea is that, although the
step-logic is meant to model a fallible agent, the agent should not be continually on the trail of emerging
contradictions. Of course in the case of a particularly unfriendly environment which has an infinite supply
of new contradictions to current beliefs, the logic would not self-stabilize.

Also interesting to consider is the following. If the course of reasoning can be altered (by retraction,
etc.), then why not also the rules of reasoning? That is, learning based on past experiences ought to
allow the system to change its own set of rules, so that over time it could become more adapted to its
environment. This would then come that much closer to formalizing the ‘‘computer individual’’ postulated
by Nilsson (see [Nil83]), where the system would have a constantly changing model of the world, learning
and benefiting from its experiences.
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� � � � � � � ��� � ��� � � �!� � 
 � ��� � ���
�

This appendix contains the proofs of the results found in Section 4.2.2. The major result is that of analytic
completeness in � � 0 , i.e., for any given time

�
, and for any given wff � in a supposed reasoning agent’s

language, � � 0 can prove either that the agent knows (has proved or otherwise determined) � at
�
, or that

the agent has not done so. Thus the agent’s reasoning over time is completely characterized, in the sense
that we know what it has and has not established at each moment.

A.1 The Workings

The reasoning agent’s formalism is denoted by ��� 0. The symbols of ��� 0 are � � � , and the propositional
letters, � 1 � � 2 � � 3 � � � The set of wffs, � ( ��� 0), is defined recursively as follows,

1. All propositional letters are wffs.
2. If � and � are wffs, then so are ( � � ) and ( ��� � ).
3. An expression is a wff only if it can be built up using (1) and/or (2).

The axioms of ��� 0 are fed in step-by-step, and the only rule of inference is modus ponens. We continue
our convention of using Greek letters to stand for wffs in the agent’s language.��� 0 (i.e., the meta-theory) models such a propositional reasoning agent. To help differentiate ��� 0 and
��� 0 , we use ‘‘implies’’ and ‘‘not’’ as function symbols of ��� 0 to designate implication and negation,
respectively, of the agent’s wffs. ��� 0 is a first order theory with equality, with the rules of modus ponens
and generalization. Frequent use is made of the Deduction Theorem. We follow the treatment of [Men87].

A.2 Axioms of ��� 0

The axioms are those listed in Section 4.2.1.

A.3 Analytic Completeness

A.3.1 Preliminary Lemmas

Before presenting the proof of analytic completeness, we first give the following lemmas and their proofs.

Lemma A.1 (Newborn Lemma) ��� 0 � ( � � )( �
�

(0 � � )).
*The agent initially can prove nothing.*

Proof: By THM,
��� 0 � ( � � )[ � (0 � � ) � [ � � ��� ( � � 0) � (

� � )( ��� )(
� � )( � (� � � ) � � (

� � � F ��
 � �
� (� � � )) � � � 0 �
� � 0)]].

By TABULARASA, ��� 0 � ( � � ) � (
� � )( ��� )(

� � )(
�

(� � � ) �
�

(
� � � F ��
 � �
� (� � � )) � � � 0 �

� � 0).
Therefore, ��� 0 � (� � )[

�
(0 � � ) � � � ��� ( � � 0)].

And, by ALP, ��� 0 � ( � � )[
�

(0 � � ) � [ 
�� ( � ) ��
 ( � ) � 0 � � ( � ) � 0]].
Now, by P4, ��� 0 � ( � � ) � (� ( � ) � 0) �
Hence, ��� 0 � (� � ) � [ 
�� ( � ) ��
 ( � ) � 0 � � ( � ) � 0].
And we conclude, ��� 0 � (� � )( �

�
(0 � � )). �

44



Lemma A.2 (Monotonicity Lemma) ��� 0 � ( � �
)( � � )[

�
(

� � � ) � �
(

�
+ 1 � � )].

*Once a belief is held, it remains.*

Proof: Let
�

= � � 0 + � � (
� � � ) � .

Then, by THM, ALP, and MP,
� �

( 
�� ( � ) ��
 ( � ) � � � � ( � ) � �
) �

(
� � )( ��� )(

� � )(
�

(� � � ) � � (
� � � F � 
 � �
� (� � � )) � � � � �

� � �
).

Now,
� � � � (

�
+ 1) [AXIOM: ��� 0 � � � � , for

� � � , � � � � � ].
Also,

� �
( � � )(

� � � � � � (
�

+ 1)), for any
� � �

[axiom of ��� 0].

Thus,
� �

[ ( 
 � ( � ) ��
 ( � ) � � ��� ( � ) � �
) �

(
� � )( ��� )(

� � )(
�

(� � � ) � � (
� � � F���
 � �
� (� � � )) � � � � �

� � �
)] �

[( 
 � ( � ) ��
 ( � ) � (
�

+ 1) ��� ( � ) � (
�

+ 1)) �
(
� � )( ��� )(

� � )(
�

(� � � ) �
�

(
� � � F���
 � �
� (� � � )) � � � (

�
+ 1) �

� � (
�

+ 1))].

Then, by modus ponens,
� �

( 
�� ( � ) ��
 ( � ) � (
�

+ 1) ��� ( � ) � (
�

+ 1)) �
(
� � )( ��� )(

� � )(
�

(� � � ) � � (
� � � F � 
 � �
� (� � � )) � � � (

�
+ 1) �

� � (
�

+ 1)).

By THM, ALP, and MP, we then have,
� ���

(
�

+ 1 � � ).
Then, by the Deduction theorem, ��� 0 ��� (

� � � ) � �
(

�
+ 1 � � ).

And, by generalization, � � 0 � (� �
)(� � )[

�
(

� � � ) � �
(

�
+ 1 � � )]. �

Lemma A.3 ��� 0 � (� � )( �
�

(1 � � )).
*The agent knows nothing at time step 1.*

Proof: By THM and MP,
��� 0 � ( � � )[

�
(1 � � ) � [ � � ��� ( � � 1) � (

� � )( ��� )(
� � )(

�
(� � � ) � � (

� � � F ��
 � �
� (� � � )) � � � 1 �
� � 1)]].

But by Lemma A.1 and by TABULARASA,
��� 0 � ( � � ) � (

� � )( ��� )(
� � )(

�
(� � � ) �

�
(
� � � F � 
 � � � (� � � )) � � � 1 �

� � 1).
Hence, ��� 0 � (� � )[ � (1 � � ) � � � ��� ( � � 1)].
And, by ALP, ��� 0 � ( � � )[

�
(1 � � ) � [ 
�� ( � ) ��
 ( � ) � 1 � � ( � ) � 1]].

Now, by Lemma A.4 (below), � � 0 � (� � ) � [ 
 � ( � ) ��
 ( � ) � 1].
Hence, ��� 0 � (� � ) � [ 
�� ( � ) ��
 ( � ) � 1 � � ( � ) � 1].
Therefore, ��� 0 � (� � )( � � (1 � � )). �

Lemma A.4 ��� 0 � (� � )[ 
 � ( � ) � 
 ( � )



2].

Proof: Let
�

= � � 0 + � 
�� ( � ) � .
Then, by Lemma A.5 (below),

� �
(
� � )(
� � )(
� �

)( � =
� F���
 � �
� (� � � F � 
 � � � ( � � � ))).

Now, since,
��� 0 � ( � � )( � � )( � � )(� � )[ � =

� F���
 � � � (� � � F ��
 � �
� (� � � )) 
	�
(
���

)[ � =
� F���
 � �
� (� � � ) � � =

� F���
 � �
� ( � � � )]],
we have,

� �
(
� � )(
� � )(
���

)(
���

)[ � =
� F���
 � � � (� � � ) � � =

� F���
 � �
� ( � � � )].
Now, by LN3,

� �
( � � )( � � )(� � )[ � =

� F ��
 � �
� (� � � ) � 
 ( � ) = 
 (� ) + 
 ( � ) + 1].
Hence,

� �
(
� � )(
� � )(
���

)(
���

)[ 
 ( � ) = 
 (� ) + 
 ( � ) + 1) ��
 ( � ) = 
 ( � ) + 
 ( � ) + 1].
That is,

� �
(
� � )(
� � )(
���

)(
���

)[ 
 ( � ) = 
 (� ) + 
 (� ) + 
 ( � ) + 2].
Then, by LN4,

� � 
 ( � ) 
 2.
Hence, by the Deduction theorem, � � 0 � 
�� ( � ) � 
 ( � )



2.

And by generalization, we have, � � 0 � (� � )[ 
�� ( � ) � 
 ( � )



2]. �

45



Lemma A.5 ��� 0 � (� � )[ 
 � ( � ) � (
� � )(
� � )(
���

)( � =
� F���
 � �
� (� � � F � 
 � � � ( � � � )))].

Proof:

By AX, ��� 0 � (� � )[ 
�� ( � ) 
	�
[(
� � )(
� � )( � =

� F � 
 � �
� (� � � F���
 � �
� (� � � ))) �
(
� � )(
� � )( � =

� F � 
 � � � ( � F � 
 � �
� ( � � � (� ) � � � � (� )) �� F���
 � �
� ( � F���
 � � � ( � � � (� ) � � ) � � )) �
(
� � )(
� � )(
���

)( � =
� F���
 � � � ( � F � 
 � � � (� � � F � 
 � � � ( � � � )) �� F���
 � �
� ( � F���
 � � � (� � � ) �� F���
 � � � (� � � )))]].

Now, since, ��� 0 � (� � )[(
� � )(
� � )( � =

� F���
 � � � (� � � F � 
 � � � (� � � ))) 
	�
(
� � )(
� � )(
� �

)( � =
� F � 
 � �
� (� � � F���
 � � � (� � � )) � � =

�
)]

and � � 0 � ( � � )[(
� � )(
� � )( � =

� F���
 � �
� ( � F���
 � �
� ( � � � ( � ) � � � � (� )) �� F���
 � � � ( � F � 
 � � � ( � � � (� ) � � ) � � ))) 
	�
(
� � )(
� � )(
���

)(
���

)( � =
� F � 
 � �
� ( � � � F � 
 � � � ( � � � )) ��

=
� F � 
 � �
� ( � � � ( � ) � � � � (� )) �

�
=

� F � 
 � �
� ( � � � ( � ) � � ))]

and � � 0 � ( � � )[(
� � )(
� � )(
���

)( � =
� F ��
 � �
� ( � F ��
 � �
� (� � � F���
 � �
� (� � � )) �� F ��
 � �
� ( � F���
 � �
� (� � � ) �� F � 
 � � � (� � � ))) 
	�

(
� � )(
� � )(
���

)(
���

)(
���

)(
���

)( � =
� F���
 � �
� ( � � � F���
 � �
� ( � � � )) �

�
=

� F���
 � �
� (� � � F � 
 � � � ( � � � )) ��
=

� F���
 � � � (� � � ) ��
=

� F ��
 � �
� (� � � ))],
we have, ��� 0 � ( � � )[ 
 � ( � ) 
	�

[(
� � )(
� � )(
� �

)( � =
� F���
 � � � (� � � F � 
 � �
� (� � � )) � � =

�
) �

(
� � )(
� � )(
���

)(
���

)( � =
� F���
 � � � ( � � � F���
 � � � ( � � � )) ��

=
� F���
 � � � ( � � � (� ) � � � � (� )) �

�
=

� F���
 � � � ( � � � (� ) � � )) �
(
� � )(
� � )(
���

)(
���

)(
���

)(
���

)
( � =

� F � 
 � � � ( � � � F � 
 � � � ( � � � )) ��
= � F���
 � � � (� � � F � 
 � �
� (� � � )) ��
= � F � 
 � � � (� � � ) ��
= � F���
 � �
� (� � � ))]].

Thus, � � 0 � ( � � )[ 
 � ( � ) � (
� � )(
� � )(
���

)( � = � F���
 � � � (� � � F � 
 � �
� (� � � )))]. �

Lemma A.6 (Inequality Lemma) If � and � are distinct wffs
� � ( ��� 0), then

��� 0 � �
�
= � .

Proof: By strong induction on the number of connectives in � .
Base case: Let � and � be distinct wffs, and let the number of connectives in � be 0, i.e., � is a
propositional letter.
Suppose � has index

�
(i.e., � = � � ).

Case a: � = � � , for some � � � � � �
=

�
.

By EQ1, ��� 0 � �
�
= � .

Case b: � = � � � (� ), for some � � � ( ��� 0).
By EQ3, ��� 0 � �

�
= � .
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Case c: � =
� F���
 � �
� ( � � � ), for some � � � � � ( ��� 0).

By EQ2, ��� 0 � �
�
= � .

Assume ��� 0 � �
�
= � , for all distinct � � � � � ( ��� 0), where � has fewer than

�
connectives,

� � 0.
To show true for � with

�
connectives.

Case 1: � = � � � (� ), for some � � � ( ��� 0).

Case 1a: � = � � , for some
� � �

.
By EQ3, ��� 0 � �

�
= � .

Case 1b: � = � � � (
�
), for some

� � � ( � � 0).
Note that � and

�
must be distinct.

Since � has
�

connectives, � must have
� �

1 connectives.
Hence, by the inductive hypothesis, ��� 0 � � �

=
�
.

Then, by EQ6, ��� 0 � � � � (� )
�
= � � � (

�
).

That is, ��� 0 � �
�
= � .

Case 1c: � =
� F � 
 � �
� ( � � � ), for some

� � � � � ( ��� 0).
By EQ4, ��� 0 � �

�
= � .

Case 2: � = � F���
 � � � (� � � ), for some � � � � � ( ��� 0).

Case 2a: � = � � , for some
� � �

.
By EQ2, ��� 0 � �

�
= � .

Case 2b: � = � � � (
�
), for some

� � � ( ��� 0).
By EQ4, ��� 0 � �

�
= � .

Case 2c: � = � F � 
 � �
� ( � � � ), for some
� � � � � ( ��� 0).

Note that either � �
=
�

or
� �

=
�
.

Since � has
�

connectives, � and
�

each must have fewer than k connectives.
Hence, by the inductive hypothesis, ��� 0 � � �

=
�

or ��� 0 � � �
=
�
.

In either case we then have, by EQ5, ��� 0 � � F � 
 � � � (� � � )
�
=

� F���
 � � � ( � � � ).
That is, ��� 0 � �

�
= � .

Therefore, for all distinct � � � � � ( � � 0), ��� 0 � �
�
= � . �

Lemma A.7 (Boundedness Lemma) Let
��� �

,
��


2. Then
�

� 1 � � � � � � � � ( ��� 0), such that

� � 0 � (� � )[
�

(
� � � ) 
	� ( � = � 1 � � � � � � = � � � )] �

Proof: By strong induction on
�
.

Base case:
�

= 2.

By THM, � � 0 � ( � � )(
�

(2 � � ) 
	� [ � � ��� ( � � 2) � L � ( � � 2)]).

Then, by MP, we have,
��� 0 � (� � )(

�
(2 � � ) 
	�

[ � � ��� ( � � 2) � (
� � )( ��� )(

� � )
(
�

(� � � ) � � (
� � � F���
 � �
� (� � � )) � � � 2 �

� � 2)]).

Now, by Lemma A.1, Lemma A.3, and TABULARASA,
��� 0 � (� � ) � (

� � )( ��� )(
� � )(

�
(� � � ) �

�
(
� � � F � 
 � �
� (� � � )) � � � 2 �

� � 2).
Hence, ��� 0 � ( � � )(

�
(2 � � ) 
	� � � ��� ( � � 2)).
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Then, by Lemma A.8 (below), we have,
��� 0 � (� � )(

�
(2 � � ) 
	� [ � =

� F � 
 � � � ( � 0 � � F���
 � �
� ( � 0 � � 0)) �
� =

� F ��
 � �
� ( � 0 � � F���
 � �
� ( � 1 � � 0)) �
� =

� F ��
 � �
� ( � 1 � � F���
 � �
� ( � 0 � � 1)) �
� =

� F ��
 � �
� ( � 1 � � F���
 � �
� ( � 1 � � 1))]).

