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This dissertation reports work on reasoned change in belief, specifically related to the following

concepts:
e pronominal indexicality in first-order logic (FOL)
e typicality and range defaults
e terminological (language) change over time
Results are presented in each:

(i) The pronominal indexical “I” — its meaning changing with who is speaking — is given
formal treatment in the context of a logic puzzle, solving a problem previously posed in

the literature.

(ii) A new form of default information in which typicality is viewed as spreading over a range
of possible default conclusions is isolated. “Cardinals are typically red or russet” is a
reliable default while both “cardinals are typically red” and “cardinals are typically rus-
set” are not. The range “red or russet” is essential, though shown to require adjustment

of previous formalisms.



(iii) Terminological change over time, the process of language flexing on the fly as new terms
and new meanings become important to a reasoner, is formalized in the context of mis-
taken past beliefs. This process often is spurred on by contradictory beliefs, which are
viewed here as positive aids to reasoned change; a result is proven on recovery from

contradictions as well.

We concentrate on the latter theme, specifically change in meaning and language usage over
time (chapters 1-5); the indexical and default results are presented separately in chapters 6
and 7, respectively. The main technical contributions are in chapters 3-7. In 3 we introduce
new concepts for terminological change. In 4, a general theorem about step-wise reasoning in
time when contradictions are present is proven. In 5, a step-wise formalism that can handle
specific problems of terminological change is presented. In 6, a first-order logic treatment of
the first person indexical “I” is given. In 7, some apparently new difficulties in reasoning about

typicality are uncovered.
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Prologue (Aims and Accomplishments)

This dissertation reports work on reasoned change in belief, specifically related to the following

concepts:
¢ pronominal indexicality in first-order logic (FOL)
e typicality and range defaults
¢ terminological (language) change over time

Accomplishments include the following: (i) The pronominal indexical “I” — its meaning chang-
ing with who is speaking — is formalized in the context of one of the Knights and Knaves
problems [Smullyan, 1978], solving a problem previously posed in the literature. (ii) A new
form of default information is isolated in which typicality is viewed as spreading over a range
of possible default conclusions. “Cardinals are typically red or russet” is a reliable default
while both “cardinals are typically red” and “cardinals are typically russet” are not: the range
“red or russet” is essential. Proper representation of such “range defaults” is shown to require
adjustment of previous formalisms. (iii) Terminological change over time, the process of lan-
guage flexing on the fly as new terms and new meanings become important to a reasoner, is
formalized in the context of mistaken past beliefs. This process often is spurred on by contra-
dictory beliefs, which are viewed here as positive aids to reasoned change. A variety of novel
knowledge-representation tools are developed for this treatment. A theorem is proven giving
sufficient conditions for recovery from contradictions within the formalism. The formalism
is applied to problems in commonsense reasoning and is shown to give intuitively plausible
results.

The research reported in this dissertation can be viewed as a series of inroads toward
achieving the long range goal of building an integrated reasoning system which has abilities

suited to an advice-taker, such as Tommy in this dialogue:



TomMy: “Look Mom, Jane’s feeding the birds!”
MoTHER: “That’s not Jane. It’s her twin sister.”
Tommy: “Oh, her twin sister.”

MoTHER: “Do you know what kind of birds they are?”

)
)
)
)
5) ToMmmy: “No.”
) MOTHER: “They’re cardinals.”
) Tomwmy: “But they’re not red. T thought cardinals were bright red like my bike.”
) MoTHER: “Ionce thought that too. But only adult males are red. Females are russet.”
) ToMMmY: “So they’re really cardinals, even though they’re not the color of my bike.”
10) MoTHER: “That’s right.”
11) Tommy: “How come only females are here?”

12) MoTHER: “I don’t know. That’s odd 1sn’t 1t?”

)
13) Tommy: “Maybe Jane’s sister knows. Let’s ask when she’s done feeding the birds.”

The natural-language aspect here is not our focus. Rather it is the underlying change of
beliefs implicit in the reasoning done by Tommy.

The key features of the dialogue which have attracted our attention are: (i) the use of the
(first person pronominal) indexical “I” in lines 7, 8, and 12; (ii) the use of a newly identified kind
of default, a range default (described shortly) in lines 8, 11, and 12; and (iii) the assessment
and correction of mistaken past beliefs, especially when the mistakes are signaled by conflicting
beliefs, when the mistakes involve object-identification errors (e.g., Tommy’s misidentification
of Jane’s sister in line 1), and when the correction is accompanied by terminological change
(e.g., Tommy’s belief about Jane, reported in line 1, is later in line 13, seen by Tommy as
being more appropriately about Jane’s sister.)

The following summarizes our results and is exemplified by references to the above Tommy

scenario.

¢ Pronominal Indexicality

An indexical is an expression whose referent is dependent on the context in which that ex-

pression is used. “I”, “now”, and “here” are examples. Few would argue that indexicals are



not prominent in commonsense reasoning, yet there has been almost no work on them in that
domain. Most of the work has been in the area of natural language processing (NLP) instead.
While some of our motivating examples have an NLP flavor, this is not necessary as other
examples show.

Our first effort represented a head-on confrontation with issues in knowledge representation
and indexicals varying over context of speaker. In reasoning about utterances by multiple
agents, it is essential to be able to interpret the meaning of the utterance with respect to the
utterer. Two utterers may use the same word to mean different things. This is particularly
obvious in the case of the pronoun “I”.! We designed a series of axioms which are appropriate
to the reasoning Tommy (and Mother) would carry out to properly interpret the indexical
(changing) meaning of “I” (lines 7, 8, and 12) in the scenario above and employed them in the
representation of, and solution to, one of Smullyan’s logic puzzles.

This puzzle had already been treated in first-order logic (FOL), by Ohlbach [Ohlbach,
1984], but for him proved very tricky and, as he noted, his formalism had a highly unintuitive
flavor. We show that the confusion was due to a failure to take account of the proper role
of indexicality. Specifically, when an agent utters an expression containing “I”, such as “I
am a knight”, the meaning (truth-value) of this depends on who the agent is. Ohlbach’s
formalization did not fully account for this in a clear way. To get such information into the
FOL framework is made more complicated by the problem-definition, which requires knights to
be able to tell only true statements. Several new predicates were required in order to properly
represent the problem. We eventually arrived at a resolution-proof of the desired solution to

the problem that was far more intuitive than Ohlbach’s. The result was a combination of

techniques from theorem-proving and natural-language processing. This work was reported in

1We confer no special status here upon ‘I’ over other indexicals like “you”, “now”, “here”, “this”, “that”,
etc (but see [Frege, 1956], [Perry, 1977], and [Perry, 1979]). Al must address them all. We were just following
Ohlbach in treating “I”. Step-logics (see below) begin to address “now”, and the work reported here in chapters 3
and 5, and in [Miller and Perlis, 1993a] touch on aspects of “this” and “that” vis-a-vis the seemingly indexical
nature of proper names. See [Hirst, 1981] for a survey of literature on determining reference in indexical
contexts.



[Miller and Perlis, 1987b] and [Miller and Perlis, 1987a], and appears here as chapter 6.

e Defaults

It is widely accepted that default (or non-monotonic) reasoning is endemic in commonsense
reasoning. Defaults can be, and often are, viewed as typicality statements of the form “P’s are
typically Q’s”. A very different way to view typicality (and hence defaults), and the intuition
behind the treatment examined here, is to treat a reasoner’s mental concept of a typical or
generic instance, which roughly corresponds to a general (indefinite) description, as an object
in its own right. For example, I may have a “mental notion” of what is for me a typical tree.
That this typical tree notion (for me) has “leaves” encodes my default that “trees typically
have leaves”; that it has “branches” encodes my default that “trees typically have branches”.

We attempted to formalize this intuition by extending a first-order language to include
representations of these mental notions, in the form of constant symbols called typicality- (or
simply, typ-) constants, which are written as typg for expressions @ in the language associated
with an indefinite description. As reified objects of thought typ-constants have properties (this
is how we encode defaults) and are subject to manipulation in the reasoning process. We prove
two simple theorems showing that #yp-constant default reasoning is transitive and composes
with logical implication. These properties show that ¢yp-constants lead easily and intuitively
to certain desired default conclusions.

Based on examples with #yp-constants, we then noted numerous cases in which defaults
must be specified as a mazimal range that cannot be reduced. These so-called “range defaults”
are accepted defaults of the form “P’s are typically Q’s” where Q is a disjunction and for
every shorter disjunction S formed from the (disjunctive) components of Q, the (sub-)default
“P’s are typically S’s” is rejected. Range defaults are important in commonsense reasoning
whenever a category consists of more than one major subcategory. For instance, cardinals are
almost all either red or russet in color, with large numbers of each, and exceptions being rare.
So the default “cardinals are typically red or russet” cannot be reduced to a narrower default.
That is both “cardinals are red” and “cardinals are russet” should be rejected as defaults.
This 1s important for commonsense reasoning. To note that a gathering of only russet-colored

cardinals seems odd (line 12 in the Tommy scenario above) Mom must be aware of the range of



typical cardinal coloring (red or russet) and that the range cannot be narrowed. Moreover, to
correct an overly restricted default (“cardinals are red”) to a more appropriate range default
(“cardinals are red or russet”) requires a mechanism for asserting the inappropriateness of the
former default.

Properly representing range defaults and the inappropriateness of restrictions is not com-
pletely straightforward. Although we first observed this for typ-constants, the phenomenon
is quite general to all default formalisms, and yet is unexplored in the literature. We prove,
for instance, that it cannot be done directly in Reiter’s Default Logic. Circumscription (us-
ing ab-predicates) also has difficulties with ranges: we prove that negating an inappropriate
default produces merely a counter-example assertion and does not express that the default
itself is inappropriate. We prove range defaults expressed via typ-constants lead to actual con-
tradictions. We present a formal proposal to solve the range default problem and discuss its
shortcomings (which we have since successfully overcome in [Miller and Perlis, 1993b].) This

research was reported in [Miller and Perlis, 1991], and appears here as chapter 7.

e Terminological (Language) Change

The tie between linguistic entities (e.g., words) and their meanings (e.g., objects in the world)
is one that a reasoning agent had better know about and be able to alter when occasion
demands. This has a number of important commonsense uses. The formal point is that a new
treatment is called for so that rational behavior via a logic can measure up to the constraint
that it be able to change usage, employ new words, change meanings of old words, and so on,
over time.

The usual fixed language with a fixed semantics that is the stock-in-trade of AI seems
inappropriate to this task. Here we propose “active logics” based on the step-logics of [Elgot-
Drapkin and Perlis, 1990]. A step-logic models belief reasoning by describing and producing
inference one-step-at-a-time, where the time of reasoning is integral to the logic. Complicated
reasoning made of many successive inferences in sequence take as many steps as that sequence
contains. Step-logics are inherently non-monotonic: theorems can disappear at every inference
step. Indeed, in the version most-investigated to date, SL7, some theorems do always disappear

at every inference. These “necessarily-disappearing” theorems are the time-stamps: wifs of



the form Now(i) where 7 is a step-number giving the current time. Now(7) is updated to
Now(i + 1) as inference proceeds from time i to time ¢ + 1.

We have applied active logics to the specific issue of terminological change vis-a-vis mistaken
beliefs. E.g., Tommy’s belief about Jane feeding the birds (line 1, above) is later seen by
Tommy as being more appropriately about Jane’s sister. Tommy has committed an object-
identification error of the so-called “compression” type wherein a singly denoting term (e.g.
“Jane”) is inadvertently used to refer to more than one object (i.e., Tommy’s initial use of
“Jane” can be viewed as referring to both Jane and her sister).

The change in belief occurs here after his mother (Tommy’s advice-giver, or tutor) isolates
his mistake and informs him of its nature by distinguishing that (person seen) from Jane (line
2). We develop a formalism which has expressions for such natural language demonstratives as
“that” in the Tommy scenario. We call these formal expressions reality terms; their function is
to denote an object which was “presented” to the agent and (possibly) incorrectly identified by
her in the past. Thus these are terms used to denote an entity, (possibly) replacing a previously
held but incorrect description of that same entity. In the example scenario, the word “it” (line
2, second sentence) also serves the role of a reality term, and the object referred to both by
that and it in line 2 is subsequently identified with Jane’s sister.

By informing Tommy of the distinction between that (person seen) and Jane, Tommy’s
mother supplies him with a partial means to correct his own past mistaken beliefs. He uses
her advice to revise his beliefs accordingly, correctly coming to believe that Jane’s sister is
feeding the birds (line 13). We develop formal tools for reality terms useful for expressing
object-identification errors like Tommy’s, and we incorporate into step-logics a mechanism for
correcting such errors once tutorial advice, like his mother’s; is given.

Contradiction and conflict play a key mediating role in the reasoning here, serving to signal
(to Tommy) that (his) past beliefs must be re-assessed and revised (lines 1-2 and 7). In most
formal AI, contradictions are anathema since most logics become useless in their presence.
However human reasoning is not usually thrown into such disarray by contradictions. Thus we
have sought formal ways to be more accommodating of contradictions. Little more than lip-
service has been paid to the treatment of contradictory information in commonsense reasoning.

Probably this is due to the customary reliance on standard logics having the “ex contradictione



quodlibet” feature: from a contradiction all is entailed. In Elgot-Drapkin’s work, this is called
the “swamping” problem. There are non-standard logics, the paraconsistent logics, that do
allow contradiction without swamping; however, in commonsense reasoning one wants not
only to avoid swamping but also to somehow undo or at least cease believing the contradiction.
Earlier step-logic work had a way to ignore contradictions. But more is needed. Not only must
we adjudicate between contradictands, we must also prevent earlier mistaken beliefs (revealed
by contradiction) from infecting future reasoning. Conflicting beliefs, mistaken beliefs, and
their consequences must be controlled, so as not to infect other beliefs indefinitely into the
future. Note that Tommy recovers from his conflicting beliefs when the conflicts (about Jane
and about cardinals) no longer adversely affects his beliefs (presumably, by line 13); not only
does he accept Mom’s advice (lines 2 and 8), but he also rejects a consequence of his earlier
mistaken view (see lines 7 and 9, concerning his bicycle).

Recovering from contradiction was broached in Elgot-Drapkin’s work, but only in an ad hoc
way. There a conjecture was formulated, to the effect that, under (unspecified) circumstances,
a step-logic should be able to regain consistency from an initially inconsistent set of beliefs.
Here (in chapter 4) we begin to make inroads, in a limited way. We develop new step-logics
which under suitable conditions are shown to recover from direct contradictions and their con-
sequences (our de-recovery theorem). This amounts to importing much of a truth-maintenance,
or belief revision, system into the logic, which then — unlike a usual belief revision system —
operates during and as part of the ordinary reasoning of the logic. This means that world
knowledge can be brought to bear on the truth-maintenance (belief update) process, and other
reasoning need not be halted while the belief updating is occurring. We advance two postulates
concerning commonsense reasoning, the short-chain and lazy-corroboration hypotheses, which
keep in check the computational bookkeeping required by our dc-recoverable step-logics.

These additions to step-logics, namely the mechanisms enabling terminological change and
those for de-recovery, have allowed us to solve commonsense problems centered around object-
identification error. Two such problems are solved in detail here; one we call the Mistaken
Car and the other Two Johns. The former problem involves an identification error much like
Tommy’s misidentification of Jane. The latter problem, Two Johns, compounds this with

the introduction of an ambiguity: both the incorrectly identified object and the object it was



(incorrectly) taken to be share the same name until later disambiguated with reality terms.

Thus our formalism allows contradictions and benefits from them to stimulate belief re-
assessment; we have proven (in suitable settings) recovery from contradictions; and we have
treated object-identification errors. All these can occur together in a mutually beneficial way
to produce intuitive commonsense behavior in our formalism.

To our knowledge, treatment of contradictions with recovery over time, of reality terms,
and of object-identification errors (of compression have not been developed elsewhere, though
they have been raised as important topics in the literature ([Maida, 1991], [McCarthy and
Lifschitz, 1987], and [Harman, 1986]). This work is reported in [Miller and Perlis, 1993a], and
has been the focus of the bulk of the research reported in this dissertation. It appears here as
chapters 1-5.

The main technical contributions are in chapters 3-7. In chapter 3 we introduce our formal
treatment of reality terms and the tutorials which assert object-identification errors. In 4, the
de-recovery theorem about step-wise reasoning in time when direct contradictions are present,
is proven. In 5, a step-wise formalism that can handle problems such as the Two Johns problem
above 1s presented.

As mentioned, the indexicality and default works are presented, as separate endeavors, in
chapters 6 and 7, respectively.

The early chapters (1-3) serve the dual purpose of reviewing the various literatures relating
to these themes and setting the stage for our formal treatment of Two Johns-like problems.
The progression will be from informal and intuitive to formal. Chapter 1 is motivational
leading up to the discussion of belief and belief reasoning, discussed in chapter 2. Chapter 3

focuses on error, as viewed here, closing with a semi-formal presentation of Two Johns.
« Implementation Work
The following implementations related to the research reported here were carried out in Prolog:

1. The indexicality axioms for the pronoun “I” were implemented in a context-free parser.

2. The terminological change work was implemented as an addition to step-logics, and used

to solve the Mistaken Car problem.



3. A step-logic with the dc-recovery property was implemented.

4. A step-logic “decay” mechanism which addresses computational space concerns was im-

plemented.



Chapter 1

General Background

1.1 Introduction

The same premise underlies this dissertation as has motivated much of the large artificial
intelligence (AT) research effort investigating commonsense default reasoning formalisms. That
premise is: the commonsense world is far too complex for reasoners, human or otherwise, to
be aware of all facts and information that may be salient to a situation at any given time.
As noted in [Etherington, 1988], a consequence of this premise is the so called “qualification

problem” [McCarthy, 1980]:

Virtually none of the decisions one makes everyday are made with complete cer-
tainty. With little effort, an endless supply of more or less probable scenarios can
be constructed that contraindicate any chosen course. Yet people are not paralyzed
by indecision; they continue to act and to decide in spite of all this uncertainty.

[Etherington, 1988]

Researchers have addressed these concerns by constructing default reasoning formalisms that
somehow render meaningful a reasoner’s ignorance or lack of relevant knowledge (e.g., see
[Reiter, 1978] [McCarthy, 1980], and [Reiter, 1980]). In brief, these formalisms offer various
solutions to the problem of representing how a reasoner might, when necessary, jump to a
reasonable yet defeasible conclusion based on whatever knowledge is available plus some default
rule(s). Just what is a reasonable conclusion, how it is reached, and what the default rules

are varies from formalism to formalism and 1s an issue that need not overly concern us here.
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Instead we shall focus on an inevitable consequence of reasoning with incomplete information
or by default, namely mistaken or erroneous beliefs.

Error is intimately related to one feature common to all default reasoning formalisms:
non-monotonicity. Intuitively, non-monotonic reasoning amounts to this: a reasoner with
less knowledge or information might draw conclusions which that same reasoner with more
information might not draw. That is, the acquisition of information might invalidate the
application of a default rule. In the case of a human reasoner this is especially apparent when
we consider reasoning as a process occurring in real time. We often draw a conclusion, say «,
based on a set of beliefs, T', and later come to believe T' U {8} from which —« follows. When
this happens, we sometimes note our mistake (e.g., that a was believed in the first place and
why was it wrong to do so) and take some appropriate corrective action (e.g., stop believing
a and the consequences of T'U {a}). Here « is an example of a former mistaken belief, as the
term is intended in this work.

Though it is most familiar to the AT community, default reasoning is not the only cognitive
process that gives rise to error and mistaken beliefs. Perception-based beliefs, those constructed
directly from one’s percepts (e.g., the percept of a particular color) without the apparent
intervention of any conscious reasoning process, may be misleading. This 1s common in the
event of illusion, unusual lighting conditions, poor acoustics, and the like. (See the discussion of
the appearance-reality distinction in section 1.5.1.) Other beliefs, those formed in accord with
information supplied by others, may be erroneous when the source is deceitful, misinformed,
or has in mind a different meaning (for a word or concept, etc.) than the receiver of the
information understands. Reasoning-based beliefs may be erroneous or mistaken when the line
of reasoning is fallacious or (sound) reasoning is reliant upon other mistaken beliefs. Still other
false or mistaken beliefs arise because of faulty recall of past facts and events or subconscious
affirmation of facts and events occurring only in dreams, and so on. In short there appear to
be a multitude of ways that the human cognitive system is subject to the occasion of erroneous
beliefs. Whether the reason for this susceptibility is an evolved efficient means of jumping to
reasonable, usually trustworthy, beliefs that aid in survival, as might be the case in default
reasoning, or a slight hardwiring mixup or faulty storage-retrieval process in the brain, as

might be the case when, on the odd occasion, dream events are taken to have occurred during
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the dreamer’s conscious state, is not so much at issue here. Rather we are concerned that
the human cognitive system, the only known example of an intelligent reasoner, s subject
to error. Moreover, the inaccuracies and frailities of that system, the multitude of sources of
misinformation, incomplete information, deception and illusion that any intelligent system is
likely to confront all point to a seemingly inescapable consequence: intelligent artificial agents
will be forced to confront mistaken beliefs.

The AT community has already seen the need to build belief revision modules into “intel-
ligent” programs as a fix for default-reasoning-based-errors. For instance, the, truth main-
tenance system (TMS) of [Doyle, 1979] and its assumption-based counterpart (ATMS) of
[deKleer, 1986] are systems tuned to revise and manage belief sets in accord with an artifi-
cial reasoner’s temporally changing base of available information, perhaps somewhat like the
cognitive belief maintenance that people continually need to perform in response to noted
erroneous beliefs. A traditional system such as TMS is a program which works together with
another, say theorem proving, program. The job of the belief revision module might be to
keep track of beliefs that are currently labeled “IN” (presumably, believed) and those that are
currently labeled “OUT” (presumably, not believed) — perhaps regardless of whether they had
been previously held — and revise the sets “IN” and “OUT” as necessary, in accord with newly
acquired information as supplied by the theorem prover or (simulated) observation module of
the modeled reasoner. Significant as this traditional Al version of the belief revision process
is to commonsense reasoning, it neglects any kind of reasoning about mistaken beliefs, which
turns out to be a critical aspect of commonsense reasoning. The ultimate fate of the mistaken
belief is retraction from the current belief set, “IN”. What of the knowledge that the belief
was once held? That information may not be available to the modeled reasoner. And what of
the knowledge representing what was wrong with the erroneous belief in the first place? That,
too, is information not available in traditional systems. In short, they have no conception or
view of their past, and in particular, of their past errors.

On the other hand, humans are often aware that their apparently false and questionable
former beliefs were once thought to be true, and often have knowledge about what was wrong in
believing them in the first place; all this is in addition to correcting their errors (i.e., traditional

belief revision). Error itself is a topic that we are able to reason about.

12



Cognitive psychologists believe that by the age of 3 to 5 years children acquire the ability,
or have sufficiently refined the cognitive mechanisms, to do just this sort of reasoning. Young
children develop the facility to compute mental belief states based on simultaneous represen-
tations of both a former (or fictional, etc.) view of the world, represented as once believed
correct (or pretended, in the event of pretense, etc.) and which is currently believed to be
mistaken (or fictional | etc.), and a currently accepted view of the world, represented as the
accepted actual state of the reasoner’s world [Astington and Gopnik, 1988]. This allows chil-
dren (and adults) to perform some metacognitive tasks that are very basic to their intelligent
understanding of the world and their role in it, thereby making possible the very useful ability
to explain behaviors that had been (mis-)guided by apparently mistaken beliefs, including the
behavior of accepting other beliefs as true. (A brief discussion of these metacognitive tasks,
in which examples are given, appears in section 1.5. For more on this see [Astington et al.,
1988].)

In broad terms the position advanced in this thesis is that intelligent robots, and other
formal reasoning systems, will inevitably be confronted with erroneous beliefs, and therefore
the truly intelligent robot will be equipped to consider the possibility of error. Moreover it
will be able to represent and reason about its own past beliefs, whether those beliefs are taken
to be mistaken or not. It will question some truly false beliefs and not question others. It
will even question and doubt some true beliefs, much as we do. All of this is necessary if it
is to have an intelligent understanding of the world and its role in it."! In particular, a truly
intelligent robot must detect and represent certain of its own past beliefs as being apparently
false or questionable, recover from its mistakes by revising its beliefs, and, at times, come to
understand why a mistaken belief was held in the first place.

A first step toward endowing artificial reasoners with this facility, and the one advanced
here, is a formal simultaneous representation of two views of the world; a past mistaken view,

and a current accepted view.

1 This in addition to the robot’s need to reason about other’s correct and mistaken beliefs.
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1.2 A Note on Terminology

Before proceeding it will be helpful to offer an intuitive feel for some terminology that will be
used throughout. This will all be made more precise shortly but this introduction will serve to
allay some confusion. The following terms will repeatedly be used: current (or present), past,
former, and mistaken (or erroneous) beliefs.

Current beliefs are regarded as those beliefs which are held “now”; past beliefs are those
beliefs which an agent once held (and possibly still holds “now”); former beliefs are past beliefs
which are not currently held. A mistaken (or erroneous) belief is a past (and possibly former)
belief which the agent currently believes was produced in virtue of some past mistake, such as
a perception-based identification error. For an agent to believe one of her former beliefs was
mistaken is a psychological stance independent of the actual truth or falsity of the belief in
question. Like any other belief, the judgement of truth or falsity here is seated squarely on
the shoulders of the agent of interest, not on an outside party who is privy to more or less
information about the world. There i1s no concern here with an omniscient oracle’s verdict
on the veracity of a reasoner’s beliefs. Rather, the concern i1s with the psychological issue of
what a reasoner takes to be real or correct as opposed to false, illusory, etc., and not what
is actually true or false.? Note also that “true” or “false” need not be permanently assigned
to one’s beliefs. To the contrary, we change our minds about the apparent correctness of our
beliefs continually as we learn about the world.

From time to time we will also refer to an agent’s view of her own past reasoning. What
comprises this view? Beliefs: current beliefs about past (and former) beliefs.

Beliefs of all sorts can be regarded as propositional attitudes which bear heavily on agent
action and intentions. When one believes that «, she generally will act in accordance with
that belief. If T believe I see a wolf up ahead, then if possible I'll avoid it. If I see my friend
deliberately walking toward the wolf, then her actions may cause me to think that she isn’t
afraid of wolves, or she doesn’t see it, or maybe she thinks it’s a dog, not a wolf; and so on. My
belief that the critter is a wolf becomes a past belief as time passes. When my friend convinces
me that the animal up ahead is actually a dog, my thought that it is a wolf becomes a former

belief. Now, because I view my past belief as mistaken I, too, no longer fear the animal.

2See [Barwise and Perry, 1983] for a discussion of the related issues of cognitive and external coherence.
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The description above of a view of one’s past 1s mostly open-ended. A view may include,
at least: (i) information about which beliefs were once held and, perhaps, how they came to
be held; (ii) information about certain beliefs which were not held; and specifically that they
weren’t held at a given time (i.e., time-situated negative introspection); and (iii) information
about what later seem to be mistaken. The concern in this dissertation is mostly directed at the
last of these components, though not to the exclusion of the others. The sort of view we have in
mind contains information useful for describing, explaining, reasoning about, understanding,
and so on, the mistakes that one sees reflected in their past beliefs.

One component that such a view may contain is simply that a given belief was once, but

is no longer, held. A pseudo-formal paraphrase of the above wolf story is:
Bel(I,3aWolf(z) A UpAhead(z), be fore(now)) A —Bel(I,3xWolf(z) A UpAhead(z), now)

i.e., “T previously (but no longer) believed there to be a wolf up ahead.” Even though infor-
mation like this is useful to a reasoner, it alone, is insufficient for many purposes. We shall see
in chapter 3 what more is needed.

A caveat: we will shortly discuss “false beliefs” as that expression i1s sometimes used in

cognitive psychology. That use differs from the above notion of mistaken or erroneous beliefs.

1.3 A Motivating Example

Beliefs that are later judged to be mistaken are quite prevalent in commonsense reasoning. It
shouldn’t take much to convince one of that. The story about the wolf in the previous section
might be enough to do the convincing, but of what significance is the use of having a view
of past mistakes? Consider another motivating example which should be all too familiar to

nearly everyone who has ever owned an automobile.

The Mistaken Car: Most of us have had the disconcerting experience of misidenti-
fying our car in a parking lot. You approach a car in the lot thinking that it is your
own, but when you try to unlock the car’s door you fail. After convincing yourself
that you are using the correct key you might notice an unexpected dent in the car’s
fender or some unfamiliar personal belongings inside the car which leads you to

suspect that the car is not your own, but a look-alike that, perhaps, you hadn’t
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even known existed before now.®> Once you have enough evidence to support this
growing suspicion you come to believe that, indeed, you had mistaken another’s

car for your own.

We will not delve too deeply into this example for the moment. Rather its purpose here is
to enable a discussion of some of the implications that might result if we were unable to reason
about our past beliefs. The consequences would be more than an inconvenience or annoyance
in the commonsense world; they can be disastrous — consider that the misidentified car’s owner
may be prepared to use a gun if she does not receive a satisfactory explanation of what appears
to her to be your thievious behavior. Providing such an explanation requires reasoning about
your past belief; that you thought this was your car. Having no such reasoning capability
means having no explanation.

In addition to being unable to explain many of their behaviors, reasoners without the
necessary mechanisms to recall their past errors might be mistaken belief recidivists: they
might repeat the same mistake over and over. (Or perhaps they would come to rely on
some kind of “unconscious” learning.) “Conscious” (or explicit/declarative) learning from
past mistakes seems to presuppose that one take note of and recall those mistakes.

One counterpart of repeated mistakes might be that commonsense reasoners would find it
difficult to restructure their defaults of typicality about the commonsense world. Consider the
course of development of a child’s defaults about birds: After repeatedly hearing her parents
say “Look, there’s a cardinal!” | while pointing to a mature male cardinal, the child may come
to believe that all cardinals have bright red feathers. The child, though now able to correctly
identify some cardinals, will likely misidentify the female and immature of the species. Upon
seeing some female cardinals, misidentifying them, and being told that she has misidentified
them, she ought to begin to suspect the validity of her belief regarding cardinal color and
come to believe the default “cardinals are typically red”. Indeed, upon seeing enough female

cardinals she ought to replace her initial belief with the more accurate default “cardinals are

3That is, you hadn’t known that this particular car existed even though you might well have believed that
look-alikes for your car exist. The idea here is that upon the encounter with the misidentified car you had no
identifying expression or name for the car, or more precisely that you are ignorant of having a name for the
car. This assumption is made only to make the example more robust in later discussions.
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typically red or russet”.* A reasoned change in belief like this can occur by virtue of the sheer
number of misidentified cardinals, it seems, only if the child can note that her initial belief 1s
erroneous.

In short, there seems to be a basic epistemological advantage gained from one’s ability
to reason about her mistaken beliefs: it helps her to better know her world. Flavell, Green
and Flavell [Flavell et al., 1986] in their work on the development of the appearance-reality
distinction mechanism in children, a metacognitive stance akin to reasoning about mistaken

beliefs, say:

The distinction arises in a very large number and variety ecologically significant
cognitive situations. In many of these situations, the information available to us is
insufficient or misleading, causing us to accept an apparent state of affairs (appear-
ance) that differs from the true state of affairs (reality). We are variously misled
or deceived by the information receive from or concerning people, objects, actions,
events, and experiences. (p.95) ...all systematic pursuit of knowledge presupposes
at least some awareness of the appearance-reality distinction. ...Although we
may not know that appearances have in fact deceived us in any specific cognitive
situation, we do know as a general fact that such deception is always possible.
That is, ...we have acquired the metacognitive knowledge that appearance-reality

differences are always among life’s possibilities. (p.96) [Flavell et al., 1986]

Reasoned change in belief then seems essential.

1.4 Goals

In addition to giving a preliminary understanding of the sort of view of one’s past that we
have in mind here, the Mistaken Car story should also suggest several provocative questions,

including:

4Even if she has never been told explicitly that the female cardinals have russet feathers and the male
cardinals have red feathers. We call defaults of the form “P’s are typically Q’s” where Q is a disjunction
and for every shorter disjunction S formed from the (disjunctive) components of Q, the (sub-)default “P’s are
typically S’s” is rejected range defaults. Range defaults are discussed in chapter 7.
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(1) How does one come to believe that « in the first place?
(2) How does one come to suspect, and then decide, that a belief is mistaken?
(3) How does one determine exactly what error has been made?
(4) How does the situation unfold, representationally, in one’s head?
(5) How does one’s belief set change during the unfolding of the situation?
(a) Which beliefs are modified and how?
(b) Which beliefs are retracted?

The primary aim chapters 1-5 of this dissertation is to begin to develop answers to these,
and related, questions. This means we must come to understand precisely what are the pro-
cesses of coming to have a view of one’s past and of reasoning about former beliefs, what are
the cognitive requirements for them, and what faculties the ability to have such a view and
reason about error confers upon reasoners. To this end we start by drawing together research
from various disciplines that touch on the general topics of belief and error. Once we have
(some of) the answers to the above questions we can begin to develop formal computational
tools and techniques for representing one’s past and reasoning about former beliefs. We will
see that the basic formalism must provide a reasoning agent with (1) a dynamic internal model
of the agent’s evolving beliefs about the world, and (2) a flexible formal language with which

the agent can reason about that model in relation to her current view of the world.

1.5 Cognitive Psychology

Perhaps the largest body of extant literature concerned with an agent’s view of her own (and
other’s) beliefs comes from developmental and cognitive psychology. Much of the relevant
research reported in that literature is an outgrowth of the seminal work done by Flavell,
Green, and Flavell on the development, in young children, of the metacognitive ability to
make the so-called appearance-reality distinction (ARD)[Flavell et al., 1986]. The outgrowth
of literature i1s aimed at understanding the acquisition and development, in young children,
of the ARD and at least three other, seemingly related, metacognitive tasks or abilities. (See
[Astington et al., 1988] for a collection of some of the recent literature on these metacognitive

tasks.) The apparent relationship between at least three of these four tasks manifests itself
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most notably in their near simultaneous development in children by age 3 to 5 years.
The facility humans have with these tasks is a motivational force for the current work. One
of the tasks, representational change, is in evidence in the Mistaken Car story. Let us briefly

look at these tasks.

1.5.1 Four Metacognitive Tasks

Representational change refers to one’s ability “to understand that one’s representation of an
object or a phenomenon has changed, and to remember the previous representation” [Astington
and Gopnik, 1988] (p. 193). A paraphrase of a representational change (belief) report, as given
by Astington and Gopnik (p.193),is: “I used to think z but now I know y”.5 Thus a report of
representational change is a report stating that one’s own former belief is, at the time of the
report, taken to have been mistaken, at the time the belief was held.

One battery of psychological experiments that test for the representational change faculty
in young children is illustrated by the following: A child is shown a Smarties® box and is then
asked, “What 1s inside the box?” The usual reply, “Smarties”, indicates that the child has
naturally come to believe that Smarties are in the box. Then the child is shown that the box
actually contains a pencil. Once shown the pencil, the child is asked the question, “What
did you think was in the box before you saw the pencil?” The answer “Smarties” is taken to
indicate that the child has developed the cognitive capacity for representational change; the
incorrect response, “a pencil,” indicates the opposite. The children who answer incorrectly
are thought to lack some aspect of the cognitive machinery necessary either to compute,
represent, or report on their own previously held mental belief states when those states differ
from currently held belief states. “They have no understanding of representational change.
That is to say, they do not know that their beliefs have changed.”[Astington and Gopnik,
1988] This particular experiment, and others like it, have been performed on children aged 3-5
years. The youngest of the experimental subjects tend to “fail” the test for representational

change capacity, i.e., they answer “a pencil” to the second question. Subjects between 4 and

54T used to think x, but now I belicve y” seems more appropriate. Likewise the modality of knowledge
should be replaced by that of belief in the false belief and ARD reports given below. The paraphrases for false
beliefs and ARD reports also come from Astington and Gopnik. The paraphrase for pretense reports (also
given below) is our own.

6 “«Smarties,” the candy.
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5 years of age do better, indicating a developmental acquisition of the cognitive capacity for
representational change.”

False belief(not to be confused with “mistaken belief” as discussed earlier), as the term
is used in the psychological literature (see [Wimmer and Perner, 1983]), the second related
metacognitive task, differs from representational change in that the presumed erroneous belief
is attributed to another person.® A paraphrase of a false belief report is “He thinks z, but I
know y.” The set of experiments that search for the false belief faculty and its development
in children includes some that are very much like the representational change experiment just
described. For instance, a child may be shown a box of Smarties and its contents, a pencil,
and then asked what another child would think is inside the box if that other child were to be
shown just the outside of the box. The child that responds, “a pencil”, is taken to lack the false
belief faculty as she is judged incapable of representing or computing another child’s mental
view of the world that contrasts with her own. On the other hand, the response, “Smarties”,
is taken to indicate a developed false belief faculty.