Assume true for
� � �

,
� � 2.

To show true for
�

=
�

, i.e.
�

� 1 � � � � ���
� � ( ��� 0), such that

��� 0 � ( � � )[
�

(
� � � ) 
	� ( � = � 1 � � � � � � = � ��� )].

By MP,
��� 0 � ( � � )[ L � ( � � � ) 
	� (

� � )( � 
 )( � � )(
�

( � � � ) �
�

( 
 � � F���
 � �
� (� � � )) � � � �
��
 � �

)].
By Lemma A.2, this gives us,
��� 0 � ( � � )[ L � ( � � � ) 
	� (

� � )(
�

(
� �

1 � � ) �
�

(
� �

1 � � F ��
 � �
� (� � � )))].

Then, by the inductive hypothesis,
��� 0 � ( � � )[ L � ( � � � ) 
	� (

� � )[(� = � 1 � � � � � � = � � ���
1 ) �

(
� F � 
 � � � (� � � ) = � 1 � � � � �� F � 
 � �
� (� � � ) = � �����

1 )]].

But this is true iff,
��� 0 � ( � � )[ L � ( � � � ) 
	�

(
� F � 
 � �
� (� 1 � � ) = � 1 � � � � � � F � 
 � �
� (� �����

1 � � ) = � 1 �� F ��
 � �
� (� 1 � � ) = � 2 � � � � � � F � 
 � �
� (� � ���
1 � � ) = � 2 �� � � �

� F ��
 � �
� (� 1 � � ) = � � ���
1 ��� � � � � F ��
 � �
� (� � ���

1 � � ) = � � ���
1 )].

Now, each of the disjuncts in the previous disjunction is of the form
� F���
 � �
� (� � � � ) = � � .
Furthermore, if � � is not of the form

� F ��
 � �
� (� 1 � � 2), for some � 1 � � 2
� � ( � � 0),

then by Lemma A.6, � � 0 � � F ��
 � �
� (� � � � )
�
= � � .

Hence we are left with a disjunction where each disjunct is of the form,
� F���
 � �
� ( � 1 � � ) = � F���
 � � � (� 2 � � 3), for some � 1 � � 2 � � 3

� � ( ��� 0).
And, by EQ5, each of the disjuncts is equivalent to something of the form
(� 1 = � 2 � � = � 3), for some � 1 � � 2 � � 3

� � ( � � 0).
The Equality Axiom and Lemma A.6 assure us that � � 0 can prove the truth or falsity of each of these
disjuncts.
Hence we are left with,
��� 0 � ( � � )[ L � ( � � � ) 
	� ( � = � 1 ��� � � � � = � � )], for some � 1 � � � � � � � � � ( ��� 0).
Now, by FEED, � � 0 � ( � � )[ � � ��� ( � � � ) 
	� ( � = 	 1 � � = 	 2 � � � � � � = 	�
 � )].
Hence, by THM, � � 0 � (� � )[

�
(
� � � ) 
	� ( � = � 1 � � � � � � = � ��� )],

where each � � is either a 	�� or a � � . �
Lemma A.8 ��� 0 � (� � )[ � � ��� ( � � 2) 
	� ( � = � F���
 � �
� ( � 0 � � F � 
 � �
� ( � 0 � � 0)) �

� = � F � 
 � � � ( � 0 � � F � 
 � �
� ( � 1 � � 0)) �
� = � F � 
 � � � ( � 1 � � F � 
 � �
� ( � 0 � � 1)) �
� = � F � 
 � � � ( � 1 � � F � 
 � �
� ( � 1 � � 1)))] �

*There are exactly four wffs fed in at time-step 2.*

Proof:

To show ��� 0 � ( � � )[( � =
� F���
 � �
� ( � 0 � � F ��
 � �
� ( � 0 � � 0)) �

� =
� F � 
 � �
� ( � 0 � � F ��
 � �
� ( � 1 � � 0)) �

� =
� F � 
 � �
� ( � 1 � � F ��
 � �
� ( � 0 � � 1)) �

� =
� F � 
 � �
� ( � 1 � � F ��
 � �
� ( � 1 � � 1))) � � � ��� ( � � 2)].
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By LN3, ��� 0 � 
 ( � F���
 � � � ( � 0 � � F � 
 � � � ( � 0 � � 0))) = 
 ( � 0) + 
 ( � F���
 � �
� ( � 0 � � 0)) + 1.
Again by LN3, � � 0 � 
 ( � F���
 � � � ( � 0 � � 0)) = 
 ( � 0) + 
 ( � 0) + 1.
Now, by PL1, � � 0 � � 
 ( � 0).
Hence, by LN1, ��� 0 � 
 ( � 0) = 0.
Therefore, ��� 0 � 
 ( � F � 
 � �
� ( � 0 � � F ��
 � �
� ( � 0 � � 0))) = 2.
By similar arguments, we get,
��� 0 � 
 ( � F ��
 � �
� ( � 0 � � F���
 � �
� ( � 1 � � 0))) = 2.
��� 0 � 
 ( � F ��
 � �
� ( � 1 � � F���
 � �
� ( � 0 � � 1))) = 2.
��� 0 � 
 ( � F ��
 � �
� ( � 1 � � F���
 � �
� ( � 1 � � 1))) = 2.

Hence,
��� 0 � ( � =

� F���
 � �
� ( � 0 � � F���
 � � � ( � 0 � � 0)) � � =
� F � 
 � � � ( � 0 � � F � 
 � � � ( � 1 � � 0)) �

� =
� F���
 � �
� ( � 1 � � F���
 � � � ( � 0 � � 1)) � � =

� F � 
 � � � ( � 1 � � F � 
 � � � ( � 1 � � 1)))
� 
 ( � ) = 2.

By P3, ��� 0 � � (
� F ��
 � �
� ( � 0 � � F � 
 � � � ( � 0 � � 0))) = F � � (� ( � 0) � � (

� F���
 � � � ( � 0 � � 0))).
Again by P3, � � 0 � � (

� F���
 � � � ( � 0 � � 0)) = F � � (� ( � 0) � � ( � 0)).
Now, by P1, � � 0 � � = � 0 � � ( � ) = 0.
That is, � � 0 � � ( � 0) = 0.
Now, by MAX1, ��� 0 � F � � (0 � 0) = 0.
Therefore, ��� 0 � � (

� F � 
 � � � ( � 0 � � F���
 � �
� ( � 0 � � 0))) = 0.
By similar arguments, we get,
��� 0 � � (

� F � 
 � �
� ( � 0 � � F���
 � � � ( � 1 � � 0))) = 1.
��� 0 � � (

� F � 
 � �
� ( � 1 � � F���
 � � � ( � 0 � � 1))) = 1.��� 0 � � ( � F � 
 � �
� ( � 1 � � F���
 � � � ( � 1 � � 1))) = 1.

Hence,
��� 0 � ( � =

� F���
 � �
� ( � 0 � � F���
 � � � ( � 0 � � 0)) � � =
� F � 
 � � � ( � 0 � � F � 
 � � � ( � 1 � � 0)) �

� =
� F���
 � �
� ( � 1 � � F���
 � � � ( � 0 � � 1)) � � =

� F � 
 � � � ( � 1 � � F � 
 � � � ( � 1 � � 1)))
� � ( � ) � 2.

Now,��� 0 � ( � =
� F���
 � �
� ( � 0 � � F���
 � � � ( � 0 � � 0)) � � =

� F � 
 � � � ( � 0 � � F � 
 � � � ( � 1 � � 0)) �
� =

� F���
 � �
� ( � 1 � � F���
 � � � ( � 0 � � 1)) � � =
� F � 
 � � � ( � 1 � � F � 
 � � � ( � 1 � � 1)))

� (
� � )(
� � )( � =

� F ��
 � �
� (� � � F � 
 � � � (� � � ))).

And, by AX, ��� 0 � (
� � )(
� � )( � =

� F � 
 � �
� (� � � F���
 � � � (� � � ))) ��
 � ( � ).

Hence,
��� 0 � ( � =

� F � 
 � �
� ( � 0 � � F ��
 � �
� ( � 0 � � 0)) �
� =

� F � 
 � �
� ( � 0 � � F ��
 � �
� ( � 1 � � 0)) �
� =

� F � 
 � �
� ( � 1 � � F ��
 � �
� ( � 0 � � 1)) �
� =

� F � 
 � �
� ( � 1 � � F ��
 � �
� ( � 1 � � 1))) ��
�� ( � ).

So we have,
��� 0 � ( � = � F���
 � �
� ( � 0 � � F���
 � � � ( � 0 � � 0)) � � = � F � 
 � � � ( � 0 � � F � 
 � � � ( � 1 � � 0)) �

� = � F���
 � �
� ( � 1 � � F���
 � � � ( � 0 � � 1)) � � = � F � 
 � � � ( � 1 � � F � 
 � � � ( � 1 � � 1)))
� ( 
 � ( � ) ��
 ( � ) = 2 ��� ( � ) � 2).

Hence,
��� 0 � ( � =

� F���
 � �
� ( � 0 � � F���
 � � � ( � 0 � � 0)) � � =
� F � 
 � � � ( � 0 � � F � 
 � � � ( � 1 � � 0)) �

� =
� F���
 � �
� ( � 1 � � F���
 � � � ( � 0 � � 1)) � � =

� F � 
 � � � ( � 1 � � F � 
 � � � ( � 1 � � 1)))
� ( 
 � ( � ) ��
 ( � ) � 2 � � ( � ) � 2).
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Then, by ALP, we have,
��� 0 � ( � =

� F���
 � �
� ( � 0 � � F���
 � � � ( � 0 � � 0)) � � =
� F � 
 � � � ( � 0 � � F � 
 � � � ( � 1 � � 0)) �

� =
� F���
 � �
� ( � 1 � � F���
 � � � ( � 0 � � 1)) � � =

� F � 
 � � � ( � 1 � � F � 
 � � � ( � 1 � � 1)))
� � � ��� ( � � 2).

And, by generalization,
��� 0 � (� � )[( � =

� F � 
 � �
� ( � 0 � � F � 
 � � � ( � 0 � � 0)) �
� =

� F���
 � � � ( � 0 � � F � 
 � � � ( � 1 � � 0)) �
� =

� F���
 � � � ( � 1 � � F � 
 � � � ( � 0 � � 1)) �
� =

� F���
 � � � ( � 1 � � F � 
 � � � ( � 1 � � 1))) � � � ��� ( � � 2)].

To show ��� 0 � ( � � )[ � � ��� ( � � 2) � ( � =
� F ��
 � �
� ( � 0 � � F � 
 � � � ( � 0 � � 0)) �

� =
� F���
 � � � ( � 0 � � F � 
 � � � ( � 1 � � 0)) �

� =
� F���
 � � � ( � 1 � � F � 
 � � � ( � 0 � � 1)) �

� =
� F���
 � � � ( � 1 � � F � 
 � � � ( � 1 � � 1)))].

Let
�

= ��� 0 + � � � ��� ( � � 2) � .
Then, by ALP, we have,

� � ( 
�� ( � ) ��
 ( � ) � 2 ��� ( � ) � 2).
And, by Lemma A.4,

� �
( 
 � ( � ) � 
 ( � ) = 2 � � ( � ) � 2).

Then, by Lemma A.9 (below),
� �

(
� � )(
� � )( � =

� F���
 � � � (� � � F ��
 � �
� (� � � ))) ��
 (� ) = 0 � 
 (� ) = 0).
Hence,
� �

� =
� F ��
 � �
� ( � 0 � � F � 
 � �
� ( � 0 � � 0))) ��
 ( � 0) = 0 ��
 ( � 0) = 0, for some new constants � 0 � � 0.

Now, by Lemma A.10 (below),
� � � ( � 0) � 2 � � ( � 0) � 2.

Then, by Lemma A.11 (below),
� � � 0 = � 0 � � 0 = � 1 and

� � � 0 = � 0 � � 0 = � 1.

Therefore,
� �

� =
� F � 
 � �
� ( � 0 � � F ��
 � �
� ( � 0 � � 0)) �

� = � F � 
 � �
� ( � 0 � � F ��
 � �
� ( � 1 � � 0)) �
� = � F � 
 � �
� ( � 1 � � F ��
 � �
� ( � 0 � � 1)) �
� = � F � 
 � �
� ( � 1 � � F ��
 � �
� ( � 1 � � 1)).

Then, by the Deduction theorem,
��� 0 � � � ��� ( � � 2) � ( � = � F � 
 � �
� ( � 0 � � F � 
 � � � ( � 0 � � 0)) �

� = � F���
 � � � ( � 0 � � F � 
 � � � ( � 1 � � 0)) �
� = � F���
 � � � ( � 1 � � F � 
 � � � ( � 0 � � 1)) �
� = � F���
 � � � ( � 1 � � F � 
 � � � ( � 1 � � 1))).

And, by generalization,
��� 0 � (� � )[ � � ��� ( � � 2) � ( � = � F � 
 � � � ( � 0 � � F���
 � �
� ( � 0 � � 0)) �

� =
� F ��
 � �
� ( � 0 � � F���
 � �
� ( � 1 � � 0)) �

� =
� F ��
 � �
� ( � 1 � � F���
 � �
� ( � 0 � � 1)) �

� =
� F ��
 � �
� ( � 1 � � F���
 � �
� ( � 1 � � 1)))].

�

Lemma A.9
��� 0 � (� � )[( 
�� ( � ) ��
 ( � ) = 2) �

(
� � )(
� � )( � =

� F���
 � �
� (� � � F � 
 � �
� ( � � � )) ��
 (� ) = 0 ��
 (� ) = 0)] �
Proof: Let

�
= � � 0 + � 
�� ( � ) � 
 ( � ) = 2 � .
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Then, by AX,
� �

(
� � )(
� � )( � =

� F ��
 � �
� (� � � F � 
 � � � ( � � � ))) �
(
� � )(
� � )( � =

� F ��
 � �
� ( � F���
 � � � ( � � � ( � ) � � � � (� )) �� F � 
 � � � ( � F � 
 � �
� ( � � � (� ) � � ) � � ))) �
(
� � )(
� � )(
���

)( � =
� F � 
 � �
� ( � F ��
 � �
� (� � � F � 
 � � � ( � � � )) �� F���
 � �
� ( � F���
 � � � (� � � ) � � F���
 � �
� (� � � )))).

Case 1:
Suppose

� �
(
� � )(
� � )( � =

� F���
 � � � ( � F � 
 � � � ( � � � (� ) � � � � (� )) �� F���
 � � � ( � F � 
 � � � ( � � � ( � ) � � ) � � ))).

Then, by Lemma A.12 (below),
� � 
 ( � )



7.

But, by hypothesis,
� � 
 ( � ) = 2.

Therefore, it must be that,
� ��

(
� � )(
� � )( � =

� F���
 � � � ( � F � 
 � � � ( � � � ( � ) � � � � (� )) �� F���
 � � � ( � F � 
 � � � ( � � � (� ) � � ) � � ))).

Case 2:
Suppose

� �
(
� � )(
� � )(
���

)( � =
� F���
 � �
� ( � F���
 � � � (� � � F���
 � �
� ( � � � )) �� F ��
 � �
� ( � F���
 � �
� (� � � ) � � F ��
 � � � (� � � )))).

Then, by Lemma A.13 (below),
� � 
 ( � )



6.

But, by hypothesis,
� � 
 ( � ) = 2.

Therefore, it must be that,
� �� (

� � )(
� � )(
���

)( � = � F � 
 � � � ( � F � 
 � �
� (� � � F���
 � � � ( � � � )) �� F ��
 � �
� ( � F���
 � �
� (� � � ) � � F ��
 � � � (� � � )))).

Hence,
� �

(
� � )(
� � )( � =

� F � 
 � � � (� � � F���
 � �
� (� � � ))).
Then,

� �
� =

� F � 
 � � � ( � 0 � � F � 
 � �
� ( � 0 � � 0)), for some new constants � 0 � � 0.
Now, by LN3,

� � 
 ( � F ��
 � �
� ( � 0 � � 0)) = 
 ( � 0) + 
 ( � 0) + 1.
Then, by LN3,

� � 
 ( � ) = 
 ( � 0) + [ 
 ( � 0) + 
 ( � 0) + 1] + 1.
Now, by hypothesis,

� � 
 ( � ) = 2.
Hence,

� � 
 ( � 0) = 0.
And,

� � 
 ( � 0) = 0.
So,

� �
� = � F ��
 � �
� ( � 0 � � F � 
 � � � ( � 0 � � 0)) ��
 ( � 0) = 0 ��
 ( � 0) = 0.

Hence,
� �

(
� � )(
� � )( � =

� F � 
 � � � (� � � F���
 � �
� (� � � )) ��
 (� ) = 0 ��
 ( � ) = 0).

Then, by the Deduction theorem,
��� 0 � ( 
 � ( � ) ��
 ( � ) = 2) �

(
� � )(
� � )( � =

� F ��
 � �
� (� � � F � 
 � � � ( � � � )) ��
 (� ) = 0 ��
 (� ) = 0).

And, by generalization,��� 0 � ( � � )[( 
�� ( � ) ��
 ( � ) = 2) �
(
� � )(
� � )( � =

� F � 
 � �
� (� � � F���
 � � � (� � � )) � 
 (� ) = 0 ��
 ( � ) = 0)].

�

Lemma A.10 ��� 0 � ( � � )( � � )(� � )[(� ( � ) � 2 � � =
� F ��
 � �
� (� � � F � 
 � � � (� � � ))) �

(� (� ) � 2 ��� ( � ) � 2)] �
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Proof: Let
�

= � � 0 + � � =
� F � 
 � � � (� � � F���
 � �
� (� � � )) � � ( � ) � 2 � .

By P3,
� � � ( � ) = F � � (� (� ) � � (

� F���
 � � � ( � � � ))).
Hence,

� � F � � (� (� ) � � (
� F ��
 � �
� ( � � � ))) � 2.

From MAX1 and MAX2, ��� 0 � (� �
)(� � )( � � F � � (

� � � ) � � � F � � (
� � � )).

Hence,
� � � (� ) � 2 and

� � � (
� F ��
 � �
� ( � � � )) � 2.

Then, by P3,
� � F � � (� ( � ) � � (� )) � 2.

And we have,
� � � (� ) � 2 and

� � � ( � ) � 2.
Hence,

� � � (� ) � 2 ��� ( � ) � 2.
Then, by the Deduction theorem,
��� 0 � (� ( � ) � 2 � � =

� F � 
 � �
� (� � � F���
 � �
� (� � � ))) � (� (� ) � 2 ��� (� ) � 2).
Then, by generalization,
��� 0 � ( � � )( � � )( � � )[(� ( � ) � 2 � � =

� F � 
 � � � (� � � F���
 � � � (� � � ))) � (� (� ) � 2 ��� (� ) � 2)]. �

Lemma A.11 ��� 0 � (� � )[(� ( � ) � 2 � 
 ( � ) = 0) � ( � = � 0 � � = � 1)].

Proof: Let
�

= � � 0 + � 
 ( � ) = 0 � .
By LN1,

� � � 
 ( � ).
By P1,

� � � ( � ) = 0 � � = � 0 and
� � � ( � ) = 1 � � = � 1.

Hence,
� �

(� ( � ) = 0 ��� ( � ) = 1) � ( � = � 0 � � = � 1).
And, by P4,

� � � ( � ) � 2 � ( � = � 0 � � = � 1).
Then, by the Deduction theorem, ��� 0 � 
 ( � ) = 0 � [� ( � ) � 2 � ( � = � 0 � � = � 1)].
Hence, ��� 0 � (� ( � ) � 2 ��
 ( � ) = 0) � ( � = � 0 � � = � 1).
And, by generalization, � � 0 � (� � )[(� ( � ) � 2 ��
 ( � ) = 0) � ( � = � 0 � � = � 1)]. �

Lemma A.12 ��� 0 � ( � � )( � � )[ 
 ( � F���
 � �
� ( � F ��
 � �
� ( � � � (� ) � � � � ( � )) �� F���
 � �
� ( � F���
 � � � ( � � � (� ) � � ) � � )))



7] �
Proof:

By LN3,
��� 0 � 
 ( � F ��
 � �
� ( � F ��
 � �
� ( � � � (� ) � � � � ( � )) � � F���
 � �
� ( � F���
 � �
� ( � � � (� ) � � ) � � ))) =


 ( � F ��
 � �
� ( � � � (� ) � � � � ( � ))) + 
 ( � F � 
 � �
� ( � F ��
 � �
� ( � � � (� ) � � ) � � )) + 1.

and,
��� 0 � 
 ( � F���
 � �
� ( � � � (� ) � � � � ( � ))) = 
 ( � � � (� )) + 
 ( � � � ( � )) + 1
and,
��� 0 � 
 ( � F���
 � �
� ( � F���
 � �
� ( � � � (� ) � � ) � � )) = 
 ( � F � 
 � � � ( � � � (� ) � � )) + 
 (� ) + 1
and,��� 0 � 
 ( � F���
 � �
� ( � � � (� ) � � )) = 
 ( � � � (� )) + 
 ( � ) + 1.

Then, by LN2,��� 0 � 
 ( � F ��
 � �
� ( � F ��
 � �
� ( � � � (� ) � � � � ( � )) � � F���
 � �
� ( � F���
 � �
� ( � � � (� ) � � ) � � ))) =
[[ 
 (� ) + 1] + [ 
 ( � ) + 1] + 1] + [[[ 
 (� ) + 1] + 
 ( � ) + 1] + 
 (� ) + 1] + 1.

And, by LN4,
��� 0 � 
 ( � F���
 � �
� ( � F���
 � �
� ( � � � (� ) � � � � ( � )) � � F���
 � � � ( � F � 
 � � � ( � � � (� ) � � ) � � )))



7.

Then, by generalization,
��� 0 � ( � � )( � � )[ 
 ( � F���
 � � � ( � F � 
 � � � ( � � � (� ) � � � � ( � )) �� F���
 � � � ( � F � 
 � � � ( � � � (� ) � � ) � � ))) 
 7].
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�

Lemma A.13
��� 0 � (� � )(� � )(� � )[ 
 ( � F���
 � � � ( � F � 
 � �
� ( � � � F���
 � � � (� � � )) �� F � 
 � �
� ( � F ��
 � �
� ( � � � ) � � F � 
 � �
� ( � � � ))))



6] �

Proof:

By LN3,��� 0 � 
 ( � F ��
 � �
� ( � F ��
 � �
� ( � � � F���
 � � � (� � � )) �� F ��
 � �
� ( � F���
 � �
� ( � � � ) � � F���
 � � � ( � � � )))) =

 ( � F ��
 � �
� ( � � � F � 
 � � � (� � � ))) + 
 ( � F � 
 � �
� ( � F ��
 � �
� ( � � � ) � � F���
 � �
� ( � � � ))) + 1

and,
��� 0 � 
 ( � F���
 � �
� ( � � � F � 
 � �
� (� � � ))) = 
 ( � ) + 
 ( � F � 
 � �
� (� � � )) + 1

and,
��� 0 � 
 ( � F ��
 � �
� ( � F ��
 � �
� ( � � � ) � � F���
 � �
� ( � � � ))) =


 ( � F ��
 � �
� ( � � � )) + 
 ( � F � 
 � �
� ( � � � )) + 1.

Then, by LN3,
��� 0 � 
 ( � F ��
 � �
� ( � F ��
 � �
� ( � � � F���
 � � � (� � � )) �� F ��
 � �
� ( � F���
 � �
� ( � � � ) � � F���
 � � � ( � � � )))) =

[ 
 ( � ) + [ 
 (� ) + 
 ( � ) + 1] + 1]+
[[ 
 ( � ) + 
 (� ) + 1] + [ 
 ( � ) + 
 ( � ) + 1] + 1] + 1.

And, by LN4,
��� 0 � 
 ( � F���
 � �
� ( � F���
 � �
� ( � � � F ��
 � � � (� � � )) �� F � 
 � � � ( � F � 
 � � � ( � � � ) � � F ��
 � �
� ( � � � ))))



6 �

Then, by generalization,
��� 0 � ( � � )( � � )( � � )[ 
 ( � F ��
 � �
� ( � F���
 � �
� ( � � � F � 
 � � � (� � � )) �� F���
 � � � ( � F � 
 � � � ( � � � ) � � F���
 � � � ( � � � )))) 
 6].

�

A.3.2 The Main Theorem

We can now prove the following result.

Theorem A.14 (Analytic Completeness Theorem) For each
��� �

, and for each �
� � ( ��� 0),

either ��� 0 ��� (
� � � ) or ��� 0 � � � (

� � � ) �
* ��� 0 can characterize exactly what has and has not been proved at any given time

�
.*

Proof: By weak induction on � .
Base case: To show, for any �

� � ( ��� 0), � � 0 ��� (0 � � ) or
��� 0 � �

� (0 � � ).

By the Newborn Lemma, � � 0 � ( � � )( �
�

(0 � � )).
Therefore, for any � , we have ��� 0 � � � (0 � � ).

Assume for all �
� � ( ��� 0), either ��� 0 ��� (

� �
1 � � ) or � � 0 � � � (

� �
1 � � ), where

� � 0.
To show for any �

� � ( ��� 0), either � � 0 ��� (
� � � ) or ��� 0 � � � (

� � � ).
Fix � and suppose ��� 0 ����

(
� � � ). To show ��� 0 � � � (

� � � ).
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Suppose ��� 0 ��� (
� �

1 � � ).
Then, by the Monotonicity Lemma, ��� 0 ��� (

� � � ).
� � 
 �

Therefore, ��� 0 ����
(
� �

1 � � ).
Now, by hypothesis, � � 0 ���� (

� � � ).
Hence, by THM, ��� 0 �� � � ��� ( � � � ) � L � ( � � � ).
That is, � � 0 �� � � ��� ( � � � ), and ��� 0 �� L � ( � � � ).
To show, � � 0 � � � � ��� ( � � � ).

Suppose k=1.
By Lemma 3 and THM, ��� 0 � � [ � � ��� ( � � 1) � L � ( � � 1)].
Hence, ��� 0 � � � � ��� ( � � 1).

Suppose
� � 1.

By FEED, ��� 0 � � � ��� ( � � � ) 
	� ( � = 	 1 � � = 	 2 � � � � � � = 	 
 � ).
By the Equality and Inequality Lemmas, ��� 0 can prove the truth or falsity of each of these
disjuncts; hence, ��� 0 can prove the truth or falsity of � � ��� ( � � � ).
But, ��� 0 �� � � ��� ( � � � ).
Therefore, it must be that, � � 0 � � � � ��� ( � � � )

To show � � 0 � � L � ( � � � ).
Since ��� 0 �� L � ( � � � ), by MP,

��� 0 ��
(
� � )( � 
 )( � � )(

�
(� � � ) � � ( 
 � � F ��
 � �
� (� � � )) � � � �

��
 � �
) � (A.1)

And, in particular, ��� 0 ��
(
� � )(

�
(
� �

1 � � ) � � (
� �

1 � � F ��
 � �
� (� � � ))).
Case 1: k=1

By the Newborn Lemma, we have,

��� 0 � � (
� � )(

�
(
� �

1 � � ) � � (
� �

1 � � F � 
 � � � (� � � ))) � (A.2)

Case 2: k=2
By Lemma A.3, we again have equation (A.2).

Case 3:
� � 2

By the Boundedness Lemma,
��� 0 ��

(
� � )[ (� = � 1 � � � � � � = � � ���

1 ) �
(

� F���
 � � � (� � � ) = � 1 ��� � � � � F ��
 � �
� (� � � ) = � � ���
1 )],

where the � 1 � � � � �����
1 are those that are asserted to exist in the lemma.

But this is true iff,
��� 0 �� � F � 
 � � � (� 1 � � ) = � 1 � � � � �� F � 
 � � � (� � ���

1 � � ) = � 1 �� F � 
 � � � (� 1 � � ) = � 2 � � � � �� F � 
 � � � (� �����
1 � � ) = � 2 � � � � �� F � 
 � � � (� 1 � � ) = � �����

1 � � � � �� F � 
 � � � (� �����
1 � � ) = � �����

1 .
That is,
��� 0 �� � F���
 � �
� (� 1 � � ) = � 1 , and
��� 0 �� � F���
 � �
� (� 2 � � ) = � 1 , and � � � and��� 0 �� � F���
 � �
� (� �����

1 � � ) = � �����
1 .

By the Equality Axiom,
��� 0 � � =

�
, if � and

�
are the same;

hence it must be true that,
� F � 
 � � � (� 1 � � )

�
= � 1, and
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� F � 
 � � � (� 2 � � )
�
= � 1, and � � � and

� F � 
 � � � (� � ���
1 � � )

�
= � � ���

1 .
By the Inequality Lemma, then,
��� 0 � � F���
 � �
� (� 1 � � )

�
= � 1 , and��� 0 � � F���
 � �
� (� 2 � � )

�
= � 1 , and � � � and

��� 0 � � F���
 � �
� (� �����
1 � � )

�
= � �����

1 .
Hence,
��� 0 � � (

� F � 
 � � � (� 1 � � ) = � 1 � � � � � � F���
 � �
� (� �����
1 � � ) = � �����

1 ).
Therefore,
��� 0 � � (

� � )[ (� = � 1 � � � � � � = � � ���
1 ) �

(
� F � 
 � � � (� � � ) = � 1 � � � � � � F � 
 � �
� (� � � ) = � � ���

1 )],
Therefore, since � 1 � � � � � � �����

1 are those that are asserted to exist in the Boundedness Lemma,
the lemma gives us equation (A.2).

So, for any value of
� � 0, we arrive at equation (A.2).

Now, since ��� 0 ����
(
� �

1 � � ), by the inductive hypothesis,
��� 0 � � � (

� �
1 � � ).

Hence, by THM, ��� 0 � � [ � � ��� ( � � � � 1) � L � ( � � � � 1)].
Thus, ��� 0 � � L � ( � � � � 1).
Then, by MP and equation (A.2), we have,
��� 0 � � (

� � )( � 
 )( � � )(
�

(� � � ) � � ( 
 � � F ��
 � �
� (� � � )) � � � �
��
 � �

).
And, by MP, ��� 0 � �6L � ( � � � ).

Since both ��� 0 � �6L � ( � � � ) and ��� 0 � � � � ��� ( � � � ),
we have ��� 0 � � [ � � ��� ( � � � ) � L � ( � � � )].
By THM, this gives us, ��� 0 � � � (

� � � ).
So, if ��� 0 �� �

(
� � � ), then ��� 0 � � � (

� � � ).

Thus, for any �
� � ( ��� 0), either ��� 0 ��� (

� � � ) or ��� 0 � � � (
� � � ).

�

A.4 Other results

In this section we prove the theorems appearing in Section 4.2.2 that were not required for the proof of
Analytic Completeness.

Theorem A.15 ��� 0 � ( � � )( � � )[[ ��� � � ( � ) � ����� � ( � F � 
 � �
� ( � � � ))] � ����� � (� )].

Proof: Let
�

= � � 0 + � ����� � ( � ) � ����� � ( � F ��
 � �
� ( � � � )) � .
Then by TAUT1,

� �
( � � )[ ����� � ( � ) � ����� � ( � � � F � 
 � � � ( � � � ))].