The third related metacognitive task, making the appearance-reality distinction (ARD)
(see [Flavell et al., 1986]) is evidenced by the report: “It looks like z, but really it’s y.” The
canonical ARD illustration occurs when a white card is passed behind a red filter, making the
card appear red to an observer.® Individuals able to make the ARD understand that the way
something, be it an object or situation, looks or sounds (or more generally, appears) may differ
from the way it is believed to be. Those that lack the ability do not accept or consider, as
belief, the “correct” state of the world when appearances contraindicate that state.

Pretense, or pretend play, (see [Leslie, 1987]) is the last of the related metacognitive tasks
to be considered here. Pretense is characterized by an intentional fabrication or distortion of

facts, objects or events paraphrased by the report: “I pretend z, but I believe y.” A child may

7Other plausible explanations need to be discounted. For example, that the children who fail this test have
not yet fully grasped the past tense. They may understand the question “What did you think was in the box
...”" as “What do you think is ...". (Bonnie Dorr, personal communication)

8 There is also a temporal, or tense, aspect differentiating false belief from representational change that may
be significant to the interpretation of the empirical results in psychology. Specifically, in the case of false belief,
the incorrect view of the world and the correct view of the world, from the perspective of the agent of interest,
are simultaneously taken to be accurate by different people. In representational change, the two views are
believed to be correct only at different times.

9See [Maida, 1991] for an Al approach to a colored-card-under-various-lighting-conditions problem. Maida’s
work is akin to the psychological notion of false belief as discussed in the previous paragraph, from the
perspective of an outside observer who maintains a mental model of some another reasoner’s beliefs.
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pretend that a toy tea set is real or that an empty tea cup is full; that a banana is a telephone
or that an imaginary friend is his constant companion. But the child does not assent to the

pretense outside of the stipulated pretend context.

1.5.2 Representation

An argument can be made for a connection among the four metacognitive tasks discussed
above, namely performing each requires one to associate some (apparently) correct view of
the world with some (apparently) incorrect view of the world. The surface expression of the
reports associated with the tasks (i.e., “T used to think z, but now I know y,” “He thinks z,
but T know y,” etc.) makes vivid this correct-view/incorrect-view pair and has been taken by
some researchers as an indication that the four tasks share a common underlying cognitive
representational scheme. Indeed, Leslie ([Leslie, 1987] and [Leslie, 1988]) has developed a rep-
resentational theory, based on a correct world view/incorrect world view pair, that seemingly
accounts for the four related tasks.

There is empirical evidence to suggest that this cognitive relationship exists between at
least three of the four tasks. The evidence comes in the form of the above-mentioned near
simultaneous acquisition of the tasks in children by the age of 3 to 5 years (see, for example,
[Wimmer and Perner, 1983] and [Flavell et al., 1986]). This evidence lends credence to the
theory that the common representation scheme necessary for these tasks and its associated
(cognitive) computational machinery are thought to be in place in children aged 3-5. The
earlier acquisition of the fourth ability, pretend play, suggests further that the representation
scheme 1itself may be in place in children by two years of age, but the mechanism needed to
calculate (or report) the appropriate mental state attributions for ARD reasoning, etc., may
not fully develop for another 1-3 years. That is, computation of pretend play mental states
may be more elementary than those of the other metacognitive tasks. (See [Leslie, 1987] and
[Leslie, 1988] for a detailed analysis of this view).

Another relationship among the four metacognitive abilities discussed here, one that is
hinted at in the literature but to my knowledge has not been made explicit, concerns the
form that incorrect world views may take. There seems no principled reason why any of

the metacognitive tasks should differentially constrain the nature of their respective incorrect
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world views. From any correct/incorrect ARD world view pair one ought to be able to form
the basis of pretense, and vice versa. (Likewise for any other two of the tasks.) So for example,
take any typical ARD scenario and give it a pretense twist: one can easily pretend that a white
card is red without needing a red filter to pass in front of it. Similarly any standard pretense
scenario, like pretending that an empty tea cup is full, can be imagined as an ARD story:
deceptive appearances may fool one into believing that that a tea cup is full when, in reality,
it is empty. It is worthwhile, then, to study reasoning that contrasts two views of the world.
This observation is not in and of itself surprising, but it does have a practical consequence:
a single taxonomy of incorrect world views can be used to characterize the nature of the
mistaken beliefs that might be the foundation of any of the four tasks. One such taxonomy
is provided in [Leslie, 1987] and [Leslie, 1988]. There three fundamental forms of pretense,
each corresponding to a different cognitive state of affairs or incorrect view of the world, are
identified. Each form, so Leslie argues, corresponds to one of three well known properties of
attitude reports or sentences of mental state terms.'®

The first type of pretense situation, called object substitution, is characterized by one’s
(cognitive) use of some object to stand in for a different object. For example, a child may
pretend that a pillow is a dog, or a banana is a telephone.'’ The second form, attribution of
pretend properties, occurs when one imputes pretend properties to an object or situation. For
instance, a child may pretend that an empty tea cup is full. Creating imaginary objects, the
third form of pretense, occurs when one invents and attributes characteristics to an imaginary
object. For example, a child may pretend that she has an imaginary friend.

For Leslie’s purposes, object substitution, attribution of pretend properties, and the cre-
ation of imaginary objects cover the range of incorrect world views. We will exploit the idea
that Leslie’s taxonomy of pretense can be generalized, and in chapter 3 use it to categorize

what we are calling mistaken beliefs.

10We need not be concerned with the specifics of Leslie’s discussion on this matter here. See [Leslie, 1987]
for details.

' The banana/telephone example is taken from Leslie [Leslie, 1987] and [Leslie, 1988] as is the “full” empty
teacup example.
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Chapter 2

Belief: Background and Some Definitions

Belief is one of the so-called propositional attitudes or mental states (desire, fear, etc. are oth-
ers) which one may direct toward some mental content. A particular type of mental state (i.e.,
believing, knowing, etc.) can be distinguished by the psychological function(s) it serves. Beliefs
function as a basis for reasoning (inference) and, together with desire, form the underpinnings
of agent planning, action, and intent.

It would be nice to discuss belief reasoning under the presumption that beliefs themselves
are well understood but unfortunately that simply is not the case. Of particular concern is the
uncertainty about the nature of belief representation — how beliefs are represented inside the
“head” of a cognitive agent (see [Cummins, 1989] for a brief discussion of some possibilities).

One theory has 1t that beliefs are explicitly represented inside the agent’s head in some
mental language (or “Mentalese”) [Fodor, 1979]. In AI it is not uncommon to make this
representational assumption and to choose a first-order language (with quotation) to represent
the content of agents’ beliefs ([Haas, 1986], [Maida, 1991], and [Perlis, 1985]). Reasoning, or
inference, under this scheme, is the mental manipulation of the syntactic objects that encode
beliefs. This belief representation assumption' is made here.

The representational issue aside, we can now take a closer look at the nature of the belief
systems we will consider, noting other assumptions along the way. Then, in chapter 3 we will
examine some of the kinds of mistaken beliefs that these systems may come to believe they

have held.

1This characterization has been adapted form Maida [Maida, 1992] though he calls it the knowledge repre-
sentation hypothesis.
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2.1 Interactive Belief Systems

Beliefs are embedded within belief systems which, in their simplest form, are taken here to
comprise a belief set (often called a knowledge base) and a set of inference procedures which
operate on the belief set. We shall consider a somewhat more complex system which we call
an interactive belief system (IBS). (Alternately the terms “agent” and “reasoner” will be used
to an IBS.) An IBS is a belief system which can interact with the external world through its
observation module (to be described presently). Tts belief set is updatable in “real-reasoning-

time” in the following ways:

1. Beliefs may be acquired through “observation” — a term intended to include more than

visual sensing — as the agent is presented with external data.

2. Beliefs may be acquired via inference performed upon the expressions representing (al-

ready held) beliefs.
3. Beliefs may withdrawn from the belief set.

Figure 2.1 shows a model of a rudimentary IBS.

2.1.1 Observation

The first means of belief update - observation - is taken to be this: data are sensed through
the agent’s sensory devices, sent to a recognition module, in which mental tokens representing
worldly objects and concepts familiar to the agent are “selected” and subsequently used in the
construction of perception-based beliefs.

An assumption here — which we can call the background tokening assumption — is that
this selection process, indeed the entire recognition process, is not something over which the
inference engine has direct control. Rather it is a background computational process. When
an agent thinks he sees his car, an existing mental token of his car might be used directly in
the construction of the appropriate beliefs. An alternative is to assume that some other new
mental token is generated, which denotes the observed car, over which the inference engine
can operate. Say this token is percept_12 and say the agent’s particular existing mental token

for his own car is me (for “my car”). Then, a reasoned view would cause the two to become
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Figure 2.1: A rudimentary interactive belief system (IBS).

linked in the belief space through some sort of equality assertion, e.g.,
Eq(percept_12, mc)

This latter approach is taken in [Maida, 1992]. A computational drawback is that it opens up
the floodgates to a multitude of mental tokens that must be stored, evaluated, and reasoned
about. When a person (or a robot) sees his car up ahead and walks toward it he is likely to
look askance periodically to make certain that he doesn’t bump into some other object along
the way. As he moves, his viewing angle relative to the car changes, each potentially evoking
a different percept token in Maida’s sense. Are we to suppose that each time he glances back
at his car he first simply sees a car-object, which he tokens as such, and then equates it to his
car (and hence all other tokenings of his car)? Or does he adopt a view that there is always

just one (relevant) car during the scenario?
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The background tokening assumption does not imply that agents always correctly identify
and token those objects which are presented to them, i.e., those objects to which their attention
has been called; rather only that the identification, correct or incorrect, occurs at a “lower
level” than inference. If and when an object of presentation is misidentified and the agent
comes to see this, then a more appropriate token will, for the agent, come to be associated
with that object of presentation. (The themes of presentations and objects of presentation will

be addressed in more detail later.)

2.1.2 Inference

Beliefs acquired via the second means, mental manipulation of the contents of the belief set,
rely on a set of inference procedures which, when applied, may alter the belief set.
A principle of Harman’s (below) suggests what kind of inference procedures are embedded

in belief systems.

Recognized Implication Principle: One has a reason to believe P if one recognizes

that P is implied by one’s view. (italics added) [Harman, 1986] (p.18)

The key here is that commonsense reasoning is largely governed by inference procedures which
rely on recognition, not only truth. That is, many facts may follow logically from our beliefs
but the derivation of some are too complex or long for us to follow through. One way to see
this is to identify Harmon’s recognizability with a single-application version of modus ponens
(MP). Here a reasoner only recognizes very short (“one-step”) chains of implication. Suppose
that a reasoner uses MP to immediately infer the proposition B from A and A — B.2 He
does so because he is able to “recognize” that B is implied by the antecedent beliefs. However
he may not in general use MP to immediately infer any  which logically follows from a set
I' of his beliefs. For instance, R may not follow directly, or “in one step”, from P, @, and
P — (Q — R). Instead an agent may first infer only @) — R, because this one-step implication
is recognizable. With this newly acquired belief available, he may subsequently use it as an
antecedent for further inference. If @@ happens to still be among the agent’s belief set at that
time, then he will recognize the implication and infer R. We will look more closely at this idea

of step-wise reasoning in chapters 3-5.

2Intuitively, “immediately” can be taken to mean from one moment to the next. I will be more precise later.
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2.1.3 Belief Retraction

Without belief retraction the fallible agent would forever remain quandried once she notices
that her belief set is inconsistent or otherwise contains a mistaken belief. Al in general has
seen the need for such non-monotonicity in reasoning systems.

Notice that once retracted, a belief is not necessarily gone forever. An agent may suppress
a belief — retract it pending further evidence establishing its credibility or denial — and then
reinstate 1t if and when that credible evidence becomes available.

Forgetting, denial, and amnesia are all unintended, or at least unreasoned, belief loss (re-
traction?) mechanisms. We will ignore these mechanisms and consider only reasoned (deliber-
ate) belief withdrawal or retraction. Here belief retraction will typically be undertaken once a
reasoned view suggests to an agent that the belief is somehow mistaken or no longer trustwor-
thy. This might be due to an inconsistency, a faulty belief justification, or an observation-based

misidentification error.

2.2 Beliefs and Time

We suggested that IBS’s are situated in time. Let us be more precise about this and in turn
more precise about what we consider current, past, and former beliefs.

We can use the ternary predicate symbol Bel to state that a proposition resides in an agent’s
belief set at a particular time. When we write the belief expression Bel(a, «, ) we intend a to
denote a reasoning agent who holds the belief proposition denoted by (the quoted expression)
a, at attitude time i. Expressions of the form Bel(a, a, i) are be called belief reports, as are
English language renditions of such expressions. For example, Bel(John,‘tall(Mary)’,t1) says
that at time ¢; John holds (held) the belief that Mary is (was) tall.

The idea behind attitude time is relatively straightforward: Time-situated reasoners have
beliefs at various points in time, and it 1s often important to take account of these time points
for a faithful representation of those beliefs.

The specific values that attitude time parameters can take may be determined by a clock
external to the reasoning agent (e.g., days, seconds, hours) or they may be determined with

respect to a reasoner’s internal clock (e.g., the time it takes the reasoner to complete an
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“inference step”). This latter approach is the one we take here, with inference steps denoted
by non-negative integers.
Let a be a reasoning agent, o a wff, and ¢, ¢;, and t3 € N denote reasoning steps (in time),

then:

Definition 2.1 « is a current belief of a’s at time ¢ whenever Bel(a, o, ).

Definition 2.2 « is a past belief of a’s at time t; if there exists a time ¢35 < ¢; such that

Bel(a, a,ts).

Notice that a past belief at time ¢ may also be a current belief at time . Former beliefs differ

from past beliefs in this aspect:

Definition 2.3 « is a former belief of a’s at time #; if = Bel(a, ,t1) and 3tz < ¢; such that

Bel(a, a,ts).

In particular if it is now time ¢ and Bel(a, a,t), then « is now current belief of a’s. Similarly
for a’s past and former beliefs.
Another way to view this, and the one that will be used in chapters 3 - 5, is to look inside

a given agent a’s belief space as it evolves over time. Let

1o, g, ...

denote that at time ¢ the agent believes, perhaps among other things, « and 3. Then « are 3
are current beliefs of our agent at time i, i.e., from the “outside looking in” we would assert
both Bel(a,a,i) and Bel(a, «, 1).

If a also believed v at time 7 — j, forz > 5 > 0, i.e.,

i-Jiy, ...

1o, ...

then, v is a past belief of a’s at time ¢, and if 4 is not among those beliefs at time 7 (i.e., v is

different from « and 7 is different from g, etc.) then 7y is a former belief of a’s at time i.
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2.3 A Note on the Disposition of Beliefs

Harman considers three different dichotomies of belief that are worth mentioning in relation
to Bel [Harman, 1986]. The three are: implicit/explicit, occurrent/dispositional, and con-
scious/unconscious.

An agent believes something explicitly if her “belief in that thing involves an explicit mental
representation whose content is the content of that belief” [Harman, 1986] [pp. 13]. That is,
an explicit belief is one whose content is “written” down in the reasoner’s Mentalese. Implicit
beliefs are not represented in this way, rather they follow from the agent’s explicit beliefs in
accordance with some principle(s) of reasoning.® For instance one may believe explicitly both
that « and that o« — 3 yet believe only implicitly that 3. Bel, as used above is intended to
express an agent’s explicit beliefs: Bel(a, a,t) if and only if « is an explicit belief of a’s at time
t.

A “conscious” belief, according to Harman, is one that an agent is aware of or can “easily
become aware of simply by considering whether one has it” [Harman, 1986] (pp. 13-14).
“Unconscious” beliefs are those that are not conscious. Both implicit and explicit beliefs,
according to Harmon, can be either conscious or unconscious. Bel alone is not sufficient to
distinguish beliefs along this dimension. His example of an explicit unconscious belief is this:
“One might explicitly believe that one’s mother does not love one, even though this belief may
not be retrievable without extensive psychoanalysis” [Harman, 1986](p. 14).

Occurrent beliefs are those that are “either currently before one’s consciousness or in some
other way currently operative in guiding what one is thinking or doing” [Harman, 1986](p. 15).
On the other hand, a belief that is not occurrent but is potentially occurrent is dispositional.
Not all explicit beliefs are occurrent. Only those that are in the current “working set” are,
the rest are dispositional. Consequently Bel alone is not sufficient to characterize a belief as
occurrent or dispositional.?

In this work we focus on what Harman’s explicit beliefs, particularly as they change in

status from current to past, possibly to former, and possibly back to current again, etc.

3Levesque discusses this dichotomy formally [Levesque, 1984].

*The memory model described in [Elgot-Drapkin et al., 1987] makes some headway into distinguishing
occurrent from dispositional beliefs.
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Chapter 3

Error: Background, Some Definitions, and

Some Preliminary Analysis

Imagine what 1t would be like never to know that you had been mistaken, that you
had held a false belief. This is not to say that all of your beliefs are true; you might
be mustaken, but when you realize that your belief is false, you change the belief,

and keep no record of your earlier belief.! [Astington and Gopnik, 1988] (pp. 193)

Just what would it be like if, once a reasoner came to distrust a past belief, she could take
certain appropriate actions to update her current set of beliefs, say by retracting the mistaken
belief, but then had no recollection of how the mistaken belief related to her current belief set?
We have already suggested some of the implications of such a limitation. Here we go into these
issues in more detail so that we better understand what it takes for an agent to more fully
correct her mistaken beliefs? We’ll see that traditional TMS-style belief revision, even together
with (mere) recall of former beliefs, is insufficient to account for all of the consequences of once
having held the belief. Indeed, we usually know more about our former erroneous beliefs than
this kind of historical information, and fortunately so. Specifically, we might come to know
what was wrong with holding the belief — that is, what exactly about the belief was wrong —
and why we came to acquire 1t in the first place. This information both aids in belief revision

and is useful in explaining behavior based on the mistaken beliefs.