And by TFCN1,
� �

(� � )[ ����� � ( � ) � ( ����� � ( � � � ) � � ����� � ( � � � ))].
But, by TAUT1,

� �
( � � )[ ����� � ( � ) � ����� � ( � � � )].

Hence,
� �

(� � )[ ����� � ( � ) � ����� � ( � � � )].
Then, by TAUT1,

� � ����� � (� ).
Hence, by the Deduction theorem, we have,
��� 0 � [ ��� � � ( � ) � ����� � ( � F���
 � �
� ( � � � ))] � ��� � � (� ).
And, by generalization,
��� 0 � ( � � )( � � )[[ ����� � ( � ) � ����� � ( � F ��
 � �
� ( � � � ))] � ����� � (� )]. �

Theorem A.16 For any
��� �

, ��� 0 � (� � )[
�

(
� � � ) � ����� � ( � )].

*The only wffs an agent can prove are those that are tautologies.*
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Proof: By strong induction on
�
.

Base case: To show, ��� 0 � (� � )[
�

(0 � � ) � ����� � ( � )].

By Lemma A.1, � � 0 � (� � )( � � (0 � � )).
Hence, trivially, ��� 0 � ( � � )[

�
(0 � � ) � ����� � ( � )].

Assume for
� � �

,
� � 0, ��� 0 � (� � )[

�
(

� � � ) � ��� � � ( � )].
To show ��� 0 � ( � � )[

�
(
� � � ) � ����� � ( � )].

By ALP, ��� 0 � ( � � )[ � � ��� ( � � � ) ��
�� ( � )].
And by TAUT2,

��� 0 � (� � )[ � � ��� ( � � � ) � ��� � � ( � )] � (A.3)

By MP, ��� 0 � (� � )[ L � ( � � � ) � (
� 
 )( � F )(

� � )(
�

( 
 � � ) � � ( F � � F � 
 � �
� (� � � )) � 
 � �
� F � �

)].
[Note that, for � = 
 or F , (� � � � � = 0 � � = 1 � � � � � � = (

� �
1)).]

Then, by the inductive hypothesis,
��� 0 � ( � � )[ L � ( � � � ) � (

� � )[ ����� � (� ) � ����� � ( � F���
 � �
� (� � � ))]].
Then, by Theorem A.15,

��� 0 � (� � )[ L � ( � � � ) � ����� � ( � )] � (A.4)

By THM, and equations (A.3) and (A.4), we get,
��� 0 � ( � � )[

�
(
� � � ) � ����� � ( � )]. �

Lemma A.17 ��� 0 � � ����� � ( � � ), for any propositional letter � � � � ( ��� 0).
* � � is not a tautology, for all propositional letters � � .*

Proof: By PL1, � � 0 � � 
 ( � � ).
Then by PL2, ��� 0 � (

�
� )( ����� � ( � ) � � ����� � ( � � � � )).

And by TAUT1, ��� 0 � � ����� � ( � � ). �
Corollary A.18 ��� 0 � � � (

� � � � ), for any
� � � � � .

*The agent can never prove � � , where � � is a propositional letter.*

Proof: Follows immediately from Theorem A.16 and Lemma A.17. �
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� � � � � � � � � � ��� � �%�!� � 
 � ��� � ��� �

B.1 Theorem 5.4

Theorem B.1 ��� 7( ����� � � � � � ) is step-wise consistent if OBS is both valid and Now-free.

Proof: We show ��� 7( ����� � � � � � ) has a step-model, and apply Theorem 3.16. Let L � be such that:

1. (MODEL-NOW) L��;M= ����� ( � ) iff � =
�
.

2. (MODEL-K) L � M= � (� � � ) iff
� � � .

3. (MODEL-P) L � �M= � ( � 1 � � � � � � � ) if � is a predicate other than ����� or
�

.

We show L = � L 0 � L 1 � � � � � L � � � � � � a step-model for ��� 7( ����� � � ��� � ) by induction on the index.
For each index

�
, we want to show the following:1

1. (HYP.CONTRA) � � � � ��� ( � � � � � )
�� � � .

2. (HYP.NOW) If L��;M= � (
� � � ) and � is not Now-free, then � = � ��� (

�
).

3. (HYP.MODEL) L � M= � if
�
� � .

4. (HYP.CONSISTENT)
� � is consistent.

Base case:
� = 0

1. (HYP.CONTRA) This is true since � 0 is empty.
2. (HYP.NOW) By (MODEL-K), L 0 M= � (0 � � ) iff

�
0 � .

Since � 0 is empty, L 0
�M= � (0 � � ) for any � .

Therefore, this hypothesis is trivially true.
3. (HYP.MODEL) Since

�
0 is empty, this hypothesis is trivially true.

4. (HYP.CONSISTENT)
�

0 is consistent since it is empty.

Assume Hypotheses (HYP.CONTRA), (HYP.NOW), (HYP.MODEL), and
(HYP.CONSISTENT) for � � 1. We must show these are true for � .

1. (HYP.CONTRA) To show � � � � ��� ( � � � � � )
�� � � .

By � ��� � , � � � � ��� ( � � � � � )
� � � only thru the Rules 1-7. But:

(a) Rule 1 will not bring in any wffs of the form � � � � ��� ( � � � � � ).
(b) Rule 2 will not bring in any wffs of the form � � � � ��� ( � � � � � ).
(c) Suppose

� � � � � � � � ��� ( � � � � � )
� �
�HG 1.

Then, by Hyp. (HYP.MODEL), L �HG 1 M= �
andL �HG 1 M= � � � � � � ��� ( � � � � � ).

Hence, since L �HG 1 is an interpretation, L��HG 1 M= � � � � ��� ( � � � � � ).
But, by (MODEL-P), L��HG 1

�M= � � � � ��� ( � � � � � ).
� � 
 �

Thus both
�

and
� � � � � � ��� ( � � � � � ) cannot be

� � � G 1.
Therefore Rule 3 will not produce � � � � ��� ( � � � � � ) at step

�
.

1A step-model requires that
� #��= N ( � � � ) iff � # � . This we know to be true � � directly from (MODEL-K).
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(d) Suppose � 1 � � � � � � � � � � � � [( � 1 � ��� � � � � � � ) � � � � � ��� ( � � � � � )]
� � �HG 1.

Then, by Hyp. (HYP.MODEL), L �HG 1 M= � 1 � and, � � � , and L �HG 1 M= � � � andL �HG 1 M= � � [( � 1 � � � � � ��� � � ) � � � � � ��� ( � � � � � )].
Hence, since L �HG 1 is an interpretation, L��HG 1 M= � � � � ��� ( � � � � � ).
But, by (MODEL-P), L �HG 1

�M= � � � � ��� ( � � � � � ).
� � 
 �

Thus � 1 � � � � � � � � � � � � [( � 1 � � � � � ��� � � ) � � � � � ��� ( � � � � � )] cannot all be
� �
�HG 1.

Therefore Rule 4 will not produce � � � � ��� ( � � � � � ) at step
�
.

(e) Rule 5 will not bring in any wffs of the form � � � � ��� ( � � � � � ).
(f) By inductive hyp. (HYP.CONSISTENT),

� �HG 1 is consistent.
Thus � and � � cannot both be

� � �HG 1.
Therefore, Rule 6 will not apply.

(g) By the inductive hypothesis, � � � � ��� ( � � � � � )
�� � �HG 1.

Therefore Rule 7 will not bring in any wffs of the form � � � � ��� ( � � � � � ).
Therefore � � � � ��� ( � � � � � )

�� �
� .

2. (HYP.NOW) Suppose L � M= � (
� � � ) and � is not Now-free. To show � = � ��� (

�
).

From (MODEL-K),
�
� � .

By � ��� � , either:
(a) � = ����� (

�
).

(b) �
� ����� (

� �
1). Since OBS is Now-free, Now doesn’t appear in � .

� � 
 �
(c) � � � � �

� �
�HG 1.

Then, by (MODEL-K), L �HG 1 M= � (
� �

1 � ��� � ).
Since � is not Now-free, �%� � is not Now-free.
But by the inductive hypothesis, if ��� � is not Now-free, then �!� � is ����� (

� �
1).� � 
 �

(d) � = � � and � 1 � � � � � � � � � � � � [( � 1 � � � � � ��� � � ) ��� ( � )] � � �HG 1.
Since � contains Now, � must be ����� .
Then by (MODEL-K), L �HG 1 M= � (

� �
1 � � � [( � 1 � � � � � ��� � � ) � ����� ( � )]).

But, by the inductive hypothesis, � � [( � 1 � � � � � �	� � � ) � ����� ( � )]) must be ����� (
� �

1).� � 
 �
(e) � = �

�
(

� �
1 � � ) and � �� �

� G 1 and � � � � G 1, where � is a closed sub-formula of � .
Since Now appears in � , Now must also appear in � , and thus must also appear in � .
Now, by (MODEL-K), L � G 1 M= � (

� �
1 � � ).

But then, by the inductive hypothesis, � = ����� (
� �

1). Hence � = � .
But then, � � � � G 1.

� � 
 �
(f) � = � � � � ��� ( � � 1 � � � � � ).

But by (HYP.CONTRA), � � � � ��� ( � � � � � )
�� �
� .

� � 
 �
(g) �

� �
�HG 1 and �

�
= ����� (� ) and � � � � ��� (

� �
2 � � � � )

�� �
�HG 1 and � � � � ��� (

� �
2 � � � � )

�� �
�HG 1.

Then, by (MODEL-K), L �HG 1 M= � (
� �

1 � � ).
Then by the inductive hypothesis, � = ����� (

� �
1).

� � 
 �
Therefore, if L � M= � (

� � � ) and � is not Now-free, then � = ����� (
�
).

3. (HYP.MODEL) Let �
� � � . To show L��KM= � .

By � ��� � , either:
(a) � = ����� (

�
).

Then by (MODEL-NOW), L � M= � .
(b) �

� ����� (
� �

1). Then � is valid.
Hence � is true in any interpretation; and in particular, L � M= � .
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(c) � � � � �
� � �HG 1.

Then, by the inductive hypothesis, L �HG 1 M= � and L �HG 1 M= �%� � .
Hence, since L �HG 1 is an interpretation, L��HG 1 M= � .
Now, by (MODEL-K), L � G 1 M= � (

� �
1 � �#� � ).

And by Hyp. (HYP.NOW), if Now appears in �#� � , then �#� � is ����� (
� �

1).
� � 
 �

Therefore, �#� � is Now-free; hence � is Now-free.
Then by Lemma B.2, L � M= � .

(d) � = � � and � 1 � � � � � � � � � � � � [( � 1 � � � � � ��� � � ) ��� ( � )]
� �
�HG 1.

Then, by the inductive hypothesis,L �HG 1 M= � 1 � and � � � and L �HG 1 M= � � � and L �HG 1 M= � � [( � 1 � � � � � ��� � � ) ��� ( � )].
Hence, since L �HG 1 is an interpretation, L��HG 1 M= � � , i.e. L �HG 1 M= � .
Now, by (MODEL-K), L � G 1 M= � (

� �
1 � � � [( � 1 � � � � � ��� � � ) ��� ( � )]).

And by Hyp. (HYP.NOW), if Now appears in � � [( � 1 � � � � � � � � � ) � � ( � )],
then ��� [( � 1 � � � � � � � � � ) ��� ( � )] is ����� (

� �
1).

� � 
 �
Therefore, ��� [( � 1 ��� � � � ��� � � ) ��� ( � )] is Now-free; and in particular, � is not ����� .
Hence � is Now-free.
Then by Lemma B.2, L � M= � .

(e) � = �
�

(
� �

1 � � ) and � �� �
� G 1 and � � � � G 1, where � is a closed sub-formula of � .

By (MODEL-K), L � G 1
�M= � (

� �
1 � � ).

And since L �HG 1 is an interpretation, L��HG 1 M= � � (
� �

1 � � ), i.e. L �HG 1 M= � .
To show � is Now-free, it is sufficient to show � is Now-free.
Now, by (MODEL-K), L � G 1 M= � (

� �
1 � � ).

And by Hyp. (HYP.NOW), if Now appears in � , then � = � ��� (
� �

1).
Now � is a closed sub-formula of � , hence � = ����� (

� �
1). Then � � � �HG 1.

� � 
 �
Therefore � is Now-free; hence, � is Now-free.
Since � is Now-free, � is also Now-free.
Then by Lemma B.2, L � M= � .

(f) � = � � � � ��� (
� �

1 � � � � � ) and � � � � � � �HG 1.
But by Hyp. (HYP.CONSISTENT), we cannot have both � � � �HG 1 and � � � � � G 1.
Therefore �

�
= � � � � ��� (

���
1 � � � � � ).

� � 
 �
(g) �

� � �HG 1 and �
�
= ����� (� ) and � � � � ��� ( � � 2 � � � � )

�� � �HG 1 and � � � � ��� ( � � 2 � � � � )
�� � �HG 1.

Now, by (MODEL-K), L � G 1 M= � ( � � 1 � � ).
And by Hyp. (HYP.NOW), if Now appears in � , � = ����� ( � � 1). � � 
 �
Therefore, � is Now-free.
Now by the inductive hypothesis, L �HG 1 M= � .
Then by Lemma B.2, L � M= � .

Therefore, if �
� � � , then L��KM= � .

4. (HYP.CONSISTENT) To show
�
� is consistent.

Suppose
� � is inconsistent. Then there exist wffs � 1 � � � � � � �

� � � which are mutually inconsistent.
By Hyp. (HYP.MODEL), L��;M= � 1 and � � � and L �;M= � � .
But since L � is an interpretation, � 1 � � � � � � � cannot be mutually inconsistent.
Therefore,

�
� is consistent.

Therefore, by induction we have shown that (HYP.CONTRA), (HYP.NOW), (HYP.MODEL), and
(HYP.CONSISTENT) hold for all

�
.

Now, (HYP.MODEL) shows that L = � L 0 � L 1 � � � � � L � � � � � � is a step-model for ��� 7( ����� ������� � ).
And by Theorem 3.16, ��� 7( ����� ������� � ) is step-wise consistent.
(We also have step-wise consistency directly from (HYP.CONSISTENT).) �

Lemma B.2 L � M= � if L �HG 1 M= � and � is Now-free.
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Proof: By (MODEL:K), if a wff
�

(� � � ) is true in some L � , then it is true in every L � .
Likewise, if a wff

�
(� � � ) is false in some L � , then it is false in every L � .

By (MODEL:P), wffs � ( � 1 � � � � � � � ), where the predicate letter � is neither ����� nor
�

, is false in
every L � .
It follows that every Now-free wff � will either be true in every L � or false in every L � . For such wffs
will be built out of wffs

�
( � � � ) and � ( � 1 � � � � � � � ) whose truth-values do not change with

�
.

Therefore, if L��HG 1 M= � and � is Now-free, then L��;M= � . �
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� � 
�� � ��� � � ��� � � � �	��� �%
 � �

This appendix contains the example queries run on the various implementations of the step-logics.

C.1 ��� 0

The following is an actual scenario of queries. The query ‘‘ � � � � � ( � � � )’’ asks for a wff which is true at
step

�
, i.e., � � � � � ( � � � ) corresponds to

�
(

� � � ).