1 Astington and Gopnik have not distinguished false from mistaken beliefs as I have. Their use of the term
“false belief” in this quote can be interpreted either way, though I choose to read it as “mistaken belief”.
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3.1 Overview

A theme which will emerge concerns a reasoning agent’s ability to exercise control of her
own reasoning process, and in particular over her language. Traditional Tarskian semantical
approaches to formal logic operate under the assumption that there is an a priori fixed domain
of objects, each of which is granted the “property” of existence.? Objects are referred to in wifs
of a given logical language by the use of a rigid designator [Kripke, 1980] (or set of designators)
that is (are) to be used only and always to refer to that object. Thus a traditional formalism’s
ability to represent and construct wffs, is directly related to its associated Tarskian ontology.

In contrast, a language for belief reasoning (to be used in commonsense domains) must be
flexible enough to reflect a reasoner’s shifting ontological perspective as time passes [McCarthy
and Lifschitz, 1987]. This is the case for natural language. For one, new terms denoting
objects and concepts periodically enter and sometimes fade from languages in general and
from a reasoner’s own personal lexicon as well. Additionally the meaning of words change for
us over the course of reasoning. And this is where error enters the picture.

One’s ontology will be altered when she comes to learn the truth about Santa Claus, but
the name “Santa Claus” need not be removed from her vocabulary simply because she comes
to learn that he doesn’t exist. Instead, the meaning of the term “Santa Claus” will change for
her, reflecting that she now believes that he doesn’t exist.

An agent may need to change her usage of an expression during the course of reasoning,
and yet be able to recall the old usage and reason about both new and old in the current
setting. An example that will receive attention in this chapter is the Mistaken Car problem
from section 1.3. Our focus is on the incorrect use of a denoting term. (“Incorrectly” in a
psychological sense, not in the strict referential sense.) When a reasoner sees what he thinks
is his car, me, in the parking lot space [ he comes to believe At(me, ). If the car is not in fact
his then, in a cognitively salient (but unwitting) sense, he has used the term mec to refer to two
different cars; his and the car seen. He must come to see both usages in order to understand
and correct his mistake.

Consider a more extreme example:

2Property is in quotes here in deference to the ontological argument — that existence cannot be predicated.
See [Hirst, 1991] for a review of the difficulties surrounding existence in knowledge representation.
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Agent 1: “Did you hear that John broke his leg?”

Agent 2: “No, really? That’s a shame!”

Agent 1: “Yes, and his wife now has to do everything for him.”

Agent 2: “Wife? John isn’t married. Which John are you talking about?”
Agent 1: “I’'m talking about John Jones.”

Agent 2: “Oh, I don’t know him. I thought you meant John Smith.”

This apparently mundane conversation hides some very tricky features facing any formal rep-
resentational and inferential mechanism, whether for use in natural language processing, plan-
ning, or problem-solving. For here occurs an implicit case of language control. As it dawns on
the two speakers above that they are using the name “John” differently they need to reason
about usage and adopt a strategy to sort out the confusion, e.g., by using last names, too.

The ability of a reasoning agent to exercise control of its own reasoning process, and in
particular over its language, has been hinted at a number of times in the literature. Rieger
seems to have been the first to enunciate this, in his notion of referenceability [Rieger, 1974],
followed by others: [Perlis, 1985], [Perlis, 1988], [McCarthy and Lifschitz, 1987], etc. The
underlying idea, as we conceive it here, is that the tie between linguistic entities (e.g., words)
and their meanings (e.g., objects in the world) is a tie that the agent had better know about
and be able to alter when occasion demands. This has a number of important commonsense
uses, which have been listed elsewhere [Perlis, 1991].

A treatment is called for which allows rational behavior via a logic to be able to change
usage, employ new words, and so on, much like our use of natural language. When a person
newly discovers or learns about an object she might have no choice but to refer to it with an
indexical or demonstrative expression like “that”, “this”, “he”, “she”, and so on. Alternatively
her discovery might be occasioned by a new word (or word usage) or name that she can
subsequently use to refer to the object.

The usual fixed language with a fixed semantics that is the stock-in-trade of AT and logic
seems inappropriate to this task. In these traditional semantical approaches to logic, objects
are a part of the logic’s ontology only if the predetermined language includes a term to denote

that object. This means that “newly discovered” objects, in the sense intended above, cannot

32



enter the ontology of an agent’s reasoning using such a logic. In the the remainder of this
chapter, I begin to develop the formal tools for reasoning about a particular type of perception-
based error: compression. This development will carry over into the next two chapters. Here we
propose “active logics” based on the step-logics of [Elgot-Drapkin and Perlis, 1990]. We apply

these active logics to the specific issue of terminological change vis-a-vis mistaken beliefs.

3.2 Process

A reasoned change in belief can be viewed as a four stage process.®> In the first stage the
reasoner simply acquires (i.e., assents to) a collection of beliefs. She may continue to hold
these beliefs for some time, acquiring new beliefs along the way, until some of these new beliefs
lead her to notice a problem (perhaps a contradiction) with her current belief set. This is
stage 2 of the process; the stage which initiates her reasoning about her mistake. In stage 3
she tries to tackle the particulars concerning her error, find which beliefs are troublesome, at
least temporarily suspend the use of the troublesome beliefs as a basis for further inference,
and try to discover what is wrong with the beliefs in question. Finally, in stage 4, she uses
the information gathered in stage 3 to re-establish cognitive consistency, at least to the extent
that she 1s unaware of any inconsistencies in her belief set. Here she is trying to revise her
belief set to reflect her most recent, coherent view of the world. This may involve taking a
more definitive stand on the previously suspended beliefs; some may be denied or rejected
while others are reinstated. This may also involve some sort of modification to the beliefs in
question. (We will see examples of this shortly.)

This process 1s sketched in figure 3.1. It is important to note that this process does not
unfold in a temporal vacuum. Nor does the process occur as in a temporal logic where reasoning
goes on in a timeless present about the past and future (see, for example, [McDermott, 1982]).
Instead, there is a notion of an ever changing now, together with an ever evolving set of
currently accepted beliefs, which provide the perspective from which to view erroneous (past)
beliefs.

Moreover, the tidy encapsulation of the process as described here should not be taken to

3The stages here are not to be confused with the steps discussed informally in the previous chapter and
more formally in the remainder of this work. It may take many reasoning steps to pass from stage to stage.
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Stage 1: Come to believe a1, ...ay, at some time ¢
Stage 2: Notice a problem with time ¢’s beliefs (inconsistency)
Stage 3: Identify the problematic beliefs
a. Find the «;’s to suspect and why
b. Suspend belief in those «;’s found in stage 3(a)
c. Initiate check to reject or reinstate each «;
Stage 4: Re-establish (apparent) consistency

Figure 3.1: Taking a view of one’s mistaken past beliefs.

suggest that reasoning about mistaken beliefs is a process with a sharply delineated beginning
and end. To the contrary, the process is continual and evolving. At times, even beliefs about

erroneous beliefs may themselves eventually come to be viewed as erroneous.

3.3 Recognizing an Error

One first becomes aware of a mistaken belief during stage 2. But how? One (logic-based)
approach to rationality suggests that we come to suspect an error upon noting competing or
incoherent beliefs, in a current belief set. That an inconsistency might, momentarily, crop
up during the course of commonsense reasoning should not be considered odd (though it
should be considered a signal to re-assess one’s beliefs). To the contrary, inconsistency seems
almost a hallmark of ordinary reasoning. Unlike traditional omniscient formal logics, human
reasoning is not deluged by the appearance of all possible wifs or beliefs once an inconsistency
arises.? Instead of every assertion and its negation “swamping” one’s set of beliefs, recognized
inconsistency tends to remain confined to a few offending beliefs. Once one uncovers an
inconsistency he might suspend the use of the offending beliefs (perhaps indefinitely) until he
hits upon a way to settle the dispute. If he finds the fault then the belief set can be revised
accordingly.

The process of coming to view a past belief as mistaken may be set in motion by a contradic-

tion in one’s currently held belief set. For example, at the moment that you try unsuccessfully

4Nor are the formal systems discussed in [Lin, 1987], [Priest and Routley, 1984], [da Costa, 1974], and
[Elgot-Drapkin, 1988] swamped by all logical consequences of an inconsistency.
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to unlock the door of a car that you have (mistakenly) taken to be your own, you may very
briefly believe both that your key unlocks your car door (it does!) and does not unlock your
car door (it does not unlock the door of the car you think is yours). This inconsistency may
lead you to re-evaluate and try to sort out the confusion. You may think the key is damaged,
or the lock is jammed, or you are using the wrong key. Regardless of the nature or outcome
of these speculations, the momentary appearance and subsequent notice of the inconsistency
sparked you into reasoning action.

One difficulty with using inconsistency to indicate a mistaken belief is that a full-blown
consistency check of (the deductive closure of) a set of wffs (representing a reasoner’s beliefs)
is in general an undecidable affair. Assuming a computational model of cognition, such a
test would place a stranglehold on real-time commonsense reasoning. Instead, we need a
more limited test which heeds the observation that commonsense reasoners may be unaware
of inconsistencies that logically follow from their beliefs, but if and when such awareness does
set in, one will strive to do away with the problem by revising her belief set. To put it another

way:

Recognized Inconsistency Principle: One has a reason to avoid believing things one

recognizes to be inconsistent. (italics added) [Harman, 1986](p.18)

3.3.1 The Step-logic Approach

Elgot-Drapkin and Perlis have developed formalisms, called step-logics [Elgot-Drapkin and
Perlis, 1990] [Elgot-Drapkin, 1988], which offer a cognitively plausible solution to the problem
of error detection via a decidable limited consistency check in the spirit of Harman’s Recognized
Inconsistency Principle.

Step-logic models reasoning as a one-step-at-a-time progression of inference and observa-
tion. Beliefs are represented at each step by a finite number of wifs. The limited test for
consistency that Elgot-Drapkin and Perlis suggest amounts to scanning through the agent’s
current finite belief set for a wif and its negation, i.e., some o and —a. This is the recognition
part of Harman’s principle; the reasoner is only “expected” to notice easy to recognize direct
contradictions. Other inconsistencies may persist unchecked but in a relatively benign fashion

because of the step-wise nature of the logic’s inference mechanism. The idea here is this: one
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might hold an inconsistent set of beliefs and not know it due to the sheer number or com-
plexity of those beliefs. If it turns out that an easily recognizable direct contradiction results,
then he’ll take note and the appropriate corrective action. Unnoticed inconsistencies are not
disastrous; the logics’ step-wise inference rules control the inference process so that belief sets
are not swamped with all of the logical consequences of an inconsistency, namely every wif.

Once the direct contradiction condition is met, other step-logic mechanisms (inference
rules) can be invoked to address the avoidance aspect of Harman’s principle. This includes
the non-monotonic disinheritance or retraction of the contradictands (and other troublesome
former beliefs).

Intuitively we can think of these logics as having time on their side. They afford the
reasoning agent the time to try to sort out problems in her belief set and to modify the set in
accordance with her most recently conceived view of the world.

In chapter 4 we will go into the technical details of step-logics. For now it is sufficient to
illustrate the idea. In doing so we will make more precise the “one-step” chains of implication
mentioned in section 2.1.2. The illustration involves our “step-at-a-time” version of MP. At
step ¢ the agent MP to infer 3 from a and a — § if the antecedents are current beliefs at step
t. The result of applying this rule is that 8 becomes a current belief at step 7+ 1.

Now suppose that P, P — @, @ — R, and R — —P (a deductively inconsistent set of
beliefs) are all current at some time ¢. Then our agent will infer @ at step ¢+ 1, by “one-step”
MP, but not R and not =P (at step ¢ + 1). If all of the agent’s beliefs persist from step ¢ to
t + 1, then R will become a belief at step ¢ 4+ 2 (from the step ¢ 4+ 1 beliefs @ and @ — R,
using modus ponens). If this process continues then both P and =P, a direct contradiction,
will appear at step ¢ + 3. At that point the direct contradiction can be noted and corrective

action taken.

3.4 Error types

Inconsistency may indicate that a past belief is mistaken, but just what might the mistake
be? Leslie’s [Leslie, 1987] taxonomy (see section 1.5.2) offers a clue. A belief may mistakenly
reflect an object misconception, the misattribution of a property, or the presumed existence

of a non-existent object. For the remainder of this chapter we will mostly consider the first of
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these and begin to develop the formal tools for reasoning about mistakes of this kind, which

will carry over into the next two chapters.

3.4.1 Object Identification Errors: Compression and Dispersion

There are at least two ways in which the misidentification of an object may be reflected in
one’s beliefs. One is by “compressing” a denoting term and the other is by “dispersing” a set
of denoting terms.® An instance of a compression-based identification error is characterized by
a reasoner’s use of a singly denoting term to refer to more than one object.® The cognitive flip
side of compression is dispersion. A dispersion-based object identification error occurs when
a reasoner mistakenly takes one object to be more than one object. This is reflected in an
agent’s belief set when she uses more than one singly denoting term, terms that she thinks
to denote different objects, to refer to a single object. Let us now look at compression and

dispersion in a bit more detail.

Compression

Our Mistaken Car story illustrates a compression-based error of misidentification. Let me be
the mental token that the reasoner in this story uses to denote his car. When he spots the car
he believes to be his in the parking lot, say in spot [, then he will come to believe At(me, ).
In this expression me, unbeknownst to the reasoner, is serving a dual role by referring, in a
sense, to two different cars; his own and the one in spot [. This i1s a psychological claim. The
reasoner has mentally confused me with another car and this confusion is reflected by his use
of mec in a belief intended in part to be about the other car. The situation is depicted in figure
3.2(a). Here the solid arrow pointing to the agent’s car indicates a referential use of the term
mec. The dashed line leading to the mistaken car indicates a demonstrative use of the same
term mec; the term is being used to pick out this car — the one that the agent is looking at.
Rectifying the situation requires the agent to mentally distinguish the two confused cars,
which in turn requires that he note and distinguish both his referential and demonstrative uses

of me in At(me, l). To do so requires the use of a mental token different from me, perhaps newly

5My use of the terms “compression” and “dispersion” is borrowed from Maida [Maida, 1991].

60r the use of members of one equivalence class of singly denoting terms to refer to one object (see [Maida,
1992] and [Maida, 1991]).
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Figure 3.2: Mental representations of a compression-based identification error and its resolu-
tion.

created, which denotes (only) the car in the lot. This is depicted in figure 3.2(b) where oc (for
“other car”) is the new term used to pick out the mistaken car. (T will have more to say about
the nature of the term oc shortly.) That oc and mc are mentally distinguished is indicated by
the separate dotted boxes enclosing each. Recovering fully from the error involves revising his

beliefs to reflect this newly discovered cognitive separation of the previously confused objects.

Dispersion

As mentioned a dispersion-based identification error is reflected in an agent’s belief set by
the use of two or more terms, thought by her to denote different objects, when they actually

denote the same object. Consider the following illustration:”

George’s Car(s): You believe that George owns a blue Toyota. One day he drives
to your house in a shiny red Toyota which you think is different from his blue
car. Later you find out that he has repainted his car; the (red) car is his newly

repainted (blue) car.

"Much has been written on what is perhaps the must famous philosophical example of dispersion: the
identification of Hesperus (the evening star) and Phosphorus (the morning star) as distinct objects.
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In this example your initial belief that the red car is different from the blue car 1s mistaken
as it reflects a mental split of one object (the blue-turned-red car) into two. In making this
error you have created anew a distinct mental token for an object, George’s one and only car,
that already had mental representation, and you have denied a correspondence between the
two. This is depicted in figure 3.3(a) where each token is surrounded by its own box each with

a referential arrow pointing to the same car. Correcting this error requires you to reshape the

e = T : |
= <|:</ ;:3 - <|:/O —;

. George's blue

__________ George’s only car . . .

. : : s : George’s only car
o . |

a. Before b. After

Figure 3.3: Mental representations of a dispersion-based identification error and its resolution.

relationship between the two tokens. There is no need to eliminate either token, in fact to
do so may be counterproductive as you may want to refer to both (names) in explaining your
error. Rather you must draw the tokens together by noting that they denote the same object.
(See figure 3.3(b) — note the single box surrounding both tokens a the single arrow leading to
George’s car.)

The onset of dispersion 1s marked by the creation of a mental concept and associated name,
say ‘@’, for an object, z, thought (incorrectly) to be distinct from another object, y, known by
its own name, ‘y’. In general, recovering from a dispersion-based identification error requires,
in part, that a reasoner revise her beliefs to mirror a newly discovered cognitive merger of

more that one token. This type of error is detected and corrected when the agent comes to
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believe: (1) = y and (2) ‘@’ and ‘y’ are names that, as it turns out, were used, unknowingly,

to refer to the same object.?

Denial versus distrust

The intent behind both the Mistaken Car and George’s Car stories is that the reasoner even-
tually come to deny (i.e., assent to the negation of) his mistaken beliefs; At(me, ) is eventually
denied in the former story and george’s_blue_car # george's_red_car is eventually denied in
the latter. It is also possible, in fact it frequently occurs — often as a prelude to denying a
belief — that one will come to suspect an error of compression or dispersion, say in light of a
contradiction, without denying the belief. That is, she will distrust the belief (i.e., no longer
accept it), and at the same time not assent to its negation.® Distrust without denial may occur
fleetingly in the the Mistaken Car and George’s Car stories — just prior to denial — but here

is a more protracted example:

The Twin(s): Imagine that you see a woman that you take to be your friend Kathy
in a park throwing a softball with her left hand. Later you notice a woman, that
you also take to be Kathy, batting right handed. Later still, you find out that
Kathy has an identical twin, Patty. Believing that most (but not all) people throw
and bat with the same hand, you come to wonder whether the softball tosser and

the batter are the same person.

You have good reason to suspect an error of compression but without additional information
you can not be certain. You have evidence weakly supporting each of two opposing views: (1)
both “objects of presentation” looked the same and were in the park, so they may be the same
person, but (2) most people throw and bat with the same hand, identical twins look alike but
do not necessarily have the same dominant hand, so maybe it was two different people. The
tension between the two views is sufficient to compel you to resolve the situation, but until
you collect more evidence you remain uncommitted, distrusting but not denying your beliefs

about Kathy’s handedness.

8Maida addresses this problem in [Maida, 1992].

9Distrust will be made formal in chapter 5. So too will the notions of mistaken beliefs and perception-based
misidentifications.
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Maida has concentrated mostly on dispersion-based errors. We will attend to compression-
based errors and their resolution for the remainder of this chapter (semi-informally) and in

chapter 5 (formally).

3.5 Informal Stepped Reasoning: The Mistaken Car

Let us now take a closer look at the Mistaken Car story and see how it fleshes out in a somewhat
informal step-like treatment which parallels the story as it unfolds in “real-reasoning-time”.
In what follows a series of reasoning steps that seem to be psychologically significant and
relevant to that story are outlined. This treatment will be methodical, taking care to depict
and discuss each step that we consider notable to our reasoner’s evolving cognitive disposition.
Each step ¢ will have associated with it a number of beliefs which are intended to be the
reasoner’s relevant current beliefs at that time. Later, this progression will be formalized
within a step-logic framework.

(In what follows, the term mec (for “my car”) denotes the reasoner’s car and mk (for
“my (car) key”) denotes the reasoner’s key. Beliefs in the following figures are annotated
to indicate how they (most recently) arose in the reasoning process. STORED means that
the belief is among those held by the reasoner previous to his encounter with the car in the
parking lot, REVISION means that a belief has been revised (resulting in the annotated one)
after a mistake was uncovered, OBSERVATION indicates that the belief was introduced via the
reasoner’s observation module, and INFERENCE indicates that the belief was inferred via some,
for now unspecified, inference rule. At each step after step 1, underlined wffs reflect beliefs

newly acquired at that step.)

3.5.1 The Early Steps: Spotting the Car

To start, the reasoner may come to the parking lot with a slew of beliefs about his car: that
it is blue, a Toyota, registered in Maryland, that his key fits it, and so on. Additionally,
the reasoner may come to the scene with other commonsense knowledge, say that an object
can not occupy more than one place at a time. Figure 3.4 illustrates this initial step of the

reasoning process by depicting those previously held beliefs which we will concentrate on here.
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Step 1:

Registered(me, maryland) [STORED]
Color(mc, blue) [STORED]
Make(mc, toyota) [STORED]
Fits(mc, mk) [STORED]
Veyz[At(z,y) — (y = z V 2 Al(z, 2))] [STORED]

Figure 3.4: Initial beliefs in the Mistaken Car story.

Upon noticing and (mis)identifying the car in the lot the beliefs in figure 3.5 become current.

In particular is the additional (ultimately viewed as mistaken) belief that mc is at location ,

i.e., At(me,l).

Step 2:
Registered(me, maryland) [STORED]
Color(mc, blue) [STORED]
Make(me, toyota) [STORED]
Fits(me, mk) [STORED]
Veyz[At(z,y) — (y = z V 0 Al(z, 2))] [STORED]
At(me,l) [OBSERVATION]

Figure 3.5: Current beliefs relevant upon first noticing the car.

Notice two important features of the transition from step 1 to step 2. First, beliefs are
held over, or inherited from step 1 to step 2. This is intended to model the persistence of a
belief over time in the absence of a reason to suspend or retract that belief. Second, if we
assume that no (psychologically salient) steps occur between steps 1 and 2 then, in particular,
we are assuming that no mental name or token is generated which denotes the observed car
other than mec over which the inference engine can operate. That is, the observed car is not
pre-distinguished from mec up front and then inferentially equated or identified with me once
the reasoner (mis)identifies the car. This is the background tokening assumption of section

2.1.1.
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To continue with the story, notice that an extended version of “one-step” MP, wherein

variables are bound and substituted in the process of inference, e.g.:
From Vz[(P(z) — Q(z)] and P(a), infer Q(b)

will produce the belief Vz[l = z V = At(mec, z)] at step 3 from At(me,!l) and Vayz[At(z,y) —
(y = z V-At(z, 2)))], both of which appear at step 2. We’ll consider this to be a recognizable
implication in Harman’s sense. Step 2 is a snapshot of the reasoner’s belief space just before

he has made the inference and step 3; (figure 3.6) depicts his set of beliefs just after.

Step 3:

Registered(me, maryland) [STORED]
Color(mec, blue) [STORED]
Make(mc, toyota) [STORED]
Fits(mc, mk) [STORED]
Veyz[At(z,y) — (y = z V 0 Al(z, 2))] [s TORED]
At(me,l) [OBSERVATION]
Vz[l = z V = At(me, 2)) [INFERENCE]

Figure 3.6: Inferring a new belief using extended MP.

To anticipate a bit, this newly inferred belief will turn out to be problematic because
part of its justification, namely A#(me,!), will turn out to be viewed as erroneous due to a
a perceptually-based misidentification of the compression type. More will be said about this

shortly.

3.5.2 The Middle Steps: The Key Doesn’t Fit

When the agent tries to unlock the car door he fails. He tries to put his key in the lock, but
it won’t fit. He’s using the correct key, or so he thinks. And it’s his car, or so he thinks. But
the key just won’t fit and he comes to believe that his key does not unlock his car, however
briefly. This belief, introduced at step 4 (figure 3.7), directly contradicts F'its(me, mk) which
appears at step 3. Since there was no reason as of step 3 to retract, disinherit, or otherwise

distrust Fits(me, mk), it will persist and it too appears at step 4. Step 4 then contains a
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direct contradiction (a recognizable inconsistency in the Harman/Elgot-Drapkin/Perlis sense)

reflecting the reasoner’s confused state.

Step 4:

Registered(me, maryland) [STORED]
Color(mec, blue) [STORED]
Make(me, toyota) [STORED]
Fits(me, mk) * [STORED]
At(me,l) [OBSERVATION]
Veyz[At(z,y) — (y = 2 V 0 Al(z, 2))] [STORED]

Vz[l = z V = At(me, z)) [INFERENCE]
—Fits(mc, mk) * [OBSERVATION]

Figure 3.7: A contradiction occurs — the contradictands are starred (*).

Again, to look ahead, it will turn out that = Fits(me, mk) is mistaken for much the same
reason as At(me,!): an object identification error. But up to this point the reasoner is unaware
of the specifics of his mistake. What he does become aware of immediately is that his beliefs are
inconsistent, so something must be wrong, and something must be done about it. We will have
the reasoner note the contradiction by using the binary predicate symbol Contra. Contra(S, i)
states that the components of its first argument, a set of beliefs, are direct contradictions which
the reasoner simultaneously held at the step (or time) denoted by its second argument. For

instance,

Contra({Fits(me, mk), - Fits(me,mk)},4)

which appears at step 5 (see figure 3.8) states that the contradictands Fits(me, mk) and
—Fits(me, mk) were both held at step 4.1° (Note: At the point of noting a contradiction the
reasoner has entered stage 2 as described in section 3.2.)

Since the contradiction has just occurred our reasoner has not yet had the time to reason
through it, nor even time enough to speculate what might be wrong. Shortly he may stubbornly
reject Fits(me, mk) and try again to jam the key into the lock, or he may re-examine the key

to make sure it is the correct one, or he may take a closer look at the car to make sure it’s

10For now the value of Contra will simply be to mark that a contradiction occurred. Later, in chapters 4
and 5, it will serve a fundamental role for belief reinstatement.
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his. But until then he has no reason to accept one of the contradictands and not the other.
And yet both cannot be true so, pending further evidence, the agent should be unwilling to
accept either. Another way to view this is that, for the moment, neither contradictand is to be
trusted as a basis for further inference. (This is in line with Harman’s principle of recognizable
inconsistency from section 3.3.)

We use the binary predicate symbol Distr to express that a given belief, Distr’s first
argument, is to be “distrusted” as of a particular step number, the predicate’s second argument.
(Distr will be made more precise in the next chapter.) Our reasoner will come to believe both
Distr(=Fits(me,mk),4) and Distr(Fits(mc,mk),4). Moreover, to ensure that use of the
offending beliefs is suspended, they will be disinherited (in going from step 4 to step 5).

Figure 3.8 depicts these revisions. (Contra-ed and Distr-ed wffs are assumed to result

from inference The details of a capable inference rule are discussed in chapter 4.)

Step 5:
Registered(me, maryland) [STORED]
Color(mec, blue) [STORED]
Make(me, toyota) [STORED]
Veyz[At(z,y) — (y = z V 0 Al(z, 2))] [STORED]
Vz[l = z V = At(mc, z)) [INFERENCE]
Contra({Fits(mc, mk), ~Fits(mc, mk)},4) [INFERENCE]
Distr(Fits(mc, mk), 4) [INFERENCE]
Distr(—Fits(mc,mk),4) [INFERENCE]

Figure 3.8: The contradiction is noted, distrusted and suspended.

The present example has been constructed so that = F'its(me, mk) will turn out to be judged
erroneous (mistaken), and F'its(me, mk) will be reinstated. This because of the misidentifi-
cation (observation-based identification error) that produced the former belief. But just how
does this come to be known? We've already suggested that in some cases an agent might
use a hypothesize-and-test process to try to ferret out the specific cause of his troubles from
the set possible explanations that he can envision. A complete principled account of how one
speculates and then confirms or denies her suspicions is beyond the scope of this thesis. It 1s

likely that default reasoning is involved as is knowledge about the likelihood of errors (e.g., we
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often haphazardly select the wrong key to try in a lock, popular cars are often misidentified
since there are many similar looking ones, and so on) but the details will not be addressed
here.

Instead, a simplifying assumption is to postulate a tutor, or friend, that can tell a reasoner
about her errors. In this way we can avoid getting bogged down in issues of evidence, and the
like and concentrate instead on the nature of erroneous beliefs and on belief revision. This
is not as far fetched as it may seem at first. Imagine a friend saying to our reasoner, “Hey,
this isn’t your car!” Others note and help correct our errors frequently, and reliably. This
is what we intend of the tutor. Tutorials, or statements which help to clarify or otherwise
eliminate difficulties among the reasoner’s belief set, are introduced like other observations at
the appropriate step in the modeled reasoning process. (This use of tutorials is is in the spirit
of McCarthy’s advice-taker robot [McCarthy, 1958].)

We use the binary predicate symbol Mstkn to express that a given belief, M stkn’s first
argument, is considered to be mistaken in virtue of an (observation-based identification) error
which was made at the step denoted by the predicate’s second argument.

Notice that we are distinguishing the stance of distrusting a past belief from that of con-
sidering a past belief to be mistaken. The former stance is intended to reflect an agent’s
uncertainty vis-a-vis a past belief, especially in the face of contradiction, but does not imply
any positive knowledge or evidence that the particular belief is in error. Thus, for instance,
when a (direct) contradiction arises, and no other evidence is available to impugn the integrity
of either contradictand, a rational agent may (temporarily) distrust both, and as a result sus-
pend her (unqualified) acceptance and use of each. Viewing a past belief as mistaken is a
stronger stance; it implies distrust, but it also implies that the agent has reason to suspect
that the belief is in error, for instance that an object misidentification contributed to the the
agent’s originally holding the belief in question.

Notice also that neither of these stances, distrusting a belief nor viewing one as mistaken,
implies the agent’s denial of the belief in question, i.e., neither distrusting « nor considering it
to be mistaken implies that the agent believes —«. This is easy to see for the case of distrust
which may consistently apply (simultaneously) to both —a and «, resulting in the suspension

of both and the acceptance of neither. To see that considering some « to be mistaken does not

46



imply a belief in =« consider this: Suppose that I walk into an office looking for Sarah, whom
I have spoken to over the phone but had never before seen, and identify the redheaded woman
behind the desk as her. If I had no prior knowledge of Sarah’s hair color then this incident is
likely to lead me to believe that Sarah is a redhead, e.g., Redhead(Sarah). If T later find out
that T had indeed misidentified the redhead, i.e., she is not Sarah, then I should consider the
belief Redheaded(Sarah) to be mistaken — it was based on an object identification error — but
the misidentification alone is insufficient for me to believe ~Redheaded(Sarah).

Our tutor will offer advice about mistaken beliefs. One simple kind of advice that a tutor

can offer prescribes just which of the agent’s observation-based beliefs are mistaken, e.g.,!!
M stkn(At(me,1),5) N Mstkn(—Fits(me, mk),5) (3.1)

(Shortly we will discuss more informative tutorials, but first we will use 3.1 to illustrate a
weakness of such simple tutorials.

From tutorial 3.1, knowledge about the justifications (derivations) for his beliefs, and the
appropriate inference mechanism the reasoner can revise his belief set in the style of traditional

belief revision systems (e.g., TMS). Any mistaken belief will be distrusted (and retracted), i.e.,

M stkn(At(mc,1),5)
M stkn(—Fits(mc,mk), 5)
Distr(At(me,1),5)

Distr(—Fits(me,mk),5)

Any belief previously justified, in part, by a mistaken belief will itself be considered mistaken,

distrusted (and retracted), in particular:

Mstkn(Vz[l = z V = At(mec, 2)],5)
Distr(Vz[l = z V = At(mec, 2)],5)

Fits(mc, mk)

And some previously distrusted beliefs can be reinstated, i.e.,

11 The tutorial depicted here is a single conjunctive wff which I take the liberty to immediately split into
its two atomic components. The formal step-logic which I develop later will not include a rule of disjunction
elimination, but one can easily be added.
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Fits(mc, mk)

all at some future step (determined by the step-wise nature of inference mechanism, as it traces
through belief justifications in the belief revision process).
Let us suppose further that the reasoner’s object recognition model, or even the tutor,
supplies the belief:
Jz[z # me A At(z,l) N —Fits(z, mk))

i.e., there 1s a car different from mec at location [ and mk does not fit me. All of this done, the

agent’s beliefs are depicted in figure 3.9.

Step n:
Registered(me, maryland)
Color(mc, blue)
Make(mc, toyota)
Veyz[At(z,y) — (y = z V 0 Al(z, 2))]
Contra({Fits(mc, mk), ~Fits(mc, mk)},4)
Distr(Fits(mc, mk), 4)
M stkn(At(me,1),5)

INFERENCE]

Mstkn(Vz[l = z V = At(mc, z)],5)
Distr(At(me,1),5)
Distr(—Fits(mc,mk),4 : 5)
Distr(Vz[l = z V = At(me, z)], 5)

INFERENCE]
INFERENCE]
INFERENCE]
INFERENCE]

Fits(me, mk)
dz[z # me A At(z,1) A —Fits(z, mk)]
—At(me,l)

REINSTATEMENT]
TUTOR]

(
[
(
[
[
%
M stkn(—Fits(mc,mk), 5) [TUTOR]
[
[
[
[
[
[
[INFERENCE]

Figure 3.9: The tutor “speaks” and beliefs are revised.

The reasoner’s belief space is now consistent and it contains beliefs that reflect at least a
partially accurate view of his world. There is even more information available to our reasoner
at step n than might be available in some belief revision systems. In particular is the sort
of historical information alluded to in Astington and Gopnik’s quote reproduced at the start
of this chapter, namely that the agent once held the mistaken beliefs. This information is
extractable from the intended (still informal) semantics of Contra, Distr, and M stkn. But

still, the beliefs our agent holds at step n are insufficient for him to fully explain his situation.
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Suppose that the car’s owner comes along wanting to know why our agent was trying to
get into her car. What response can the agent offer? Certainly not “I thought this car was
mine”, he does not have that information available. Moreover his current beliefs reflect that
the the car in question is not his! So why was he standing there trying to put a key, a key
that he now believes does not unlock the car, into the door of a car that he now thinks is not
his own? The response “I was trying to steal your car” almost seems in order, but that is
simply not true, he is not a thief — he believes that (though T haven’t included this belief in
the foregoing figures). Other possible responses seem inappropriate as well. The agent does
not recall the car’s owner asking him to try his key in her car door just for fun or curiousity’s
sake, so he will not respond with “You told me to try my key in your car door”, and so on.
But, given what he believes, almost any explanation is as plausible as the actual one; many
different series of events could have led to this belief set. One reasonable partial explanation
can be offered based on the (again, not shown) belief that the car looks like the agent’s. But
believing that a car looks like one’s own and misidentifying that car as one’s own are two very
different things. There are many occasions when I have noticed a car that looks like mine and
yet have not confused the two, in particular when I notice the look-alike while driving my own
car.

Here is a explanation which is consistent with our agent’s beliefs at step n and which is
very much like the actual one, but is incorrect: he misidentified parking spot ! instead of (or
in addition to) misidentifying me, and he misidentified mk — he tried the wrong key. Thus
At(me, 1) is mistaken not because the car was misidentified, but rather because the parking
spot was. Likewise —F'its(me, mk) is mistaken because he mistook a different key to be mk.

Let us consider further the misidentification of [ vs. the misidentification of mec. Both are
depicted in in figure 3.10. If mc is the car shown in spot & in both drawings, then the reasoner
will come to believe that his car is at location [ both when he directs his attention to the car in
space [, thinking it is mc (figure 3.10a) and also when he directs his attention to mc, thinking
it is in spot [ (figure 3.10b). Belief revision in the first case, the correct one according to our
story, should be based on the fact that the thing he thought was me, producing his beliefs
At(me,l) and = Fits(me, mk), is not me. Revision in the second case would be based upon

the fact that the thing he took to be [ is not [. (Likewise for the misidentification of the key.)
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There’s my car at . Oh, that

isn’t my car after all.

S

@@j; ?

a. Mistaking one car for another

There’s my car at . Oh that 1sn’t

spot [ after all.

b. Mistaking one parking spot for another

Figure 3.10: Two alternative models of underspecified tutorial.

The information necessary to distinguish these two cases is missing from tutorial (3.1). Tt
concerns the changing meaning, for the reasoner, of the symbol mec as reasoning progressed
from step 1 on. In the early steps, he thought he was using it only to refer to me, but now it

is time for him to learn that, in a sense, he also used it to refer to the other car. This is the

issue we take up next.

3.5.3 The Later Steps: Presentations and This and That

A key informal idea here, one already alluded to several times, will be that of a presentation,

which means roughly a situation or context in which attention has been called to a presumed
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entity, but not necessarily an entity the reasoner has a very clear determination of at first.!?
This, we argue, is the case in virtually all situations initially, until we get our bearings. Be-
fore we actually make an identification we determine (perhaps unconsciously) that there is
something for us to deal with. This is a small point as far as initial matters go, but becomes
important if later we need to consider that something was wrong.

In the case of the Mistaken Car something, the reasoner tells himself later, made him think
this (the car in location [) is that (his own). The something-or-other that brought about his
mistake 1s what we call a presentation. Presentations will not play a formal role, but rather a
motivational one in leading to our formal devices.