?- state(0,X). /* Find an X proven at step 0.*/
no /* There are no wffs proven

at step 0.*/

?- state(5,X). /* Find an X proven at step 5.*/
X = imp(p(0),imp(p(0),p(0))) � ; /* � =

�
0
� (

�
0
� �

0).
’;’ requests another soln.*/

no /* There are no more wffs proven
at step 5.*/

?- state(6,X).
X = imp(p(0),imp(p(1),p(0))) � ; /* � =

�
0
� (

�
1
� �

0).*/
X = imp(p(0),imp(neg(p(0)),p(0))) � ; /* � =

�
0
� ( 
 �

0
� �

0).*/
X = imp(p(0),imp(p(0),p(0))) � ; /* � =

�
0
� (

�
0
� �

0).*/
no

?- state(7,X).
X = imp(p(0),imp(p(2),p(0))) � ;
X = imp(p(0),imp(imp(p(0),p(0)),p(0))) � ;
X = imp(p(0),imp(neg(p(1)),p(0))) � ;
X = imp(p(0),imp(neg(neg(p(0))),p(0))) � ;
X = imp(p(1),imp(p(0),p(1))) � ;
X = imp(neg(p(0)),imp(p(0),neg(p(0)))) � ;
X = imp(p(0),imp(p(1),p(0))) � ;
X = imp(p(0),imp(neg(p(0)),p(0))) � ;
X = imp(p(0),imp(p(0),p(0))) � ;
no

?- state(N,imp(p(0),imp(p(0),p(0)))). /* At what step is
�

0
� (

�
0
� �

0) proved?*/
N = 5 � ; /* Step 5 is the 1st step in which

�
0
� (

�
0
� �

0)
is proved.*/

N = 6 � /* CR means no more solutions are wanted.*/
yes /* The query was satisfied.*/

?- state(13,imp(imp(X,imp(X,X)),imp(X,imp(X,imp(X,X))))).
X = p(0)
yes
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?- state(10,p(0)). /* Is p(0) proved at step 10?*/
no

?- state(12,X).
X = imp(p(0),imp(p(7),p(0))) � ;
X = imp(p(0),imp(imp(p(0),p(5)),p(0))) � ;
X = imp(p(0),imp(imp(p(0),imp(p(0),p(3))),p(0))) �
yes

C.2 Two-wise-men

The following is an actual scenario of queries. The query ‘‘ � � � � (
�
)’’ asks for all wffs which are true at

step
�
. The predicates � 1, � 2, � ( �

),
�

1(
� � � ), and

�
2(

� � � ) are represented as � 1, � 2, � ( �
),
�

1(
� � � ), and�

2(
� � � ), respectively. Valid formulas are built up from the predicates using � � � and

� F�� in the expected
way. Any wff with a free variable (something of the form ‘‘ dd’’, where ‘‘dd’’ is any numeral) has an
implicit universal quantifier. This trick of leaving off the universal quantifier made the implementation a
little easier, and seemed to cause no problems.

Note that at step 10 the agent has indeed proven that his spot is white (i.e. � 1).

| ?- step(0).
yes

| ?- step(1).
imp(k2(_19,imp(_20,_21)),imp(k2(_19,_20),k2(s(_19),_21)))
k2(s(0),imp(b1,w2))
imp(b1,k2(s(0),b1))
imp(neg(b1),w1)
imp(neg(u(s(_19),w2)),neg(k2(_19,w2)))
imp(neg(k1(s(_19),u(_19,w2))),neg(u(_19,w2)))
yes

| ?- step(2).
imp(k2(_19,imp(_20,_21)),imp(k2(_19,_20),k2(s(_19),_21)))
k2(s(0),imp(b1,w2))
imp(b1,k2(s(0),b1))
imp(neg(b1),w1)
imp(neg(u(s(_19),w2)),neg(k2(_19,w2)))
imp(neg(k1(s(_19),u(_19,w2))),neg(u(_19,w2)))
imp(k2(s(0),b1),k2(s(s(0)),w2))
yes

| ?- step(3).
imp(k2(_66,imp(_67,_68)),imp(k2(_66,_67),k2(s(_66),_68)))
k2(s(0),imp(b1,w2))
imp(b1,k2(s(0),b1))
imp(neg(b1),w1)
imp(neg(u(s(_66),w2)),neg(k2(_66,w2)))
imp(neg(k1(s(_66),u(_66,w2))),neg(u(_66,w2)))
imp(k2(s(0),b1),k2(s(s(0)),w2))
neg(k1(s(s(0)),u(s(0),w2)))
yes
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| ?- step(4).
imp(k2(_66,imp(_67,_68)),imp(k2(_66,_67),k2(s(_66),_68)))
k2(s(0),imp(b1,w2))
imp(b1,k2(s(0),b1))
imp(neg(b1),w1)
imp(neg(u(s(_66),w2)),neg(k2(_66,w2)))
imp(neg(k1(s(_66),u(_66,w2))),neg(u(_66,w2)))
imp(k2(s(0),b1),k2(s(s(0)),w2))
neg(k1(s(s(0)),u(s(0),w2)))
neg(u(s(0),w2))
neg(k1(s(s(s(0))),u(s(s(0)),w2)))
yes

| ?- step(5).
imp(k2(_66,imp(_67,_68)),imp(k2(_66,_67),k2(s(_66),_68)))
k2(s(0),imp(b1,w2))
imp(b1,k2(s(0),b1))
imp(neg(b1),w1)
imp(neg(u(s(_66),w2)),neg(k2(_66,w2)))
imp(neg(k1(s(_66),u(_66,w2))),neg(u(_66,w2)))
imp(k2(s(0),b1),k2(s(s(0)),w2))
neg(k1(s(s(0)),u(s(0),w2)))
neg(u(s(0),w2))
neg(k1(s(s(s(0))),u(s(s(0)),w2)))
neg(k2(0,w2))
neg(u(s(s(0)),w2))
neg(k1(s(s(s(s(0)))),u(s(s(s(0))),w2)))
yes

| ?- step(6).
imp(k2(_66,imp(_67,_68)),imp(k2(_66,_67),k2(s(_66),_68)))
k2(s(0),imp(b1,w2))
imp(b1,k2(s(0),b1))
imp(neg(b1),w1)
imp(neg(u(s(_66),w2)),neg(k2(_66,w2)))
imp(neg(k1(s(_66),u(_66,w2))),neg(u(_66,w2)))
imp(k2(s(0),b1),k2(s(s(0)),w2))
neg(k1(s(s(0)),u(s(0),w2)))
neg(u(s(0),w2))
neg(k1(s(s(s(0))),u(s(s(0)),w2)))
neg(k2(0,w2))
neg(u(s(s(0)),w2))
neg(k1(s(s(s(s(0)))),u(s(s(s(0))),w2)))
neg(k2(s(0),w2))
neg(u(s(s(s(0))),w2))
neg(k1(s(s(s(s(s(0))))),u(s(s(s(s(0)))),w2)))
yes

| ?- step(7).
imp(k2(_66,imp(_67,_68)),imp(k2(_66,_67),k2(s(_66),_68)))
k2(s(0),imp(b1,w2))
imp(b1,k2(s(0),b1))
imp(neg(b1),w1)
imp(neg(u(s(_66),w2)),neg(k2(_66,w2)))
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imp(neg(k1(s(_66),u(_66,w2))),neg(u(_66,w2)))
imp(k2(s(0),b1),k2(s(s(0)),w2))
neg(k1(s(s(0)),u(s(0),w2)))
neg(u(s(0),w2))
neg(k1(s(s(s(0))),u(s(s(0)),w2)))
neg(k2(0,w2))
neg(u(s(s(0)),w2))
neg(k1(s(s(s(s(0)))),u(s(s(s(0))),w2)))
neg(k2(s(0),w2))
neg(u(s(s(s(0))),w2))
neg(k1(s(s(s(s(s(0))))),u(s(s(s(s(0)))),w2)))
neg(k2(s(s(0)),w2))
neg(u(s(s(s(s(0)))),w2))
neg(k1(s(s(s(s(s(s(0)))))),u(s(s(s(s(s(0))))),w2)))
yes

| ?- step(8).
imp(k2(_66,imp(_67,_68)),imp(k2(_66,_67),k2(s(_66),_68)))
k2(s(0),imp(b1,w2))
imp(b1,k2(s(0),b1))
imp(neg(b1),w1)
imp(neg(u(s(_66),w2)),neg(k2(_66,w2)))
imp(neg(k1(s(_66),u(_66,w2))),neg(u(_66,w2)))
imp(k2(s(0),b1),k2(s(s(0)),w2))
neg(k1(s(s(0)),u(s(0),w2)))
neg(u(s(0),w2))
neg(k1(s(s(s(0))),u(s(s(0)),w2)))
neg(k2(0,w2))
neg(u(s(s(0)),w2))
neg(k1(s(s(s(s(0)))),u(s(s(s(0))),w2)))
neg(k2(s(0),w2))
neg(u(s(s(s(0))),w2))
neg(k1(s(s(s(s(s(0))))),u(s(s(s(s(0)))),w2)))
neg(k2(s(s(0)),w2))
neg(u(s(s(s(s(0)))),w2))
neg(k1(s(s(s(s(s(s(0)))))),u(s(s(s(s(s(0))))),w2)))
neg(k2(s(s(s(0))),w2))
neg(u(s(s(s(s(s(0))))),w2))
neg(k2(s(0),b1))
neg(k1(s(s(s(s(s(s(s(0))))))),u(s(s(s(s(s(s(0)))))),w2)))
yes

| ?- step(9).
imp(k2(_66,imp(_67,_68)),imp(k2(_66,_67),k2(s(_66),_68)))
k2(s(0),imp(b1,w2))
imp(b1,k2(s(0),b1))
imp(neg(b1),w1)
imp(neg(u(s(_66),w2)),neg(k2(_66,w2)))
imp(neg(k1(s(_66),u(_66,w2))),neg(u(_66,w2)))
imp(k2(s(0),b1),k2(s(s(0)),w2))
neg(k1(s(s(0)),u(s(0),w2)))
neg(u(s(0),w2))
neg(k1(s(s(s(0))),u(s(s(0)),w2)))
neg(k2(0,w2))
neg(u(s(s(0)),w2))
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neg(k1(s(s(s(s(0)))),u(s(s(s(0))),w2)))
neg(k2(s(0),w2))
neg(u(s(s(s(0))),w2))
neg(k1(s(s(s(s(s(0))))),u(s(s(s(s(0)))),w2)))
neg(k2(s(s(0)),w2))
neg(u(s(s(s(s(0)))),w2))
neg(k1(s(s(s(s(s(s(0)))))),u(s(s(s(s(s(0))))),w2)))
neg(k2(s(s(s(0))),w2))
neg(u(s(s(s(s(s(0))))),w2))
neg(k2(s(0),b1))
neg(k1(s(s(s(s(s(s(s(0))))))),u(s(s(s(s(s(s(0)))))),w2)))
neg(k2(s(s(s(s(0)))),w2))
neg(u(s(s(s(s(s(s(0)))))),w2))
neg(b1)
neg(k1(s(s(s(s(s(s(s(s(0)))))))),u(s(s(s(s(s(s(s(0))))))),w2)))
yes

| ?- step(10).
imp(k2(_66,imp(_67,_68)),imp(k2(_66,_67),k2(s(_66),_68)))
k2(s(0),imp(b1,w2))
imp(b1,k2(s(0),b1))
imp(neg(b1),w1)
imp(neg(u(s(_66),w2)),neg(k2(_66,w2)))
imp(neg(k1(s(_66),u(_66,w2))),neg(u(_66,w2)))
imp(k2(s(0),b1),k2(s(s(0)),w2))
neg(k1(s(s(0)),u(s(0),w2)))
neg(u(s(0),w2))
neg(k1(s(s(s(0))),u(s(s(0)),w2)))
neg(k2(0,w2))
neg(u(s(s(0)),w2))
neg(k1(s(s(s(s(0)))),u(s(s(s(0))),w2)))
neg(k2(s(0),w2))
neg(u(s(s(s(0))),w2))
neg(k1(s(s(s(s(s(0))))),u(s(s(s(s(0)))),w2)))
neg(k2(s(s(0)),w2))
neg(u(s(s(s(s(0)))),w2))
neg(k1(s(s(s(s(s(s(0)))))),u(s(s(s(s(s(0))))),w2)))
neg(k2(s(s(s(0))),w2))
neg(u(s(s(s(s(s(0))))),w2))
neg(k2(s(0),b1))
neg(k1(s(s(s(s(s(s(s(0))))))),u(s(s(s(s(s(s(0)))))),w2)))
neg(k2(s(s(s(s(0)))),w2))
neg(u(s(s(s(s(s(s(0)))))),w2))
neg(b1)
neg(k1(s(s(s(s(s(s(s(s(0)))))))),u(s(s(s(s(s(s(s(0))))))),w2)))
w1
neg(k2(s(s(s(s(s(0))))),w2))
neg(u(s(s(s(s(s(s(s(0))))))),w2))
neg(k1(s(s(s(s(s(s(s(s(s(0))))))))),u(s(s(s(s(s(s(s(s(0)))))))),w2)))
yes

| ?-
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C.3 Three-wise-men

The following is an actual scenario of queries. The query ‘‘ � � � � (
�
)’’ asks for all wffs which are true at step

�
.

The predicates � 1, � 2, � ( �
),
�

1(
� � � ), and

�
2(

� � � ) are represented as � 1, � 2, � ( �
),
�

1(
� � � ), and

�
2(

� � � ),
respectively. A universally quantified wff, (� � )(� � ) � ( � � � ), where � (� � � ) is some predicate expression, is
represented as � � ��� 
 
 ([� � � ] � � ( � � � )). Valid formulas are built up from the predicates using � � � , � F�� , and
� ��� in the expected way.

For ease of reading, wffs that were proven at the previous step (and subsequently inherited) have been
removed from the subsequent step. All other inferred wffs are shown. Note that at step 17 the agent has
indeed proved that his spot is white (i.e. � 1).

| ?- step(0).
yes

| ?- step(1).
forall([_63],k2(_63,forall([_64,_65,_66],imp(k3(_64,imp(_65,_66)),

imp(k3(_64,_65),k3(s(_64),_66))))))
forall([_63],k2(_63,k3(s(0),imp(and(b1,b2),w3))))
forall([_63],k2(_63,imp(and(b1,b2),k3(s(0),and(b1,b2)))))
forall([_63],k2(_63,imp(neg(and(b1,b2)),imp(b1,w2))))
forall([_63],k2(_63,forall([_64],imp(neg(u(s(_64),w3)),
neg(k3(_64,w3))))))

forall([_63,_64],imp(neg(k1(s(_63),u(_63,_64))),neg(u(_63,_64))))
forall([_63],imp(neg(u(_63,w3)),k2(s(_63),neg(u(_63,w3)))))
forall([_63,_64,_65],imp(k2(_63,imp(_64,_65)),imp(k2(_63,_64),
k2(s(_63),_65))))

forall([_63,_64,_65,_66,_67],imp(and(k2(_63,imp(neg(and(_64,_65)),
and(_66,_67))),k2(_63,neg(and(_64,_65)))),k2(s(_63),and(_66,_67))))

forall([_63,_64,_65,_66,_67],imp(and(k2(_63,forall([_68,_69,_70],
imp(k3(_68,imp(_69,_70)),imp(k3(_68,_69),k3(s(_68),_70))))),
k2(_63,k3(_64,imp(and(_65,_66),_67)))),k2(s(_63),imp(k3(_64,
and(_65,_66)),k3(s(_64),_67)))))

forall([_63,_64],imp(and(k2(_63,forall([_65],imp(neg(u(s(_65),w3)),
neg(k3(_65,w3))))),k2(_63,neg(u(s(_64),w3)))),k2(s(_63),
neg(k3(_64,w3)))))

forall([_63,_64,_65],imp(and(k2(_63,imp(_64,_65)),k2(_63,neg(_65))),
k2(s(_63),neg(_64))))

forall([_63,_64,_65,_66],imp(and(k2(_63,imp(and(_64,_65),_66)),
k2(_63,neg(_66))),k2(s(_63),neg(and(_64,_65)))))

forall([_63],imp(b1,k2(_63,b1)))
imp(neg(b1),w1)
forall([_63],imp(neg(u(s(_63),w2)),neg(k2(_63,w2))))
yes