How can we formalize the notion of taking this for that? We begin by looking into the
relationship between the two. Not a physical relationship, as in features that the two cars may
share — though this may ultimately have a bearing on belief revision — but rather a cognitive
relationship between the entities. This relationship, is suggested in the case of the mistaken
car by the English statement, “I mistook this car to be that (my own).” The this here can be
viewed as a demonstrative which (together with an appropriate demonstration) is used to pick
out the mistaken car, the one in the lot. The that can be viewed as another demonstrative
which is used to pick out me. The statement, “I mistook this car to be my own”, indicates
a cognitive tie between two objects, automobiles in this case, that are in a sense linked in a
(former) belief by the term mec.

Essentially what has happened is this: Upon first spotting the car our reasoner may be
unaware of any recognition process, thinking simply that he sees mc. He is aware of an interest
in one car only: his own. Then later, to comprehend or even suspect his mistake, he needs to
become aware of an interest in two cars; his own (that) and the car he took to be his (this).
In a sense, the term ‘me’ in the original beliefs, At(me,!) and ~Fits(mc, mk) (as well as the
inferred belief Vz[l = zV—At(me, z)] ) refers to both of these cars. That is, the agent had his car
in mind but connected his “mental image” of it to the wrong car, the one in location [. These
beliefs reflect an unfortunate mental conflation, or compression, of these two cars that must

be torn apart in the reasoning process. When two or more objects are cognitively compressed

12 The vagueness in the notion of presentation does not, at this stage, hinder our formal treatment. However,
we believe it will be necessary to clarify this notion. This is the focus of ongoing work. Among other things,
it will involve a focus of attention, as hinted at by our informal “this” and “that” description below.
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into one object, they are linguistically compressed in the representation and expression of
one’s beliefs. Even the suspicion of an error of compression requires, in part, the creation and
introduction in the reasoner’s mind of the appropriate mental tokens, one for the this and
another for the that, which he will subsequently keep distinct.

We use the 4-ary predicate symbol FITB to state that an object of presentation is at first
identified to be some (other) object, thereby producing a set of beliefs, i.e., FITB(z,y, S, 1)
says that object of perception, x, which was presented at 7, is at first identified to be y thereby
producing the beliefs in S. Then we use expressions containing Russell’s t-operator to pick
out the this that was (mis)identified as that. The idea behind t-expressions is this: suppose
a(z,y1,...,Yn) is an expression satisfied by exactly one object z, then the definite description
“the a(u,y1,...,Yn)” can be used to denote that object. For instance, since there is one dog
sitting here with me I can use the phrase “the dog which is sitting here” to denote this dog.
t-expressions are formalized definite descriptions: we let za(z,y1,. .., yn) denote “the unique
object such that a(z, y1,...,yn)”, e.g., te[Dog(x) A Sitting(x, here)] denotes the dog sitting
here.

In the Mistaken Car scenario
e FITB(z, me, {At(me, 1), ~ Fits(me, mk)}, 2) (3.2)

can be used to denote “the unique object of presentation, presented at step 2, which was at first
identified to be me thereby producing the beliefs At(me,!) and —Fits(mec, mk)”; that is, the
car 1n the lot. We call expressions like 3.2 reality terms; their function is to denote an object
which was “presented” to an agent and (possibly) incorrectly identified by her in the past. Thus
these are terms used to denote an entity, (possibly) replacing a previously held but incorrect
description of that same entity. As a shorthand convention we use tfith(y, S, i), “the thing
(object of presentation) which was at first identified to be ...”, in place of «(2) FIT B(z,y, S, 1).
By incorporating reality terms we are able to express certain errors of object misidentification

reflected in one’s past beliefs. As an example,
tfitb(me, {At(me, ), = Fits(me, mk)},2) # me (3.3)

is a tutorial asserting the appropriate error in the Mistaken Car story: “the unique object of

presentation which was at first identified to be mec at step 2, thereby producing the beliefs
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At(me,l) and = Fits(me, mk), is not me. (We abbreviate assertions of the form ¢ fith(¢, S, ) # ¢
by MISID(t,S,1).)

Tutorial (3.1) should be viewed as a consequence of (3.3). The latter not only implies the
mistakes stated in the former, it also expresses what that mistake was.

A virtue of tutorials like (3.3) is that they offer clues to belief revision beyond what ap-
peared in figure 3.9. This is because the reality terms they contain name the misidentified
object. Assuming that the mistaken beliefs are otherwise error-free, a plausible inference re-
sults when this newly created name is substituted for the misidentified term which appeared
in the mistaken belief(s). (A formal substitution-based inference rule which accomplishes this
is detailed in chapter 5.) Thus, asserting 3.3 sets in motion a belief revision process which is
characterized, in part, by the following: the earlier beliefs A¢(me,l) and —~Fits(mc, mk) are

disinherited or retracted, and both
At(tfitb(me, { At(me, 1), ~Fits(me, mk)}, 2),1)

and

- Fits(me, {At(me,l), 2 Fits(me, mk)}, 2)

are produced.

Figure 3.11 depicts our reasoner’s relevant beliefs once tutorial (3.3) is asserted, and ap-
propriate belief revision rules of inference are applied. In the figure we abbreviate the reality
term

tfitb(me, { At(me,l), 2 Fits(me, mk)}, 2)

by oc as a matter of convenience. A step number has not been specified here as it is assumed
that several steps will pass from the moment the tutorial is asserted or introduced to get to
this point. This should be viewed as the reasoner’s current belief set once the last of those
steps has occurred.

Figure 3.11 reflects the cognitive split we desire between the two cars in the story, mc and

oc, as indicated by the following:

a. me is registered in Maryland, it is blue, and is a Toyota

b. oc is at [, me is not at [
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Registered(me, maryland) [STORED]
Color(mec, blue) [STORED]
Make(me, toyota) [STORED]
Veyz[At(z,y) — (y = z V 0 Al(z, 2))] [STORED]
Contra({Fits(mc, mk), ~Fits(mc, mk)},4) [INFERENCE]
Distr(Fits(mc, mk), 4) [INFERENCE]
MISID(mec,{At(mc, 1), Fits(mc,mk)}, 2) [TUTOR]

M stkn(At(me,1),2) [INFERENCE]
M stkn(—Fits(mc,mk), 4) [INFERENCE]
Mstkn(Vz[l = z V = At(mec, 2)],5) [INFERENCE]
Distr(—Fits(me,mk),4) [INFERENCE]
Distr(At(me,1),5) [INFERENCE]
Distr(Vz[l = z V = At(mec, 2)], 5) [INFERENCE]
Fits(mc, mk) [REINSTATEMENT]
- Fits(oc,mk) [INFERENCE]
At(oc,l) [INFERENCE]
Vz[l = z V = At(oc, 2)] [INFERENCE]
—At(me,l) [INFERENCE]

Figure 3.11: A tutor introduces a reality term and belief revision results.

c. mk fits me, but does not fit oc

d. oc is not the same as me (though it was once thought to be)

The process of reasoning glossed here, beginning with steps 1-5 and ending with the beliefs
shown in figure 3.11 represents an informal solution to the Mistaken Car. A formal counterpart

to this solution is detailed in chapter 5.

3.6 One and Two Johns

Let us look very briefly at two other stories related to the Mistaken Car, in that compression-
based perceptual errors are made, but which bear more heavily on the issue of the flexibility
of language during the course of reasoning. The problems are based on the dialogue presented
at the start of this chapter:

Our One John example is very similar to that of the Mistaken Car, but will help us in

moving toward the third example below. Here we imagine that we are talking to Sally about
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a third person, whom we initially come to identify as our friend John, merely in virtue of
matching John to Sally’s description of the person, or the context of the conversation, etc.,
but not in virtue of hearing Sally use the name “John”. Later we find out it is not John, but
someone else.

There is no appropriate (perceived) entity before us which has been misidentified as in the
case of the mistaken car; rather it 1s an abstract entity, a someone-or-other, still an object of
presentation, the person that Sally had in mind. There is this someone that has been taken
to be that, John. Our formalism treats abstract (objects of) presentation(s) of this sort much
like the case of the Mistaken Car.

Now let us extend this to the Two Johns case: We are in a situation in which we are
presented with a notion of a person, whom we (come to) think is our friend John. Then we
are led to believe that he has a broken leg and his wife has to do everything for him. Later we
suspect that there is a confusion, that not everything we are hearing makes sense. (John, our
friend, is not married.) Is Sally wrong? Or have we got the wrong person in mind? Now here
is the twist: Sally starts employing the name “John” to refer to this person.!® Perhaps she
is talking about a different John. To even consider this option we need to be able to “relax”
our usage so that “John” is not firmly tied to just one referent. And later when Sally says
that she is talking about John Jones, not our friend, John Smith, we need a way to refer to
the two entities without using the term John. We may continue to mention the name, but
judiciously, as it is ambiguous.

We can try to employ the same formal strategy that the agent used above up to a point.

Namely, we may initially come to suspect that
tfitb(john, {(BrokenLeg(john), Married(john)},2)) # john

which has the English reading: “the unique object of presentation which was at first identified
to be John at step 2, thereby producing the beliefs BrokenLeg(john) and Married(john), is
not John.” But then once we hear Sally use the the name “John” to refer to the person with
the broken leg, whom we now believe is not our friend John, more must be done — the name

“John” must be disambiguated.

13 The sequence of events here is different than that reflected in the dialogue at the beginning of this chapter.
Specifically, Sally uses the name “John” here only after we come to think that she is talking about our friend
John. In the full paper we also discuss another version, in which Sally uses the name “John” at the outset.
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This is where we must exhibit control over our language and language usage. First the
ambiguity must be recognized. That is, we must come to see that this and that share the same
name. Once that is done, new terms should be created, each to unambiguously denote one of
the two Johns.

Proper naming and the use of names is made explicit with the the predicate symbol
Names. We write Names(z,y,1) to state that # names object y which first came to be
known (by the reasoner) at time or step ¢; this could be weakened to time < 4, or time
> 1, etc., if the exact time is not known. Including the third argument is somewhat non-
standard, though not without a commonsense basis. We usually have at least a vague idea
of when we come to know about someone. We can think of Names(z,y,1) as collapsing
IsNamed(z,y) A FirstLearned About(I,y,i), where T is intended to be the first person pro-
noun.

To make ambiguity precise the binary predicate symbol Amb is used to state that a name

does not refer uniquely beyond a certain step. Axiom AM expresses this:
AM : (Vz)(Jyzij)[(Names(z,y,i) A Names(z,z,j) ANy#z A i<j)— Amb(z,J)]

It says that if two different objects share a name, then the name is ambiguous for the reasoner
once he became aware of both objects.

Once an ambiguity arises, our reasoner will need to disambiguate any belief using the
ambiguous term. We use RT A(z,y, i) to state that object z is referred to as y prior to step i.
In particular if Names(z,y,j) then RT A(z,y, k) for k > j, trta(y, 1) is used an abbreviation
for:

e RTA(z,y,1)

“the unique thing referred to as y prior to step 7, itself a non-ambiguous reality term.
Figure 3.12 gives a brief sketch of the evolution of reasoning we have in mind. (A formal

solution is presented in chapter 5.) Figure 3.12 gives a brief sketch of the evolution of reasoning

we have in mind. In the figure we use M, B, j, and ‘j to abbreviate Married, BrokenLeg,

Jjohn, and ‘john respectively. Also j1 is used to abbreviate the expression trta(‘j, 2), i.e.,
J1 =wRTA(z, },2)

namely “ the unique thing referred to as ‘john’ prior to step 2”, and j2 is used to abbreviate
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the expression tfitb(trta(‘j,2), {M(j), B(j)},2), i.e.,
J2 =1 FITB(z,.yRT Ay, 3,2),{M(j), B(j)},2)

namely “the unique thing which was first identified to be the the unique thing referred to
as ‘john’ prior to step 2, which produced the beliefs Married(john) and BrokenLeg(john)
at step 2.7 Thus jl and j2 are newly created names, one for each John. We have omitted
Distr-ed and M stkn expressions in the figure for the sake of conciseness. (Here ellipses (...)

indicate that all beliefs from the previous step are inherited to the current step.)

Step 1: - M(j), Names(‘j,j, —o0), AM

Step 2: ..., B(j),M(y)
(Sally: “..his leg is broken and his wife...”)

Step 3:  AM, Names(‘j,j, —o0), Contra(—~M(3), M (7))
(Agent: “Impossible! He isn’t married.”)

Step 4: ..., MISID(j, {M(5), B(j)},2)
(Sally: “You misidentified who I’'m talking about.”)

Step 5:  AM, M(tfitb(5, {M(5), B(5)},2)),
B(tfitb(5,{M(5), B(1)},2))
(Agent: “So that’s what’s wrong.”)

Step 6: ...—M(j)
(<Reinstate Marital Belief>)

Step 7: ..., Names(‘s, tfitb(5,{M(j), B(5)},2),2)
(Sally: “I’'m talking about John.”)

Step 8: ..., Amb(‘4,2)
(Agent: “Oh, they have the same name!”)

Step 9:  AM,-~M(51), M(2), B(;2),
Names(‘j,j1), Names(‘j, j2),
2,

(Agent: “Now I’ve got it.”)

Figure 3.12: Sketch of stepped-reasoning in the Two Johns story.

Beliefs at step 1 are those held before the agent’s conversation with Sally and those at

step 9 reflect an unambiguous account of the two Johns, one now denoted by j1 and the other
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by 72, once the problem 1is sorted out. In between are steps whose beliefs reflect information
acquired via the conversation with Sally (steps 2 and 7) and via her advice (step 4); steps
whose beliefs reflect that problems have been noted (a contradiction is noted in step 3 and the
ambiguity is noted in step 8); and steps reflecting disinheritance (going from step 2 to 3, and
from step 5 to 6).

The indicated steps have the following intuitive gloss: (1) the agent believes that John is not
married, and is named “John”. Then (2) comes to believe his leg is broken and he is married.
This produces a contradiction, noted in (3), so neither marital belief is retained. Advice is then
taken that John has been misidentified (4) which leads to the retraction (disinheritance) of the
belief that John has a broken leg (6). The agent learns that the ‘other person’ is named “John”
(7), notes the ambiguity (8), and takes corrective action (9) by creating and incorporating the

unambiguous terms j1 and j2, one for each John.
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Chapter 4

Step-logics: A Formalism for Time Situated

Reasoning

There are several notable features of the stepped approach to reasoning illustrated in the
previous chapter which will need to be preserved in a formal device applied to the specific issue
of reasoning about past mistaken beliefs. Most conspicuous, of course, is that the reasoning
be situated in a temporal context. As time progresses, a reasoner’s set of currently accepted
beliefs evolves. Beliefs become former beliefs by being situated in an ever changing “now”, of
which the reasoner is aware.

Secondly, inconsistency may arise and when it does its effect should not be disastrous (in
the sense of ez contradictione quodlibet; from a contradiction all is entailed) rather it should
be controllable and remedial, setting in motion a fairly broad belief revision process, which
includes belief retraction.

Finally, the logic itself must be specially tailored to be flexible or “active” enough to allow,
even encourage, language change and usage change when necessary.

As a theoretical tool the general step-logic framework developed in [Elgot-Drapkin and
Perlis, 1990] and [Elgot—Drapkin, 1988] is well suited to these desiderata. But no heretofore
developed step-logic offers a broad enough belief revision inference mechanism to suit our
needs. The framework itself admits to non-monotonicity, so one foundational block for belief
revision is in place, but others are missing in all previously defined step-logics.

In this chapter we first introduce the formal step-logic machinery and then discuss some

drawbacks of previously defined step-logics. The primary achievement here is a solution to the
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belief revision problem which will become part of the logics developed to solve the Mistaken
Car and Two Johns problems.

Since contradiction and conflict play a key mediating role in the reasoning we are trying
to formalize we pay special attention to these concepts here. Earlier step-logic work had a
way to ignore contradictions. But more is needed. Not only must we adjudicate between
contradictands, we must also prevent earlier mistaken beliefs (revealed by contradiction) from
infecting future reasoning. Conflicting beliefs, mistaken beliefs, and their consequences must
be controlled, so as not to infect other beliefs indefinitely into the future.

Recovering from contradiction was broached in Elgot-Drapkin’s work, but only in an ad hoc
way. There a conjecture was formulated, to the effect that, under (unspecified) circumstances,
a step-logic should be able to regain consistency from an initially inconsistent set of beliefs.
Here we begin to make inroads, in a limited way. We develop new step-logics which under
suitable conditions are shown to recover from direct contradictions and their consequences
(our de-recovery theorem). This amounts to importing much of a truth-maintenance, or belief
revision, system into the logic, which then — unlike a usual belief revision system — operates
during and as part of the ordinary reasoning of the logic. This means that world knowledge can
be brought to bear on the truth-maintenance (belief update) process, and other reasoning need
not be halted while the belief updating is occurring. We advance two postulates concerning
commonsense reasoning, the short-chain and lazy-corroboration hypotheses, which keep in
check the computational bookkeeping required by our dc-recoverable step-logics.

These additions to step-logics, namely the mechanisms enabling terminological change and
those for de-recovery, have allowed us to solve commonsense problems centered around object-
identification error as we’ll see in chapter 5.

(Sections 4.1 and 4.2 are largely a synopsis of material found in [Elgot-Drapkin, 1988].)

4.1 Step-logics: An Inference Mechanism

Traditional descriptions of non-monotonic reasoning envision non-monotonicity as a relation-
ship between theories: From one theory certain theorems follow that do not follow from an
enlarged theory augmented with additional information (axioms). However, this relationship

is expressed only in the meta-theory; the usual object-language logics pay attention to behav-
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ior only within a fixed deductively closed theory. On the other hand, “theory change” is the
central feature of the step-logic formalism. Instead of going (in the meta-theory) from one
closed theory to another closed theory, we have a single evolving theory-in-progress that has
facilities for reasoning about that evolution as it occurs.

In brief, a step-logic models belief reasoning by describing and producing inferences (beliefs)
one-step-at-a-time, where the time of reasoning is integral to the logic. Complicated reasoning
made of many successive inferences in sequence takes as many steps as that sequence contains.
Error, change of mind, change of language, and change of language-usage all are time-tempered
in that they are appropriately characterized only with regard to a historical account of beliefs,
language, and its usage. Step-logics’ one-step-at-a-time approach to inference offers a natural
account of such histories.

A particular step-logic is a member of a class of step-logic formalisms; each particular
step-logic is characterized by its own inference and observation functions. One distinguishing
feature of step-logics is that only a finite number of beliefs (i.e., theorems) are held at any
given discrete time, or step, of the reasoning process. Thus we can view each step as a discrete
moment in a reasoning process. This attribute of finiteness is an important feature which,
among other things, permits a computationally decidable treatment of self-knowledge — both
positive and negative introspection into previously held beliefs, and of (limited) consistency-
checking.

Let a, B8, and v (with or without subscripts) be wffs of a first-order language £ and let
1,7,k € N. The following illustrates what a step in the modeled reasoning process of a step-

logic looks like:

iia, By, ...

The above display represents the belief set of the agent being modeled at step ¢, i.e., if it is

now step (or time) ¢ then a, 3, and + are currently believed.! The ellipsis is meant to indicate

that there may be finitely many other beliefs held at this step.

1Note, as alluded to earlier, that the steps in step-logic reasoning are distinct from the aforementioned stages
of the process of reasoning about former beliefs. Much time (i.e., many steps) may pass between a reasoner’s
coming to accept a belief (stage 1 of the process) and his coming to view that belief as mistaken (stage 2).
Likewise, much time may intervene between stages 2 and 3 of the process.
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4.1.1 Inference and :-theorems

Any wif o that appears at step 7 is called an i-theorem (roughly, a belief at step ¢). That « is an
i-theorem is denoted by F; a. A wff becomes an i-theorem in virtue of being proven (inferred)
at step i. Proofs are based on a step-logic’s inference function, which extends the historical
sequence of beliefs one step at a time. An inference function can be viewed as a collection
of inference rules which fire in parallel at each step in the reasoning process to produce the
next step’s theorems. For every i € N, the set of i-theorems are just those wffs which can
be deduced from the previous step(s), each using only one application of an applicable rule of
inference.

Inference rules, in their most general form, adhere to the structure suggested by rule schema

RS below.

RS: =)o, .., 05,

1+1 ﬁ17~~~1ﬁp

where i, j € N and (i—j) > 0. The idea behind schema RS is this: at any step of the reasoning
process the inference of 3; through 8, as (i+1)-theorems is mandated when all of a;_;, through
a;_j, are (i — j)-theorems, and all of a;_;41, through a;_; 41, are (¢ — j + 1)-theorems, ...,
and all of «;, through «;,_ are i-theorems.

To illustrate the inference mechanism of step-logics we consider some simple, yet useful,
inference rules in which only the previous step’s theorems serve as a basis for a given step’s

deductions, that is where the j in RS is equal to 0.2
The first rule that we shall look at, called MP (for modus ponens), mandates the inference
of 3, at step i + 1, given that both & and o — f are i-theorems. (We discussed this rule

informally in the previous chapter.)

2We will focus on rules where this condition holds for now, though later we shall relax it as we will require
rules of the more general form.
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—

a, o — f3 Mobus PoNENs (MP)

i+1: g

Suppose that P, T, P — @, and T — (@ — S) are among the set of, say, 2-theorems, then
one single application of MP will produce ) as a 3-theorem and another, independent single
application of the same rule produces Q — S as a 3-theorem. From these two 3-theorems a

third application of MP produces S as a 4-theorem (see figure 4.1).  Notice that a chain of

Step 2: PT,P—Q,T—(Q—25)
Step 3: QR,Q—S
Step 4: S

Figure 4.1: Using MP.

(dependent) applications of MP is required to produce S as a theorem at step 4 in figure 4.1;
step-logics do not operate by chaining these applications together in a single step to produce
S as a 3-theorem. Notice too that MP says nothing about the (i + 1)-theoremhood of « and
a — (3, the rule’s requisite i-theorems. They may turn out to be (i 4 1)-theorems or they may

not; MP itself is neutral on the issue. (As is RS in general.)
Another rule, called INH for inheritance, addresses the issue of theoremhood persisting
from one step to the next. INH mandates the appearance (i.e., inference) of a wif « at step

1+ 1, if & 1s an i-theorem.

i o INHERITANCE (INH)

i+1: «
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The motivation behind INH is this: once a reasoner comes to hold a belief, she may continue
to hold that belief over time. Incorporating INH into the example given in figure 4.1 results

in the sequence of theorems illustrated in figure 4.2.  (For ease in reading, figure 4.2 reflects

Step 2: P,T,P—Q,T—(Q—S5)
Step 3: P,T,P—-Q,T—(Q—S5)
Qe—S
Step 4: P,T,P—-Q,T—(Q—S5)
Q,Q—55

Figure 4.2: Incorporating the rule INH.

our continued use of the convention of underlining newly introduced wffs. At each step the
underlined wffs are those which have been proven using a rule other than INH.) The use of
INH accounts for the reappearance of step 2’s theorems at step 3 and of step 3’s theorems
at step 4. MP has the same effect as in the previous example. Notice that there are two,
seemingly indistinguishable, proofs of both () and Q — S at step 4 in this example, one based
on an application of INH and the other based on an application of MP.3

Unqualified inheritance via INH would be fine if our goal were a monotonic step-logic,
wherein once proven, a theorem continues to be reproven at all subsequent steps. But com-
monsense belief reasoning is very much non-monotonic. Theoremhood (i.e., holding a belief)
is sometimes contingent on the reasoner’s not holding other beliefs. To put it another way, the
acquisition of new beliefs may cause the reasoner to dispel or distrust or disinherit a former
belief. Step-logics have been designed to permit the disinheritance of beliefs in such cases.
This is accomplished by stipulating conditions which regulate the applicability of inference

rules, and in particular, of INH. For instance, that a rational agent will not knowingly per-

3We will address the issue of distinct proofs or derivations shortly.
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sist 1n holding contradictory beliefs may be modeled by stipulating that the rule INH not be
applied to any i-theorem a when the the agent believes that a (directly) contradicts another
of his beliefs (i.e., =a).* This is not to say that contradictands, once disinherited, will never
reappear at a later step. One or both may, but we can expect that this reappearance will be

based on some new derivation(s). (More will be said about disinheritance shortly.)

4.1.2 Observations

Earlier we stated that a step-logic is defined not only in terms of its inference function (and
language) but also in part by its observation function. An observation function, Obs, is a
mapping from the set N of natural numbers onto the power set of wifs in £. For each i € N,
the finite set Obs(i) is comprised of the so-called i-observations, and is intended to represent
the beliefs acquired by the agent while interacting with her environment at time 7. These
“observations” can be thought of as non-logical axioms or facts which the agent acquires over

time. Observations are proven at a step in accordance with Rule OBS:

i IF o €Obs(i+1)  (OBS)

i+1: «

Recall from figure 4.2 that several theorems appeared at step 2 for no formal reason (i.e.,
they were not proven). An observation function which is consistent with the example presented

there, and one which explains the appearance of those wifs in figure 4.2 is:

PT,P—QT—(Q—25) ifj=2
Obs(j) = Q (@ ) ity

0 otherwise

4.1.3 SI;

The particular family of step-logics that will mainly be employed in this work is called SL~.
The distinguishing feature of the logics in this family is that they embody mechanisms for
representing self-knowledge, time-situatedness, and belief retraction. (For full technical details

of these mechanisms see [Elgot-Drapkin, 1988].)

4See figure 4.3 for a set of rules which incorporates this idea.
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An example of an actual inference function (called Infg) for an SL7 step-logic corresponds

to the rules given in figure 4.3 (adapted from [Elgot-Drapkin, 1988]).

Rule 1 i: Ir « € OBS(i+ 1)
i+1: «o

Rule 2 1: o INHERITANCE®
i+1: «o

Rule 3 i: o, a—f Mobpus PONENS
i+1: g

Rule 4 1: AGENT LOOKS AT CLOCK

i+1: Now(i+1)

Rule 5 i ai(t), ..., an(t), EXTENDED MP
Velar(z) A A ap(z)] — B(2)
i+1: ()
Rule 6 i: o, "o CONTRADICTION NOTED

i+1: Contra({a,-a},i)

Rule 7 1: NEGATIVE INTROSPECTION?
i+1: —K(8,9)

* Where tf; Contra({a, 8},i—1). Also where a is not of the form Now(j).

® Where 3 is a closed sub-formula at step i but is not an i-theorem.

Figure 4.3: Infp; rules of inference for a step-logic in the family SL~.

Rules 1, 2, and 3 have already been discussed. They are OBS, INH, and MP respectively.
Note the qualification (a) on rules 2 and 3 (INH and Negative Introspection) which stipulates
under what conditions the rules do (not) apply.

Rules 4 — 7 are new. Rule 4 is intended to model an agent’s awareness of her time-
situatedness. Tt makes use of the distinguished predicate symbol Now; Now(i) expresses the

agent’s belief that “it is now time i.” By rule 4, at every step ¢, F; Now(i). Since the current
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time 1s meant to change at each step, and since the agent is meant to be aware of that fact, it
is counterintuitive to allow Now(7) to be inherited from one step to the next. The stipulation
(a) on the rule of inheritance (rule 2) accommodates this by insisting that nothing of the form
Now(i) be inherited.

Rule 5 is an extension of modus ponens in which the antecedent of the rule contains a
number of wifs, one of which is of the form Vz[(a1(z) A ... A an(z)) — B(z)] and the others
are instantiated a;’s (i.e., @1(t),..., ay(t), where ¢ is an instantiated term of £). The result
of applying this rule is the appearance of 3(t) at step i + 1.

Rule 6 is the mechanism whereby direct contradictions are noted. The predicate symbol
Contra (discussed in the previous chapter) is used to mark two simultaneously occurring,
directly clashing wffs i.e., & and —a. Notice that the rule INH (rule 2) does not apply to wffs
marked by Contra.’

Rule 7 is an example of a step-logic default rule. This rule offers one approach to negative
introspection. It says that when some wff appears as a proper sub-formula of an i-theorem
but is not itself an i-theorem then deduce =K (8,%) as an (i 4+ 1)-theorem. K can be thought
of as a knowledge predicate so that =K (3,1) is intuitively read as “ 8 was not known at step
1.” Since the set of theorems which appear at any given step is finite, the determination of the
applicability of rules of this sort is computationally decidable. The condition that this rule
should apply only to wffs which appear as sub-formulae at the previous step is simply one way
to identify and constrain potential candidates over which the agent may negatively introspect.
The thinking is this: Since the proper super-formulae are beliefs they are presumably “relevant”
to the reasoner. So too then may be knowledge about any contained sub-formulae, including

that they are not believed.

5Earlier treatments of Contra (e.g-s [Elgot-Drapkin, 1988]) considered it to be a ternary predicate in which
the contradictands occupied the first two positions in its argument list and a step number occupied the third,
ie., Contracigot—a.(e,3,%). Contradictands were thus distinguished syntactically by their placement in the
argument list, though the intended semantics of Contra offered no principled reason to differentiate them in
this way. The treatment here eliminates the syntactic quirk of handling Contracgot—q.’s first two arguments
symmetrically.
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4.2 An Example

In this section we will use the inference function depicted in figure 4.3 to briefly show an
example of SL7 in action. The purpose of this illustration is twofold. For one, we have only
sketched the technical details of step-logics here, an example should help bring an intuitive
grasp of the formalism within reach. Secondly, it will provide an opportunity to discuss several
shortcomings of this, the heretofore most ambitious step-logic, that must be addressed before
we proceed with the specifics of applying step-logics to reasoning about error and terminological

change. (The example presented here is adapted from [Elgot-Drapkin, 1988].)
Let our logic be defined by Infp (figure 4.3) and Obsp (below):

P — B,P — ~FYi[(BANow(i)A~K(=F,i—1)) — F] ifj=1
Obsp(j)=4{ P ifj=k
0 otherwise

for a fixed ¥ > 1. This observation function is an abbreviated version of the function that
Elgot-Drapkin uses to solve a classic problem in the default reasoning literature regarding
flying and non-flying birds. (More generally this problem illustrates the interaction between
defaults and class-subclass hierarchies.) To see this interpret P as “Tweety is a penguin”, B
as “Tweety 1s a bird” and F' as “Tweety flies”. The observation function then tells us that
our agent believes at step 1 that: (i) if Tweety is a penguin then Tweety is a bird; (ii) if he’s
a penguin then he doesn’t fly; and (iii) the default that for all time steps ¢, if the current time
is i and Tweety is believed to be a bird and the agent didn’t know at time (i — 1) that Tweety
doesn’t fly then Tweety flies. Our agent observes no other facts until time £ when he comes to
believe that Tweety 1s indeed a penguin. Figure 4.4 is the sequence of steps which illustrate
the inferences made by this step-logic. (In the figure the center dots (---) indicate a finite
number of other beliefs which appear at a step but which have no bearing on the discussion
that follows. For example both =K (B, 1) and =K (P, 1) are (k — 1)-theorems which do not
appear in the figure.)

Beliefs at steps 1 through (k — 1) are those held before the agent learns that Tweety is a
penguin and those at step (k+4) reflect an account of the story once a contradiction regarding
Tweety’s ability to fly has arisen and subsequently been resolved; Tweety is ultimately deter-

mined not to fly. In between are steps whose newly proven beliefs (those which are underlined)
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Step 0:

Step 1:

Step k-1:

Step k:

Step k+1:

Step k+2:

Step k+3:

Step k+4:

0

Now(1), P — B, P — =F,Vi[(BA Now(i) A~K(=F,i — 1)) — F]

.--,P — B, P — =FYi[(BA Now(i) A =K (=F,i— 1)) — F]
Now(k — 1), =K (=F,1),---, = K(=F k- 2)

.--,P — B, P — =FYi[(BA Now(i) A=K (=F,i— 1)) — F]
—~K(=F,1),- - ~K(~F k—2)
Now(k),~K(~F k—1), P

.+.,P — B, P — =FVi[(BA Now(i) A=K (~F,i— 1)) — F]
~K(~F1), -, ~K(=F k—1),P
Now(k + 1), ~K(~F, k), B,~F

.-, P — B, P — =FYi[(BA Now(i) A=K (=F,i— 1)) — F]
~K(=F,1),- -, ~K(~F, k), P, B,~F

Now(k+2),F

)P — B,P — =F,Yi[(BA Now(i) A ~K(=F,i— 1)) — F]
~K(=F,1), -, ~K(~F,k), P, B,~F,F
Now(k + 3),Contra({F,~F}, k+2)

)P — B,P — =F,Yi[(B A Now(i) A ~K(=F,i— 1)) — F]
~K(=F,1), -, ~K(=F,k), P, B, Contra({F,~F}, k + 2)
Now(k + 4),Contra({F,~F}, k+3),-F

Figure 4.4: Step-logic SL7(Infp,Obsp) in action.
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reflect information acquired via: (i) observation (step k); (ii) (chained) inference using MP
and extended modus ponens (steps (k+ 1) through (k+4)); (iii) inference using the rule which
notes contradictions (steps (k + 3) and (k + 4)); and (iv) inference using the rule of negative
introspection (steps (k — 1) through (k + 1)). Also illustrated is disinheritance; in going from
step (k + 3) to (k + 4) the beliefs F' and —F are both disinherited (though at the same time
the latter belief, =F', is reproven, from P and P — —F using MP, and hence reappears at step
k+4).

The indicated steps (beginning at step k) have the following intuitive gloss: (step k) the
agent believes that Tweety is a penguin; (step k+1) since Tweety is thought to be a penguin the
agent comes to believe that Tweety is a non-flyer, and also a bird, also the agent believes that
he did not know that Tweety was a non-flyer in the previous step; (step k£ + 2) a contradiction
appears; (step k + 3) the contradiction is noted, so neither flight belief is inherited to the next

step; and (step k + 4) that Tweety does not fly is reproven.

4.3 Addressing Some Shortcomings

The preceding introduction to step-logics should suffice to set the stage for a discussion of two
shortcomings found in all heretofore developed step-logics which attempt to handle contra-
dictions. Both of these failings must be addressed before we will be able to properly apply
step-logics to model reasoned change in belief as prompted by mistaken beliefs. The problems
we will consider here are (1) the inability of of previously developed logics to check, or halt,
the lingering causes and consequences of contradictions, and (2) the inability of these same
logics to reinstate observations as beliefs, under certain circumstances, after they have been

disinherited.

4.3.1 The Lingering Consequences and Causes of Contradictions

Let’s look at Infp from figure 4.3 (without loss of generality we will ignore the rule which
introduces Now(?) at each step i (rule 4)) and the observation function, Obsy:
PP—Q ifj=k

0 otherwise
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for fixed k,n > 0. Here P and P — @ will be (the only) k-theorems so by MP @ will be a
k + 1-theorem. Then (at step k + n) =P is observed, causing a direct contradiction and the
disinheritance of both P and —P. But ) persists, though its only derivation is questionable

as it relies on P. (see figure 4.5). Thus, @, a consequence of an untrustworthy theorem

Step k: PP—Q

Step k+1: P,P—Q,Q
Step k+n: PP —Q,Q,=P

Step k4+n+j: P — Q,Q,Contra({P,—~P} k+n)

Figure 4.5: A belief (@) based on a questionable former belief persists.

(belief) lingers beyond the step marking the disinheritance of its justification (P). Indeed, in

this example @ will be inherited, and hence appear as a theorem, at every step i > k + 1.

An even more pathological, though related, difficulty arises if we instead consider Obss:

Obsy () = Q,Q— R Q—-R ifj=k
0 otherwise
In this example each of @, @ — R and @ — —R, which together with MP are the root
causes of the contradiction R and —R, will persist indefinitely, and as a result so too will
the contradiction (see figure 4.6.)° We can try to alleviate these problems by restricting the
application of MP and INH. For instance, we might try this: at step ¢ (1) INH should not
apply to any « if F; =« (or, if « is of the form =, then INH does not apply if I; ), and (2)
MP should not apply to any « and o — g if either of their direct contradictands (i.e., —a or

—a — f) are i-theorems. The idea here is to (1) prohibit direct contradictands from being

6 At the same time both R and —R are also disinherited at each step beyond k + 2 because of the stipulation
(a) placed on INH in Infp.
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Step k: Q,Q— R Q— R

Step k+1: Q,Q — R,Q — —RR,-R

Step k+2:  Q,Q — R,Q — =R, Contra({R, ~R},k + 1), R, ~R

Step k+3: Q,Q — R,Q— —-R,Contra({R, R}, k +1),Contra({R, ~R},k + 2), R-R

Figure 4.6: The contradiction (R, =R) is reproven at each step.

inherited, and (2) restrict the use of MP to antecedent wifs whose contradiction is not also a
belief.