| ?- step(2).
...
k2(s(0),forall([_72,_73,_74],imp(k3(_72,imp(_73,_74)),
imp(k3(_72,_73),k3(s(_72),_74)))))

k2(s(0),k3(s(0),imp(and(b1,b2),w3)))
k2(s(0),imp(and(b1,b2),k3(s(0),and(b1,b2))))
k2(s(0),imp(neg(and(b1,b2)),imp(b1,w2)))
k2(s(0),forall([_72],imp(neg(u(s(_72),w3)),neg(k3(_72,w3)))))
yes

| ?- step(3).
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...
imp(k2(s(0),and(b1,b2)),k2(s(s(0)),k3(s(0),and(b1,b2))))
imp(k2(s(0),neg(and(b1,b2))),k2(s(s(0)),imp(b1,w2)))
k2(s(s(0)),imp(k3(s(0),and(b1,b2)),k3(s(s(0)),w3)))
neg(k1(s(s(0)),u(s(0),w2)))
neg(k1(s(s(0)),u(s(0),w3)))
k2(s(s(0)),forall([_72,_73,_74],imp(k3(_72,imp(_73,_74)),

imp(k3(_72,_73),k3(s(_72),_74)))))
k2(s(s(0)),k3(s(0),imp(and(b1,b2),w3)))
k2(s(s(0)),imp(and(b1,b2),k3(s(0),and(b1,b2))))
k2(s(s(0)),imp(neg(and(b1,b2)),imp(b1,w2)))
k2(s(s(0)),forall([_72],imp(neg(u(s(_72),w3)),neg(k3(_72,w3)))))
yes

| ?- step(4).
...
neg(u(s(0),w2))
neg(u(s(0),w3))
imp(k2(s(s(0)),k3(s(0),and(b1,b2))),k2(s(s(s(0))),k3(s(s(0)),w3)))
imp(k2(s(s(0)),and(b1,b2)),k2(s(s(s(0))),k3(s(0),and(b1,b2))))
imp(k2(s(s(0)),neg(and(b1,b2))),k2(s(s(s(0))),imp(b1,w2)))
k2(s(s(s(0))),imp(k3(s(0),and(b1,b2)),k3(s(s(0)),w3)))
neg(k1(s(s(s(0))),u(s(s(0)),w2)))
neg(k1(s(s(s(0))),u(s(s(0)),w3)))
k2(s(s(s(0))),forall([_72,_73,_74],imp(k3(_72,imp(_73,_74)),

imp(k3(_72,_73),k3(s(_72),_74)))))
k2(s(s(s(0))),k3(s(0),imp(and(b1,b2),w3)))
k2(s(s(s(0))),imp(and(b1,b2),k3(s(0),and(b1,b2))))
k2(s(s(s(0))),imp(neg(and(b1,b2)),imp(b1,w2)))
k2(s(s(s(0))),forall([_72],imp(neg(u(s(_72),w3)),neg(k3(_72,w3)))))
yes

| ?- step(5).
...
neg(u(s(s(0)),w2))
neg(u(s(s(0)),w3))
k2(s(s(0)),neg(u(s(0),w3)))
imp(k2(s(s(s(0))),k3(s(0),and(b1,b2))),k2(s(s(s(s(0)))),

k3(s(s(0)),w3)))
imp(k2(s(s(s(0))),and(b1,b2)),k2(s(s(s(s(0)))),k3(s(0),and(b1,b2))))
imp(k2(s(s(s(0))),neg(and(b1,b2))),k2(s(s(s(s(0)))),imp(b1,w2)))
neg(k2(0,w2))
k2(s(s(s(s(0)))),imp(k3(s(0),and(b1,b2)),k3(s(s(0)),w3)))
neg(k1(s(s(s(s(0)))),u(s(s(s(0))),w2)))
neg(k1(s(s(s(s(0)))),u(s(s(s(0))),w3)))
k2(s(s(s(s(0)))),forall([_72,_73,_74],imp(k3(_72,imp(_73,_74)),

imp(k3(_72,_73),k3(s(_72),_74)))))
k2(s(s(s(s(0)))),k3(s(0),imp(and(b1,b2),w3)))
k2(s(s(s(s(0)))),imp(and(b1,b2),k3(s(0),and(b1,b2))))
k2(s(s(s(s(0)))),imp(neg(and(b1,b2)),imp(b1,w2)))
k2(s(s(s(s(0)))),forall([_72],imp(neg(u(s(_72),w3)),

neg(k3(_72,w3)))))
yes

| ?- step(6).
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...
neg(u(s(s(s(0))),w2))
neg(u(s(s(s(0))),w3))
k2(s(s(s(0))),neg(u(s(s(0)),w3)))
imp(k2(s(s(s(s(0)))),k3(s(0),and(b1,b2))),k2(s(s(s(s(s(0))))),

k3(s(s(0)),w3)))
imp(k2(s(s(s(s(0)))),and(b1,b2)),k2(s(s(s(s(s(0))))),k3(s(0),
and(b1,b2))))

imp(k2(s(s(s(s(0)))),neg(and(b1,b2))),k2(s(s(s(s(s(0))))),
imp(b1,w2)))

neg(k2(s(0),w2))
k2(s(s(s(s(s(0))))),imp(k3(s(0),and(b1,b2)),k3(s(s(0)),w3)))
k2(s(s(s(0))),neg(k3(0,w3)))
neg(k1(s(s(s(s(s(0))))),u(s(s(s(s(0)))),w2)))
neg(k1(s(s(s(s(s(0))))),u(s(s(s(s(0)))),w3)))
k2(s(s(s(s(s(0))))),forall([_72,_73,_74],imp(k3(_72,imp(_73,_74)),

imp(k3(_72,_73),k3(s(_72),_74)))))
k2(s(s(s(s(s(0))))),k3(s(0),imp(and(b1,b2),w3)))
k2(s(s(s(s(s(0))))),imp(and(b1,b2),k3(s(0),and(b1,b2))))
k2(s(s(s(s(s(0))))),imp(neg(and(b1,b2)),imp(b1,w2)))
k2(s(s(s(s(s(0))))),forall([_72],imp(neg(u(s(_72),w3)),
neg(k3(_72,w3)))))

yes

| ?- step(7).
...
neg(u(s(s(s(s(0)))),w2))
neg(u(s(s(s(s(0)))),w3))
k2(s(s(s(s(0)))),neg(u(s(s(s(0))),w3)))
imp(k2(s(s(s(s(s(0))))),k3(s(0),and(b1,b2))),

k2(s(s(s(s(s(s(0)))))),k3(s(s(0)),w3)))
imp(k2(s(s(s(s(s(0))))),and(b1,b2)),
k2(s(s(s(s(s(s(0)))))),k3(s(0),and(b1,b2))))

imp(k2(s(s(s(s(s(0))))),neg(and(b1,b2))),k2(s(s(s(s(s(s(0)))))),
imp(b1,w2)))

neg(k2(s(s(0)),w2))
k2(s(s(s(s(s(s(0)))))),imp(k3(s(0),and(b1,b2)),k3(s(s(0)),w3)))
k2(s(s(s(s(0)))),neg(k3(s(0),w3)))
neg(k1(s(s(s(s(s(s(0)))))),u(s(s(s(s(s(0))))),w2)))
neg(k1(s(s(s(s(s(s(0)))))),u(s(s(s(s(s(0))))),w3)))
k2(s(s(s(s(s(s(0)))))),forall([_72,_73,_74],imp(k3(_72,imp(_73,_74)),
imp(k3(_72,_73),k3(s(_72),_74)))))

k2(s(s(s(s(s(s(0)))))),k3(s(0),imp(and(b1,b2),w3)))
k2(s(s(s(s(s(s(0)))))),imp(and(b1,b2),k3(s(0),and(b1,b2))))
k2(s(s(s(s(s(s(0)))))),imp(neg(and(b1,b2)),imp(b1,w2)))
k2(s(s(s(s(s(s(0)))))),forall([_72],imp(neg(u(s(_72),w3)),
neg(k3(_72,w3)))))

yes

| ?- step(8).
...
neg(u(s(s(s(s(s(0))))),w2))
neg(u(s(s(s(s(s(0))))),w3))
k2(s(s(s(s(s(0))))),neg(u(s(s(s(s(0)))),w3)))
imp(k2(s(s(s(s(s(s(0)))))),k3(s(0),and(b1,b2))),
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k2(s(s(s(s(s(s(s(0))))))),k3(s(s(0)),w3)))
imp(k2(s(s(s(s(s(s(0)))))),and(b1,b2)),

k2(s(s(s(s(s(s(s(0))))))),k3(s(0),and(b1,b2))))
imp(k2(s(s(s(s(s(s(0)))))),neg(and(b1,b2))),
k2(s(s(s(s(s(s(s(0))))))),imp(b1,w2)))

neg(k2(s(s(s(0))),w2))
k2(s(s(s(s(s(s(s(0))))))),imp(k3(s(0),and(b1,b2)),k3(s(s(0)),w3)))
k2(s(s(s(s(s(0))))),neg(k3(s(s(0)),w3)))
neg(k1(s(s(s(s(s(s(s(0))))))),u(s(s(s(s(s(s(0)))))),w2)))
neg(k1(s(s(s(s(s(s(s(0))))))),u(s(s(s(s(s(s(0)))))),w3)))
k2(s(s(s(s(s(s(s(0))))))),forall([_72,_73,_74],
imp(k3(_72,imp(_73,_74)),imp(k3(_72,_73),k3(s(_72),_74)))))

k2(s(s(s(s(s(s(s(0))))))),k3(s(0),imp(and(b1,b2),w3)))
k2(s(s(s(s(s(s(s(0))))))),imp(and(b1,b2),k3(s(0),and(b1,b2))))
k2(s(s(s(s(s(s(s(0))))))),imp(neg(and(b1,b2)),imp(b1,w2)))
k2(s(s(s(s(s(s(s(0))))))),forall([_72],imp(neg(u(s(_72),w3)),
neg(k3(_72,w3)))))

yes

| ?- step(9).
...
neg(u(s(s(s(s(s(s(0)))))),w2))
neg(u(s(s(s(s(s(s(0)))))),w3))
k2(s(s(s(s(s(s(0)))))),neg(u(s(s(s(s(s(0))))),w3)))
imp(k2(s(s(s(s(s(s(s(0))))))),k3(s(0),and(b1,b2))),
k2(s(s(s(s(s(s(s(s(0)))))))),k3(s(s(0)),w3)))

imp(k2(s(s(s(s(s(s(s(0))))))),and(b1,b2)),
k2(s(s(s(s(s(s(s(s(0)))))))),k3(s(0),and(b1,b2))))

imp(k2(s(s(s(s(s(s(s(0))))))),neg(and(b1,b2))),
k2(s(s(s(s(s(s(s(s(0)))))))),imp(b1,w2)))

neg(k2(s(s(s(s(0)))),w2))
k2(s(s(s(s(s(s(s(s(0)))))))),imp(k3(s(0),and(b1,b2)),k3(s(s(0)),w3)))
k2(s(s(s(s(s(s(0)))))),neg(k3(s(s(s(0))),w3)))
k2(s(s(s(s(s(s(0)))))),neg(k3(s(0),and(b1,b2))))
neg(k1(s(s(s(s(s(s(s(s(0)))))))),u(s(s(s(s(s(s(s(0))))))),w2)))
neg(k1(s(s(s(s(s(s(s(s(0)))))))),u(s(s(s(s(s(s(s(0))))))),w3)))
k2(s(s(s(s(s(s(s(s(0)))))))),forall([_72,_73,_74],
imp(k3(_72,imp(_73,_74)),imp(k3(_72,_73),k3(s(_72),_74)))))

k2(s(s(s(s(s(s(s(s(0)))))))),k3(s(0),imp(and(b1,b2),w3)))
k2(s(s(s(s(s(s(s(s(0)))))))),imp(and(b1,b2),k3(s(0),and(b1,b2))))
k2(s(s(s(s(s(s(s(s(0)))))))),imp(neg(and(b1,b2)),imp(b1,w2)))
k2(s(s(s(s(s(s(s(s(0)))))))),forall([_72],imp(neg(u(s(_72),w3)),
neg(k3(_72,w3)))))

yes

| ?- step(10).
...
neg(u(s(s(s(s(s(s(s(0))))))),w2))
neg(u(s(s(s(s(s(s(s(0))))))),w3))
k2(s(s(s(s(s(s(s(0))))))),neg(u(s(s(s(s(s(s(0)))))),w3)))
imp(k2(s(s(s(s(s(s(s(s(0)))))))),k3(s(0),and(b1,b2))),
k2(s(s(s(s(s(s(s(s(s(0))))))))),k3(s(s(0)),w3)))

imp(k2(s(s(s(s(s(s(s(s(0)))))))),and(b1,b2)),
k2(s(s(s(s(s(s(s(s(s(0))))))))),k3(s(0),and(b1,b2))))

imp(k2(s(s(s(s(s(s(s(s(0)))))))),neg(and(b1,b2))),
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k2(s(s(s(s(s(s(s(s(s(0))))))))),imp(b1,w2)))
neg(k2(s(s(s(s(s(0))))),w2))
k2(s(s(s(s(s(s(s(s(s(0))))))))),imp(k3(s(0),and(b1,b2)),

k3(s(s(0)),w3)))
k2(s(s(s(s(s(s(s(0))))))),neg(k3(s(s(s(s(0)))),w3)))
k2(s(s(s(s(s(s(s(0))))))),neg(and(b1,b2)))
neg(k1(s(s(s(s(s(s(s(s(s(0))))))))),u(s(s(s(s(s(s(s(s(0)))))))),w2)))
neg(k1(s(s(s(s(s(s(s(s(s(0))))))))),u(s(s(s(s(s(s(s(s(0)))))))),w3)))
k2(s(s(s(s(s(s(s(s(s(0))))))))),forall([_72,_73,_74],
imp(k3(_72,imp(_73,_74)),imp(k3(_72,_73),k3(s(_72),_74)))))

k2(s(s(s(s(s(s(s(s(s(0))))))))),k3(s(0),imp(and(b1,b2),w3)))
k2(s(s(s(s(s(s(s(s(s(0))))))))),imp(and(b1,b2),k3(s(0),and(b1,b2))))
k2(s(s(s(s(s(s(s(s(s(0))))))))),imp(neg(and(b1,b2)),imp(b1,w2)))
k2(s(s(s(s(s(s(s(s(s(0))))))))),forall([_72],imp(neg(u(s(_72),w3)),
neg(k3(_72,w3)))))

yes

| ?- step(11).
...
k2(s(s(s(s(s(s(s(s(0)))))))),imp(b1,w2))
neg(u(s(s(s(s(s(s(s(s(0)))))))),w2))
neg(u(s(s(s(s(s(s(s(s(0)))))))),w3))
k2(s(s(s(s(s(s(s(s(0)))))))),neg(u(s(s(s(s(s(s(s(0))))))),w3)))
imp(k2(s(s(s(s(s(s(s(s(s(0))))))))),k3(s(0),and(b1,b2))),
k2(s(s(s(s(s(s(s(s(s(s(0)))))))))),k3(s(s(0)),w3)))

imp(k2(s(s(s(s(s(s(s(s(s(0))))))))),and(b1,b2)),
k2(s(s(s(s(s(s(s(s(s(s(0)))))))))),k3(s(0),and(b1,b2))))

imp(k2(s(s(s(s(s(s(s(s(s(0))))))))),neg(and(b1,b2))),
k2(s(s(s(s(s(s(s(s(s(s(0)))))))))),imp(b1,w2)))

neg(k2(s(s(s(s(s(s(0)))))),w2))
k2(s(s(s(s(s(s(s(s(s(s(0)))))))))),imp(k3(s(0),and(b1,b2)),
k3(s(s(0)),w3)))

k2(s(s(s(s(s(s(s(s(0)))))))),neg(k3(s(s(s(s(s(0))))),w3)))
neg(k1(s(s(s(s(s(s(s(s(s(s(0)))))))))),
u(s(s(s(s(s(s(s(s(s(0))))))))),w2)))

neg(k1(s(s(s(s(s(s(s(s(s(s(0)))))))))),
u(s(s(s(s(s(s(s(s(s(0))))))))),w3)))

k2(s(s(s(s(s(s(s(s(s(s(0)))))))))),forall([_72,_73,_74],
imp(k3(_72,imp(_73,_74)),imp(k3(_72,_73),k3(s(_72),_74)))))

k2(s(s(s(s(s(s(s(s(s(s(0)))))))))),k3(s(0),imp(and(b1,b2),w3)))
k2(s(s(s(s(s(s(s(s(s(s(0)))))))))),imp(and(b1,b2),k3(s(0),and(b1,b2))))
k2(s(s(s(s(s(s(s(s(s(s(0)))))))))),imp(neg(and(b1,b2)),imp(b1,w2)))
k2(s(s(s(s(s(s(s(s(s(s(0)))))))))),forall([_72],imp(neg(u(s(_72),w3)),
neg(k3(_72,w3)))))

yes

| ?- step(12).
...
neg(u(s(s(s(s(s(s(s(s(s(0))))))))),w2))
neg(u(s(s(s(s(s(s(s(s(s(0))))))))),w3))
k2(s(s(s(s(s(s(s(s(s(0))))))))),neg(u(s(s(s(s(s(s(s(s(0)))))))),w3)))
imp(k2(s(s(s(s(s(s(s(s(0)))))))),b1),
k2(s(s(s(s(s(s(s(s(s(0))))))))),w2))

imp(k2(s(s(s(s(s(s(s(s(s(s(0)))))))))),k3(s(0),and(b1,b2))),
k2(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),k3(s(s(0)),w3)))
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imp(k2(s(s(s(s(s(s(s(s(s(s(0)))))))))),and(b1,b2)),
k2(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),k3(s(0),and(b1,b2))))

imp(k2(s(s(s(s(s(s(s(s(s(s(0)))))))))),neg(and(b1,b2))),
k2(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),imp(b1,w2)))

neg(k2(s(s(s(s(s(s(s(0))))))),w2))
k2(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),imp(k3(s(0),and(b1,b2)),
k3(s(s(0)),w3)))

k2(s(s(s(s(s(s(s(s(s(0))))))))),neg(k3(s(s(s(s(s(s(0)))))),w3)))
neg(k1(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),
u(s(s(s(s(s(s(s(s(s(s(0)))))))))),w2)))

neg(k1(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),
u(s(s(s(s(s(s(s(s(s(s(0)))))))))),w3)))

k2(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),forall([_72,_73,_74],
imp(k3(_72,imp(_73,_74)),imp(k3(_72,_73),k3(s(_72),_74)))))

k2(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),k3(s(0),imp(and(b1,b2),w3)))
k2(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),imp(and(b1,b2),k3(s(0),
and(b1,b2))))

k2(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),imp(neg(and(b1,b2)),imp(b1,w2)))
k2(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),forall([_72],
imp(neg(u(s(_72),w3)),neg(k3(_72,w3)))))

yes

| ?- step(13).
...
neg(u(s(s(s(s(s(s(s(s(s(s(0)))))))))),w2))
neg(u(s(s(s(s(s(s(s(s(s(s(0)))))))))),w3))
k2(s(s(s(s(s(s(s(s(s(s(0)))))))))),
neg(u(s(s(s(s(s(s(s(s(s(0))))))))),w3)))

imp(k2(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),k3(s(0),and(b1,b2))),
k2(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),k3(s(s(0)),w3)))

imp(k2(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),and(b1,b2)),
k2(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),k3(s(0),and(b1,b2))))

imp(k2(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),neg(and(b1,b2))),
k2(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),imp(b1,w2)))

neg(k2(s(s(s(s(s(s(s(s(0)))))))),w2))
k2(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),imp(k3(s(0),and(b1,b2)),
k3(s(s(0)),w3)))

k2(s(s(s(s(s(s(s(s(s(s(0)))))))))),neg(k3(s(s(s(s(s(s(s(0))))))),w3)))
neg(k1(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),
u(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),w2)))

neg(k1(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),
u(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),w3)))

k2(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),forall([_72,_73,_74],
imp(k3(_72,imp(_73,_74)),imp(k3(_72,_73),k3(s(_72),_74)))))

k2(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),k3(s(0),imp(and(b1,b2),w3)))
k2(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),
imp(and(b1,b2),k3(s(0),and(b1,b2))))

k2(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),
imp(neg(and(b1,b2)),imp(b1,w2)))

k2(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),
forall([_72],imp(neg(u(s(_72),w3)),neg(k3(_72,w3)))))

yes

| ?- step(14).
...
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neg(u(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),w2))
neg(u(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),w3))
k2(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),
neg(u(s(s(s(s(s(s(s(s(s(s(0)))))))))),w3)))

imp(k2(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),k3(s(0),and(b1,b2))),
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),k3(s(s(0)),w3)))

imp(k2(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),and(b1,b2)),
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),k3(s(0),and(b1,b2))))

imp(k2(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),neg(and(b1,b2))),
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),imp(b1,w2)))

neg(k2(s(s(s(s(s(s(s(s(s(0))))))))),w2))
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),imp(k3(s(0),and(b1,b2)),

k3(s(s(0)),w3)))
k2(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),
neg(k3(s(s(s(s(s(s(s(s(0)))))))),w3)))

neg(k1(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),
u(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),w2)))

neg(k1(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),
u(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),w3)))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),
forall([_156D,_1575,_157D],imp(k3(_156D,imp(_1575,_157D)),
imp(k3(_156D,_1575),k3(s(_156D),_157D)))))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),k3(s(0),imp(and(b1,b2),w3)))
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),
imp(and(b1,b2),k3(s(0),and(b1,b2))))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),
imp(neg(and(b1,b2)),imp(b1,w2)))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),
forall([_157D],imp(neg(u(s(_157D),w3)),neg(k3(_157D,w3)))))

yes

| ?- step(15).
...
neg(u(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),w2))
neg(u(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),w3))
k2(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),
neg(u(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),w3)))

imp(k2(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),k3(s(0),and(b1,b2))),
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),k3(s(s(0)),w3)))

imp(k2(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),and(b1,b2)),
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),k3(s(0),and(b1,b2))))

imp(k2(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),neg(and(b1,b2))),
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),imp(b1,w2)))

neg(k2(s(s(s(s(s(s(s(s(s(s(0)))))))))),w2))
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),imp(k3(s(0),and(b1,b2)),
k3(s(s(0)),w3)))

k2(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),
neg(k3(s(s(s(s(s(s(s(s(s(0))))))))),w3)))

neg(k2(s(s(s(s(s(s(s(s(0)))))))),b1))
neg(k1(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),
u(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),w2)))

neg(k1(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),
u(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),w3)))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),
forall([_1869,_1871,_1879],imp(k3(_1869,imp(_1871,_1879)),
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imp(k3(_1869,_1871),k3(s(_1869),_1879)))))
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),

k3(s(0),imp(and(b1,b2),w3)))
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),
imp(and(b1,b2),k3(s(0),and(b1,b2))))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),
imp(neg(and(b1,b2)),imp(b1,w2)))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),
forall([_1879],imp(neg(u(s(_1879),w3)),neg(k3(_1879,w3)))))

yes

| ?- step(16).
...
neg(u(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),w2))
neg(u(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),w3))
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),
neg(u(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),w3)))

imp(k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),k3(s(0),and(b1,b2))),
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))),k3(s(s(0)),w3)))

imp(k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),and(b1,b2)),
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))),k3(s(0),and(b1,b2))))

imp(k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),neg(and(b1,b2))),
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))),imp(b1,w2)))

neg(k2(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),w2))
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))),
imp(k3(s(0),and(b1,b2)),k3(s(s(0)),w3)))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),
neg(k3(s(s(s(s(s(s(s(s(s(s(0)))))))))),w3)))

neg(b1)
neg(k1(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))),
u(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),w2)))

neg(k1(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))),
u(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),w3)))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))),
forall([_1BA5,_1BAD,_1BB5],imp(k3(_1BA5,imp(_1BAD,_1BB5)),
imp(k3(_1BA5,_1BAD),k3(s(_1BA5),_1BB5)))))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))),
k3(s(0),imp(and(b1,b2),w3)))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))),
imp(and(b1,b2),k3(s(0),and(b1,b2))))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))),
imp(neg(and(b1,b2)),imp(b1,w2)))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))),
forall([_1BB5],imp(neg(u(s(_1BB5),w3)),neg(k3(_1BB5,w3)))))

yes

| ?- step(17).
...
w1
neg(u(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),w2))
neg(u(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),w3))
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),
neg(u(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))),w3)))

imp(k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))),
k3(s(0),and(b1,b2))),
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k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))),
k3(s(s(0)),w3)))

imp(k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))),and(b1,b2)),
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))),
k3(s(0),and(b1,b2))))

imp(k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))),neg(and(b1,b2))),
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))),imp(b1,w2)))

neg(k2(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))),w2))
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))),

imp(k3(s(0),and(b1,b2)),k3(s(s(0)),w3)))
k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))),
neg(k3(s(s(s(s(s(s(s(s(s(s(s(0))))))))))),w3)))

neg(k1(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))),
u(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))),w2)))

neg(k1(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))),
u(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))))),w3)))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))),
forall([_1DE1,_1DE9,_1DF1],imp(k3(_1DE1,imp(_1DE9,_1DF1)),
imp(k3(_1DE1,_1DE9),k3(s(_1DE1),_1DF1)))))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))),
k3(s(0),imp(and(b1,b2),w3)))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))),
imp(and(b1,b2),k3(s(0),and(b1,b2))))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))),
imp(neg(and(b1,b2)),imp(b1,w2)))

k2(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))),
forall([_1DF1],imp(neg(u(s(_1DF1),w3)),neg(k3(_1DF1,w3)))))

yes

| ?-
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This appendix contains the programs for the various implementations of the step-logics.

D.1 ��� 0

This is the PROLOG code that implements ��� 0 .

/* Any or all of state’s arguments may be uninstantiated when
called. If N is uninstantiated, a positive integer will be
generated before continuing. */

state(N,X) :-
gen_if_needed(N),
state1(N,X),
asserta((state(N,X))).

/* state1 must be called with N instantiated. */
state1(N,X) :-

feed(N,X).
state1(N,X) :-

mp(N,X).

/* gen_if_needed generates a non-negative integer if N is
uninstantiated; otherwise, it does nothing. */

gen_if_needed(N) :-
( (var(N), num(M), N is M - 1) ; (true) ).

/* feed is used to feed in tautologies. It must be called with N
instantiated. */

feed(N,X) :-
formula(X,N),
ax(X),
asserta((feed(N,X))).

feed(N,X) :-
N > 0 ,
M is N - 1 ,
feed(M,X).

/* mp must be called with N instantiated. */
mp(N,X) :-

NN is N + 1,
plus(JJ,_,NN),
J is JJ - 1,
state(J,imp(Y,X)),
plus(KK,_,NN),
K is KK - 1,
state(K,Y),
asserta((mp(N,X))).
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/* ax checks that its argument is a tautology. */
ax(imp(X,imp(Y,X))).
ax(imp(imp(neg(X),neg(Y)),imp(imp(neg(X),Y),X))).
ax(imp(imp(X,imp(Y,Z)),imp(imp(X,Y),imp(X,Z)))).

/* formula generates formulas with ’weight’ = N. It must be
called with N instantiated, and N > 0; otherwise it will
fail. */

formula(p(M),N) :-
N > 0,
M is N - 1.

formula(imp(X,Y),N) :-
N > 2,
M is N - 1,
plus(K,L,M),
formula(X,K),
formula(Y,L).

formula(neg(X),N) :-
N > 1,
M is N - 1,
formula(X,M).

/* plus generates two positive integers, L, M, such that L + M = N.
plus must be called with N instantiated, N > 1; otherwise it
will fail. */

plus(L,M,N) :-
num(L),
( (L >= N , ! , fail ) ; (M is N - L) ).

/* If num is called with an uninstantiated argument, N, it will
generate a positive integer; otherwise it will fail if N is
not a positive integer. */

num(1).
num(N) :-

num(M),
N is M + 1.

D.2 ��� 7( �
	 � � 3 � ����� � )
This section contains the PROLOG code that was used to solve the Brother problem and generate the
results in Section 6.2. The observation-function used here is ����� � 3 . The obvious changes to the code are
needed to produce the observation-functions for the other two scenarios.

/* s finds a formula provable at step N. If all formulas
provable at step N have already been determined prior
to entry into this rtn., then s must only search the
’state’ DB; otherwise, it must call ’state1’.
(To do this, all formulas provable at step N-1 must have
already been determined; otherwise, s returns error msg.:
’can’t do yet’.) If state1(N,X) succeeds, then state(N,X)
is added to the DB (if it’s not already there).
s must be called with N instantiated. */

s(N,X) :-
N >= 0, completed_step(N), !, state(N,X).

s(N,X) :-
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N >= 0,
not(completed_step(N)),
((N > 0, /* only continue if completed_step(N-1) */

M is N - 1,
((completed_step(M));
(write(’cant do yet’) , !, fail))); /* ow, N = 0 */

(true)),
((state1(N,X),
not_yet_asserted(state(N,X))); /* ow, can’t find any more

values for state1(N,X) --
we must have them all. */

(var(X),
asserta((completed_step(N))),
create_all_closed_sub_forms(N), /* creates all closed-sub-

formulas of thms. proven at step N */
!, fail)).

/* state1 uses the various rules of inference of SL7 to find
an X for which state1(N,X) succeeds. state1 is called only
when N is instantiated. */

state1(N,X) :-
N > 0, inheritable(N,X).

state1(N,X) :-
nowf(N,X).

state1(N,X) :-
obs(N,X).

state1(N,X) :-
N > 0, mp1(N,X).

state1(N,X) :-
N > 0, mp2(N,X).

state1(N,X) :-
N > 0, introspect(N,X).

state1(N,X) :-
N > 0, contradiction(N,X).

/* nowf asserts now(N) at each step N, N > 0. */
nowf(N,now(N)) :-

N > 0.

/* obs is the observation-function for this step-logic. */
obs(2,forall(N,imp(now(N),imp(neg(k(N-1,p(0))),neg(p(0)))))).
obs(2,imp(p(1),p(0))).
obs(2,p(1)).

/* mp1 determines whether anything is provable from the
previous step using modus ponens. It is called only
when N is instantiated. */

mp1(N,X) :-
M is N - 1, !,
state(M,imp(Y,X)),
state(M,Y).

/* mp2 determines whether anything is provable from the
previous step using an extended version of modus ponens.
It is called only when N is instantiated. */
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mp2(N,neg(Y)) :-
M is N - 1, !,
state(M,forall(X,imp(now(X),imp(neg(k(X-1,Y)),neg(Y))))),
state(M,now(K)),
L is K - 1,
state(M,neg(k(L,Y))).

/* introspect determines what things are NOT known at step
N-1. All closed-sub-formulas of step N-1
*********** except those of the form ’k(_,_)’ **********
are possibilities. Introspection can only be done when
all formulas for step N-1 have been proven.
introspect is called only when N is instantiated. */

introspect(N,neg(k(M,X))) :-
M is N - 1,
completed_step(M), /* can only introspect if have full set

of thms from previous step. */
!,
closed_sub_form(M,X), /* returns single wff of step M. */
X \= k(_,_), /* for now, can’t introspect on k wffs. */
not(state(M,X)).

/* contradiction determines whether a contradiction exists
at the previous step. It is called only when N is
instantiated. */

contradiction(N,contra(M,X,neg(X))) :-
M is N - 1, !,
state(M,neg(X)),
state(M,X).

/* inheritable determines whether a formula is inheritable
from step N-1 to step N. All formulas X are inherited
from step N-1 to N unless X = now(_) or if at step N-1
it is known that a contradiction existed at step N-2
between X and something. This rtn. is called only when
N is instantiated. */

inheritable(N,X) :-
M is N - 1, L is M - 1, !,
state(M,X),
not(X = now(_)),
not(state(M,contra(L,X,_))),
not(state(M,contra(L,_,X))).

/* create_all_closed_sub_forms is used to create all the
closed-sub-formulas of the thms that are proven in
step N. N is bound upon entry. This procedure is only
called if completed_step(N) succeeds. */

create_all_closed_sub_forms(N) :-
((state(N,X),
cacsf(N,X),
fail);
(true)).

/* cacsf adds closed_sub_form(N,Y) to the DB for all Y which
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are closed-sub-formulas of the formula X (including X).
If X is unbound, cacsf fails. N is always bound on entry. */

cacsf(N,X) :-
nonvar(X),
cacsf1(N,X),
assert_if_nec(closed_sub_form(N,X)),
!.

cacsf1(N,imp(X,Y)) :-
((cacsf(N,X), !, cacsf(N,Y));
(cacsf(N,Y), !, fail)). /* want cacsf(N,Y) executed even

if cacsf(N,X) failed. */
cacsf1(N,k(M,Y)) :-

integer(M), !, cacsf(N,Y).
cacsf1(N,neg(X)) :-

cacsf(N,X).
cacsf1(N,forall(_,X)) :-

cacsf(N,X).
cacsf1(N,p(X)) :- nonvar(X).
cacsf1(N,now(X)) :- nonvar(X).

/* not_yet_asserted asserts X and succeeds, if X is not
already true in the DB; otherwise it fails.
If X is not bound upon entry, not_yet_asserted fails. */

not_yet_asserted(X) :-
nonvar(X),
((X, !, fail);
(assertz((X)))), !.

/* assert_if_nec asserts X, if X is not already true in the DB.
If X is not bound upon entry, assert_if_nec fails. */

assert_if_nec(X) :-
nonvar(X),
((X) ;
(asserta((X)))), !.

/* step is used to find all thms. true at step N. */
step(N,H) :- s-out(N,H,RC), RC = 0, !.
step(N) :- s-out(N,RC), RC = 0, !.
stepno(N) :- s-no-out(N,RC), RC = 0, !.

/* s-out calls s. If s succeeds, then RC is set to 1;
otherwise RC is set to 0. */

s-out(N,H,RC) :- ((s(N,X), write(H,state(N,X)), nl(H), RC is 1);
(RC is 0)).

s-out(N,RC) :- ((s(N,X), write(X), nl, RC is 1);
(RC is 0)).

s-no-out(N,RC):- ((s(N,X), RC is 1);
(RC is 0)).

D.3 ��� 7( �
	 � � 2 �
� ��� � 2)
This is the PROLOG code used to implement the Two-wise-men problem. As noted in Section 7.2.4, wffs
were stripped of any universal quantifiers. Thus, any wff with an apparent free variable actually has an
implicit universal quantifier. This trick of stripping the quantifiers made the implementation details less
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cumbersome.

/* s finds a formula provable at step N. If all formulas
provable at step N have already been determined prior
to entry into this rtn., then s must only search the
’state’ DB; otherwise, it must call ’state1’.
(To do this, all formulas provable at step N-1 must have
already been determined; otherwise, s returns error msg.:
’can’t do yet’.) If state1(N,X) succeeds, then state(N,X)
is added to the DB (if it’s not already there).
s must be called with N instantiated. */

s(N,X) :-
N >= 0, completed_step(N), !, state(N,X).

s(N,X) :-
N >= 0,
not(completed_step(N)),
((N > 0, /* only continue if completed_step(N-1) */

M is N - 1,
((completed_step(M));
(write(’cant do yet’) , !, fail))); /* ow, N = 0 */
(true)),

((state1(N,X),
not_yet_asserted(state(N,X))); /* ow, can’t find

any more values for state1(N,X)
--- we must have them all. */

(var(X),
asserta((completed_step(N))),
!, fail)).

/* state1 uses the various rules of inference of SL7 to find
an X for which state1(N,X) succeeds. state1 is called
only when N is instantiated. */

state1(N,X) :-
N > 0, inheritable(N,X).

state1(N,X) :-
obs(N,X).

state1(N,X) :-
N > 0, mp1(N,X).

state1(N,X) :-
N > 0, mp2(N,X).

state1(N,X) :-
N > 0, mp1a(N,X).

state1(N,X) :-
N > 0, introspect(N,X).

/* obs is the observation-function for this step-logic. */
obs(1,imp(k2(I,imp(X,Y)),imp(k2(I,X),k2(s(I),Y)))).
obs(1,k2(s(0),imp(b1,w2))).
obs(1,imp(b1,k2(s(0),b1))).
obs(1,imp(neg(b1),w1)).
obs(1,imp(neg(u(s(I),w2)),neg(k2(I,w2)))).
obs(1,imp(neg(k1(s(I),u(I,w2))),neg(u(I,w2)))).

/* mp1 determines whether anything is provable from the
previous step using modus ponens. It is called only
when N is instantiated. */
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mp1(N,X) :-
M is N - 1, !,
state(M,imp(Y,X)),
state(M,Y).

/* mp2 determines whether anything is provable from the
previous step using an extended version of modus ponens
(where the antecedent must only unify, as opposed to being
identical). It is called only when N is instantiated. */

mp2(N,A) :-
M is N - 1, !,
state(M,imp(Y,X)),
state(M,B),
Y = B, A = X.

/* mp1a determines whether anything is provable from the
previous step using the contra-positive of modus ponens.
It is called only when N is instantiated. */

mp1a(N,neg(X)) :-
M is N - 1, !,
state(M,imp(X,Y)),
state(M,neg(Y)).

/* introspect determines whether a given utterance was made
at step N-1. introspect is called only when N is
instantiated. */

introspect(N,neg(k1(s(I),u(I,w2)))) :-
N > 2, M is N - 1, L is M - 1, x(L,I), !,
not(state(M,u(I,w2))).

/* inheritable inherits all formulas from step N-1 to step N.
This rtn. is called only when N is instantiated. */

inheritable(N,X) :-
M is N - 1, !,
state(M,X).

/* not_yet_asserted asserts X and succeeds, if X is not
already true in the DB; otherwise it fails.
If X is not bound upon entry, not_yet_asserted fails. */

not_yet_asserted(X) :-
nonvar(X),
((X, !, fail);
(assertz((X)))), !.

/* x finds the successor form of the integer N.
It is called only when N is instantiated. */

x(0,0).
x(N,s(I)) :-

N > 0, M is N - 1, !,
x(M,I).

/* step is used to find all thms. true at step N. */
step(N,H) :- s-out(N,H,RC), RC = 0, !.
step(N) :- s-out(N,RC), RC = 0, !.
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stepno(N) :- s-no-out(N,RC), RC = 0, !.

/* s-out calls s. If s succeeds, then RC is set to 1;
otherwise RC is set to 0. */

s-out(N,H,RC) :- ((s(N,X), write(H,state(N,X)), nl(H), RC is 1);
(RC is 0)).

s-out(N,RC) :- ((s(N,X), write(X), nl, RC is 1);
(RC is 0)).

s-no-out(N,RC):- ((s(N,X), RC is 1);
(RC is 0)).

steps(N,M) :-
create(H,’temp’),
write(H,’***** start ***** ’),
write(H,N), write(H,’ to ’), write(H,M), nl(H), close(H),
ctr_set(0,N),
fail.

steps(_,M) :-
repeat,

ctr_inc(0,X),
open(H,’temp’,a),
write(H,’Time at start of step is ’),
time(T), write(H,T), nl(H),
step(X,H),
write(H,’Time at end of step is ’),
time(S), write(H,S), nl(H),
close(H),
write(’Finished step ’),write(X),nl,

X == M,
!.

D.4 ��� 7( �
	 � � 3 �
� ��� � 3)
This is the PROLOG code used to implement the Three-wise-men problem. Note that two rules were written
to correspond to Rule 3, the extended rule of modus ponens (see page 29).

/* s finds a formula provable at step N. If all formulas
provable at step N have already been determined prior
to entry into this rtn., then s must only search the
’state’ DB; otherwise, it must call ’state1’.
(To do this, all formulas provable at step N-1 must have
already been determined; otherwise, s returns error msg.:
’can’t do yet’.) If state1(N,X) succeeds, then state(N,X)
is added to the DB (if it’s not already there).
s must be called with N instantiated. */

s(N,X) :-
N >= 0, completed_step(N), !, state(N,X).

s(N,X) :-
N >= 0,
not(completed_step(N)),
((N > 0, /* only continue if completed_step(N-1) */

M is N - 1,
((completed_step(M));
(write(’cant do yet’) , !, fail))); /* ow, N = 0 */

(true)),
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((state1(N,X),
not_yet_asserted(state(N,X))); /* ow, can’t find

any more values for state1(N,X)
--- we must have them all. */

(var(X),
asserta((completed_step(N))),
!, fail)).

/* state1 uses the various rules of inference of SL7 to find
an X for which state1(N,X) succeeds. state1 is called
only when N is instantiated. */

state1(N,X) :-
N > 0, inheritable(N,X).

state1(N,X) :-
obs(N,X).

state1(N,X) :-
N > 0, mp1(N,X).

state1(N,X) :-
N > 0, mp2(N,X).

state1(N,X) :-
N > 0, mp1a(N,X).

state1(N,X) :-
N > 0, mp2a(N,X).

state1(N,X) :-
introspect(N,X).

state1(N,X) :-
N > 0, instantiate(N,X).

/* obs is the observation-function for this step-logic. */
obs(1,forall([J],k2(J,forall([I,X,Y],

imp(k3(I,imp(X,Y)),
imp(k3(I,X),k3(s(I),Y))))))).

obs(1,forall([J],k2(J,k3(s(0),imp(and(b1,b2),w3))))).
obs(1,forall([J],k2(J,imp(and(b1,b2),k3(s(0),and(b1,b2)))))).
obs(1,forall([J],k2(J,imp(neg(and(b1,b2)),imp(b1,w2))))).
obs(1,forall([J],k2(J,forall([I],imp(neg(u(s(I),w3)),

neg(k3(I,w3))))))).
obs(1,forall([I,X],imp(neg(k1(s(I),u(I,X))),neg(u(I,X))))).
obs(1,forall([I],imp(neg(u(I,w3)),k2(s(I),neg(u(I,w3)))))).
obs(1,forall([I,X,Y],imp(k2(I,imp(X,Y)),

imp(k2(I,X),k2(s(I),Y))))).
obs(1,forall([I,X,X1,Y,Y1],

imp(and(k2(I,imp(neg(and(X,X1)),and(Y,Y1))),
k2(I,neg(and(X,X1)))),

k2(s(I),and(Y,Y1))))).
obs(1,forall([J,K,Z,Z1,W],

imp(and(k2(J,forall([I,X,Y],
imp(k3(I,imp(X,Y)),

imp(k3(I,X),k3(s(I),Y))))),
k2(J,k3(K,imp(and(Z,Z1),W)))),

k2(s(J),imp(k3(K,and(Z,Z1)),k3(s(K),W)))))).
obs(1,forall([J,K],imp(and(k2(J,forall([I],imp(neg(u(s(I),w3)),

neg(k3(I,w3))))),
k2(J,neg(u(s(K),w3)))),

k2(s(J),neg(k3(K,w3)))))).
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obs(1,forall([I,X,Y],imp(and(k2(I,imp(X,Y)),k2(I,neg(Y))),
k2(s(I),neg(X))))).

obs(1,forall([I,X,X1,Y],imp(and(k2(I,imp(and(X,X1),Y)),
k2(I,neg(Y))),

k2(s(I),neg(and(X,X1)))))).
obs(1,forall([I],imp(b1,k2(I,b1)))).
obs(1,imp(neg(b1),w1)).
obs(1,forall([I],imp(neg(u(s(I),w2)),neg(k2(I,w2))))).
/* mp1 determines whether anything is provable from the

previous step using modus ponens. It is called only
when N is instantiated. */

mp1(N,X) :-
M is N - 1, !,
state(M,imp(Y,X)),
state(M,Y).

/* mp2 determines whether anything is provable from the
previous step using an extended version of modus ponens
(where the antecedent must only unify, as opposed to being
identical). It is called only when N is instantiated. */

mp2(N,X) :-
M is N - 1,
state(M,forall(_,imp(Y,X))),
state(M,Y).

mp2(N,X) :-
M is N - 1,
state(M,forall(_,imp(and(Y,Z),X))),
state(M,Y),
state(M,Z).

/* mp1a determines whether anything is provable from the
previous step using the contra-positive of modus ponens.
It is called only when N is instantiated. */

mp1a(N,neg(X)) :-
M is N - 1, !,
state(M,imp(X,Y)),
state(M,neg(Y)).

/* mp2a determines whether anything is provable from the
previous step using the contra-positive of the extended
version of modus ponens. It is called only when N is
instantiated. */

mp2a(N,neg(X)) :-
M is N - 1, !,
state(M,forall(_,imp(X,Y))),
state(M,neg(Y)).

/* introspect determines whether a given utterance was made
at step N-1. introspect is called only when N is
instantiated. */

introspect(N,neg(k1(s(I),u(I,X)))) :-
N > 2, M is N - 1, L is M - 1, x(L,I), !,
whospot(X), /* 1st introspect on w2, then w3. */
not(state(M,u(I,X))).
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/* instantiate instantiates the time arg. of k2 predicates
occurring at step N-1. instantiate is called only when N
is instantiated. */

instantiate(N,k2(I,X)) :-
M is N - 1, !,
state(M,forall([J],k2(J,X))),
x(M,I).

/* inheritable inherits all formulas from step N-1 to step N.
This rtn. is called only when N is instantiated. */

inheritable(N,X) :-
M is N - 1, !,
state(M,X).

/* whospot returns w2 on the first call, and w3 upon
backtracking. */

whospot(w2).
whospot(w3).

/* not_yet_asserted asserts X and succeeds, if X is not
already true in the DB; otherwise it fails.
If X is not bound upon entry, not_yet_asserted fails. */

not_yet_asserted(state(N,X)) :-
nonvar(X),
((state(N,X), !, fail) ;
(assertz((state(N,X))))), !.

/* x finds the successor form of the integer N.
It is called only when N is instantiated. */

x(0,0).
x(N,s(I)) :-

N > 0, M is N - 1, !,
x(M,I).

/* step is used to find all thms. true at step N. */
step(N,H) :- s-out(N,H,RC), RC = 0, !.
step(N) :- s-out(N,RC), RC = 0, !.
stepno(N) :- s-no-out(N,RC), RC = 0, !.

/* s-out calls s. If s succeeds, then RC is set to 1;
otherwise RC is set to 0. */

s-out(N,H,RC) :- ((s(N,X), write(H,state(N,X)), nl(H), RC is 1);
(RC is 0)).

s-out(N,RC) :- ((s(N,X), write(X), nl, RC is 1);
(RC is 0)).

s-no-out(N,RC):- ((s(N,X), RC is 1);
(RC is 0)).

steps(N,M) :-
create(H,’temp’),
write(H,’***** start ***** ’),
write(H,N), write(H,’ to ’), write(H,M), nl(H), close(H),
ctr_set(0,N),
fail.
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steps(_,M) :-
repeat,

ctr_inc(0,X),
open(H,’temp’,a),
write(H,’Time at start of step is ’),
time(T), write(H,T), nl(H),
step(X,H),
write(H,’Time at end of step is ’),
time(S), write(H,S), nl(H),
close(H),
write(’Finished step ’),write(X),nl,

X == M,
!.
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