Unfortunately these restrictions are insufficient to prevent the continual re-emergence of
contradictions in certain cases. As long as the root cause of a contradiction persists, and no
other action is taken, the contradiction will periodically re-arise (see figure 4.7, in which we
again use Obsy and Infp augmented with our new stipulations).”

A solution to these problems must take into account the way inference is chained over the
course of steps in step-logics. Any given ¢-theorem « may have been proven in any number
of ways, where each distinct proof is based on (other) theorems appearing at previous steps.
We can view a as the root of a proof tree whose nodes are the theorems used in deriving
a and whose branches represent distinct proofs of . The proposal offered here is to record
the collection of wffs which appear on each branch of a’s proof tree, along with a (at each
step at which a appears), and use this information to (1) recover from the consequences of

contradictions and (2) to prevent a contradiction from re-emerging.

4.3.2 dc-recovery: Some Preliminary Definitions

Let SL(Inf,Obs) be an arbitrary step-logic with inference rules all of the form:®

"These new stipulations are nevertheless beneficial and will be used in the logic described shortly. (See
Infieriv, figure 4.8.)

8 The following definitions can be extended to apply to the more general rule schema RS discussed earlier.
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Step k: @,Q—R,Q——-R

Step k+1: Q,Q— R,Q— RR,-R

Step k+2: Q,Q — R,Q— —-R,Contra({R,—R},k+ 1)

Step k+3: Q,Q — R,Q— R, Contra({R,~R},k+ 1)

Step k+4: Q,Q — R,Q — -R,Contra({R,—R},k+ 1)R,-R

Step k+5: Q,Q — R,Q— —~R,Contra({R,~R},k+ 1), Contra({R, R}, k+ 3)

Figure 4.7: The contradiction (R, ~R) will alternately arise and then be disinherited.

Definition 4.1 If;4; a resulted from the application of an inference rule whose ¢ antecedents
are B1,..., 0, then a derivation set (or simply, derivation) of o at step i + 1 is a (possibly
empty) set of theorems S containing exactly each of 31, ..., B, and each wff in every derivation
S; (at step ¢) of g;, for 1 < j < n. (When a step number is understood we will simply say
“derivation” instead of “derivation at step :”. When we wish to call attention to the derivation

S of a we write a[S].)

Note again that a theorem « may have more than one derivation at a step, each corre-
sponding to a different branch in a’s proof tree. For instance if MP is a rule of the logic and P,
R, P— @, R — @ are all k-theorems then ) may have two different derivations at k& + 1; one
including P and P — @ (and the theorems appearing in each of their respective derivations),
and the other including R and R — @ (and the theorems appearing in each of their respective

derivations).
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Definition 4.2 Let ; a, then « is distrusted at step ¢ + 1 iff:
(i) F; —a or if a is of the form =8 and ; g, or
(ii) 37 such that both F; B[S1] and k; =8[Ss] and « € S7 or & € Sa, or
(iii) each derivation of « at 7 contains at least one wff which itself is distrusted at step i — 1.

We make our predicate symbol Distr precise by using Distr(a, k) to assert that « is distrusted

at step k.

Intuitively definition 4.2 says that an i-theorem is considered distrusted, or not trustworthy,
at step i+ 1 if either (i) its negation is also an i-theorem, or (ii) it led to a direct contradiction,

or (iil) each of its derivations contains a distrusted theorem.

Definition 4.3 SL(Inf,0bs) dc-recovers (from the possible causes and consequences of all

direct contradictions that appear at any step) if 3j such that Vk > j -Ja bpy1 Distr(a, k).

Definition 4.3 says this: a step-logic dc-recovers if there is a step j such that for any

subsequent step k if « is a k-theorem then a will not be distrusted at step k + 1.

Definition 4.4 SL(Inf,Obs) is eventually free of direct contradictions if 35 such that Yk > j

and Ve, either F; a or I/ —a.

Lemma 4.5 If SL(Inf,Obs) dc-recovers then SL(Inf, Obs) is eventually free of direct con-

tradictions.
Proof: If SL(Inf, Obs) dc-recovers then 3j such that Vk > j no k-theorem is k+1 distrusted
by definition 4.3. Thus Vk < j, a either t/; —a /g, « by definition 4.2(i). Hence SL(Inf, Obs)
is eventually free of direct contradictions.

Theorem 4.6 SL(Infp,Obsy) does not de-recover.
Proof: Tllustrated in figure 4.5. H

Theorem 4.7 SL(Infp,Obss) does not de-recover.

Proof: Illustrated in figure 4.7. W
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4.3.3 A New Step-logic

In this section we will develop a step-logic in the SL; family which does dc-recover given
certain restrictions on its Obs function. (Tt will turn out that both Obs; and Obs, satisfy
these constraints.)

We now introduce derivations formally into a new step-logic. Figure 4.8 depicts our new

inference function, Infiery -

Rule 1: i: Ir a € OBS(i+ 1)
i+1: «a

Rule 2: i: alS] INHERITANCE®
i+1: «alS]

Rule 3: i: a[S1], & — B[Sa] MP?

i+1: Bl{a,a— p(z)} US US,]

Rule 4: i: alS1], —~a[Ss-] CONTRADICTION DISTRUSTED
i+1: Distr(a,i), Distr(—a,i)

Rule 5: i: a<S1,...,Sm >, DisTRUST CONSEQUENCES®
Distr(f1,i—1),...,Distr(f,,i— 1)
i+1: Distr(a,i)

Rule 6: i: a[S1], ~a[Sa], B1Ss] B € Sy or Sy DISTRUST ANTECEDENTS
i+1: Distr(p,1)

® Where t/; Distr(a,i— 1), t/; —a, and for each 8 € S t/; Distr(83,i — 1). Also, if « is of
the form —+ then this rule does not apply if F; .

b The stipulations placed on the antecedent a[S] of rule 3 (INH) in note (a) above apply
to each of a[S1], @ — B[Sa], and S here.

¢ Where each Sj, contains at least one of 81, ..., 3, and « is not of the form Distr(y, j).

Figure 4.8: Infqeriv

In the figure 4.8 the following abbreviations are used:

(1) « abbreviates a[@]; i.e., we simply write & when a’s derivation is the empty set.
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(2) Fi @ < S1,...,S, > if and only if F; a[S1],...,«[S,] and there is no S such that Vk,

1<k<n,S# Sy and F; «fS]; that is Sy,..., S, are all of a’s derivations at step .

(Since the limitations we will place on Obs (see the statement of the de-recovery theorem, sec-
tion 4.3.4) makes the derivation of any theorem of the form Distr(«a, 1) irrelevant, we annotate
wils of the form Distr(a,i) with [0].)

Notice that derivations distinguish instances of theorems so that if -; @ and a has multiple
derivations at i, Sy, ..., Sy, then each of «[S1],...,a[S,] will appear as i-theorems.

The idea behind each of the rules of Infzer;, 1s this:

Rule 1: (OBS) The derivation of an observation is empty indicating that no other beliefs
have been used to derive it.

Rule 2: (INH) The derivation of an inherited belief is unaffected. Inheritance only applies
to trustworthy beliefs: Namely, a[S] is inherited from step i to i + 1 if it is not distrusted, its
direct contradiction does not also appear at step 4, and no # € S is distrusted. (See stipulation
(a) in the figure.)

Rule 3: (MP) The derivation of a belief inferred via MP includes the wffs in the antecedent
of MP (i.e., @ and o — ) and all wffs contained in each antecedents’ respective derivation.
MP is applied only to trustworthy wifs as in rule 2 above. (See stipulation (b) in the figure.)

Rule 4: This rule marks a wff as distrusted at step ¢ + 1 when both it and its direct
contradiction appear at step 7. (Note: The predicate symbol Contra is not used here but it
will return in the next chapter.)

Rules 5 and 6: These rules track down the consequences of Distr-ed beliefs (rule 5) and
the antecedents of contradictory (distrusted) beliefs (rule 6). Rule 5 marks as Distr-ed at step
i+ 1 any belief whose only derivations each contain a theorem distrusted at step i — 1. (Notice
that if any of an i-theorem’s derivations contain an distrusted wff, those instances of the wiff
will not appear at step ¢+ 1 due to the stipulations placed on rules 2 and 3, regardless of the
applicability of rule 5.) Rule 6 marks as Distr-ed any (antecedent) wff which appears in the
derivation of a contradictory wiff. That is, beliefs leading to a contradiction are themselves

marked as distrusted.

A very simple example of Inf4.,;, at work is based on the following observation function:
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The resulting sequence of steps is shown in figure 4.9. Derivations are in bold type.

PP—QRR—Q ifj=1
Obss(j) =4 -p if 5 =2

(] otherwise

Notice

Step 1:

Step 2:

Step 3:

Step 4:

PP—-QRR—-Q

PP—Q@ R R—Q,
-P, Q[{P,P — Q}],Q[{R, R — Q}]

P—QRR—Q,

QUP.P - Q},Q{R,R — Q}]
Distr(P,2), Distr(—P,2)

P—Q,RR—Q,
QH{R,R — Q}], Distr(P,2), Distr(—=P,2)

Figure 4.9: Infgeriy at work.

the two instances of () at step 2 each with a distinct derivation, one of which contains P which

itself contradicts —P, also appearing at step 2. At step 3 the contradictands P and =P are

marked as distrusted and have not been inherited, though one derivation of @ at this step

contains the distrusted contradictand P. This instance of ), the one with P in its derivation,

is disinherited at step 4 by stipulation (a) placed on INH which restricts inheritance to those

instances of theorems containing no distrusted wfifs in their derivations. By step 4 then, only

one “clean” derivation of @ remains (and will continue to persist for all steps ¢ > 4).

4.3.4 The dec-recovery Theorem

We now are prepared to prove that SL(In fieriy, Obs) has de-recovery when certain conditions

apply to its observation function Obs. The following definitions help delineate those conditions.

Definition 4.8 An observation function Obs is finite if 3i such that Vj > i, Obs(j) = 0.
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Definition 4.9 A wif o is P-free if a does not contain the predicate symbol P.

Definition 4.10 An observation function Obs is P-free if Vi if o € Obs(i) then o is P-free.

Theorem 4.11 (de-Recovery Theorem for SL(Infieriy, Obs)) Let Obs be finite and Distr-

free then SL(Infqeriv, Obs) de-recovers.
The proof of theorem 4.11 uses the following lemmas and definitions.

Lemma 4.12 If SL(Infgeriv,Obs) de-recovers then there exists a step RECVR such that
Vk > RECVR, a F} Distr(a, k —1).

Proof: By definition of de-recovers. Il

Lemma 4.13 Let SL(Infgeriv, Obs) be as stated in the de-recovery theorem, then Vk any

k-theorem « containing the symbol Distr is of the form Distr(8, j).

Proof: (By induction over k)

Base case: Let k=1. Only rule 1 can produce 1-theorems, all of which must be Distr-free
by definition of Obs.

Inductive step: Assume the lemma holds for step n, then at step n+1 rule 1 can introduce
only Distr-free theorems, again by definition of Obs; rule 2 reproduces an n-theorem which is
of the appropriate form (by the inductive hypothesis); rule 3 does not apply by the inductive

hypothesis; and rules 4 — 6 produce theorems of the appropriate form. W

Corollary 4.14 Let SL(Infderiv, Obs) be as stated in the de-recovery theorem, then Vk, j,

if b, a[S] then any # € S must be Distr-free.

Proof: Only rules 1, and 3 contribute new wffs to a derivation. This result holds by
induction. Roughly, rule 1 must contribute a Distr-free wff since observations are Distr-
free. Rule 3 only applies to Distr-free antecedents each with a Distr-free derivation (from
the proof of lemma 4.13) thereby contributing only Distr-free wffs to the derivation of its

consequent. [ |

Definition 4.15 Let Obs be finite. Let OBSEND be the minimum step k such that Vj >

k Obs(j) = 0.
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Lemma 4.16 Let SL(Infieriv, Obs) be as stated in the de-recovery theorem, then 3jVk >

OBSEND, Distr-free a, and S if b «[S] then |S| < j.
Proof: Notice that for any step greater than OBSEND:

(1) Only rule 3 can increase the cardinality of a derivation S.

(2) Only rule 3 can contribute a Distr-free theorem which has never before appeared.

Notice also that if F; «[S] then for each § € S there is some step number, [, less than k

such that b; y[S;].

From step OBSEND on, only rule 3 can newly contribute as a theorem, and hence candidates
for inclusion in a derivation, at most each sub-formula of every OBSEN D-theorem (a finite
number). Every derivation from step OBSEND on will contain at most this number of

theorems plus the (finite) number of theorems which appeared before step OBSEND. [ |

Definition 4.17 Let MAXLENGTH be the maximum cardinality of any derivation (of any

theorem) in SL(Infieriv, Obs) (as found in lemma 4.16).
Definition 4.18 Let MAXSTEP = OBSEND 4+ MAXLENGTH + 1.

Lemma 4.19 Let SL(Infieriv, Obs) be as stated in the de-recovery theorem, then Vk >

MAXSTEP, Distr-free o, and S if b «[S] then Vj such that k > j >SMAXSTEP, F; «[S].

Proof: (Note that the only rule that can contribute a new wff to a derivation beyond step
OBSEND is rule 3.) Suppose to the contrary. Then there is some step 4, k > i >SMAXSTEP,
such that t/;_1 «[S] and ; a[S]. Thus there is some g such that F;_1 [S1], Fi—1 f — a[Ss]
(where S = {8, 8 — a}US;US3) and neither g nor § — « is distrusted at i —2. (Otherwise
a[S] would not be an i-theorem by stipulations (a) and (b) on rules 2 and 3.) Either one or
the other of # and # — « is not a ¢ — 2 theorem, since (1) if both are and neither is i — 3
distrusted then F;_; «, which we assume not to be the case, and (2) if both are and either
is ¢ — 3 distrusted then it would not be a ¢ — 1 theorem by stipulations (a) and (b) on rules
2 and 3. Without loss of generality, suppose it is 3[S1] that is not a ¢ — 2-theorem. Then
there is some y € S; (and hence v € S) which is not a ¢ — 3-theorem (for reasons analogous

to those showing t/;_s [S1]). We can continue this backward progression, “removing” one
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theorem from S at most MAXLENGTH times. But there are MAXLENGTH + 1 steps
between OBSEND and MAXSTEP. Wl

Proof: (of the de-recovery theorem for SL(Infaeriv, Obs)) By lemma 4.19 any Distr-free

theorem which appears after MAXSTEP will also appear at MAXSTEP. Consider the set
of all Distr-free M AXSTE P-theorems, a1[S1], ..., an[Sn]. Suppose rule 4 applies to any
pair, o;[S;] and «;[S;] of these theorems (where a; = —a;). Then both of «; and «; will be
disinherited at step MAXSTEP + 1 (by stipulations (a) and (b)), and never reappear by
lemma 4.19. Thus no direct contradiction will appear after MAXSTEP, and neither rule 4

nor 6 will apply beyond this point.

If rule 5 applies beyond this point to some antecedent theorem «, then a will not appear
at the next step (by stipulations (a) and (b)), nor at any subsequent step by lemma 4.19.

There are a finite number of Distr-free wifs which can be forever disinherited in this way.

Thus rules 4, 5, and 6 will all cease to apply beyond some finite step, RECVR, and hence
Vk > RECVR, o y Distr(a, k —1). [ |

It is left for future research to characterize the set of theorems which survive the recovery
process of SL(Infieriv, Obs). Let this set be denoted by THMpps. We note that one charac-
terization which does not apply to THM gy 1s this: Let O be the set of all theorems introduced
by Obs, and let M be a minimal subset of O whose complement M is consistent, then M C
THMops. To see that THMgps is not characterized in this way for every Obs let O be {P,—P}.
Then M = {P} or {~P}. But notice that regardless of the step at which each of P and —~P
is introduced via Obs, they will simultaneously appear at some step ¢. Thus they will both be

disinherited at i 4 1, never to re-appear. Hence THM gy, = 0.

Computational Efficiency and Derivations

It might be argued that maintaining and searching through derivations at every step in the
reasoning process is a computationally expensive task. This is true of reasoning that is com-
prised of long chains of inferences, as in mathematical reasoning; here derivations may be very
long. It is also true of reasoning that relies on many simultaneous corroborations of the same

hypothesis, as in some scientific reasoning; here there are many derivations of the same theo-
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rem. But commonsense reasoning seems to be a different sort of process than both of these,
one that is often (though not always) characterized by lots of world knowledge and rather (1)
short chains of reasoning and (2) limited or lazy corroborations of beliefs.

One way to look at the “short-chain” hypothesis is that commonsense reasoners frequently
touch base with reality, by getting external inputs, e.g., direct observation, testing, ques-
tioning, etc. Thus the reasoning gets regular validations or corrections, which can perhaps
appropriately be treated a bit like new axioms. Of course, in commonsense reasoning axioms
do not have a rigidly fundamental character as in mathematics, since we need to be able to
account for error even in observations. Observations, then, may begin new chains of reasoning.
Maintaining these short chains (derivations) has a computationally negligible effect.

The “lazy-corroboration” hypothesis asserts that we typically do not seek many indepen-
dent corroborations or “proofs” (derivations) of our beliefs. This is not to say that we de-
liberately avoid corroborations, nor that we always feel content with just one or two. There
are times when it becomes extremely important to secure as much evidence as possible before
accepting a belief; say a plan to escape in a life and death situation. But, in general, we tend
to readily accept beliefs and seek corroborations only as needed; we take a “lazy” approach to
belief corroboration. As I look out the window and see what I think is my truck in the parking
lot T simply believe that it zs my truck. I don’t have to go outside and try the key in the door,
or check the vehicle’s identification number, or peek through the windshield to see the empty

coffee mug I left in there this morning to help verify that it is, indeed, my truck.

4.3.5 Reinstating Observations

We mentioned two shortcomings of previous versions of step-logics which need to be addressed
here. The first, the lingering theoremhood of the causes and consequences of contradictions,
is handled fairly generally by Infieriy. The second problem can be viewed as the dual of the
first. Instead of being concerned with theorems persisting beyond their justifications, here we
consider certain disinherited theorems which seemingly should be, but are not, reinstatable.

Consider the following dialogue:

Agent 1: “Where is your truck?”

Agent 2: “It’s in the parking lot behind the building.”
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Agent 1: “No 1t’s not. Take a look for yourself.”

Agent 2: “Oh no! I parked it there this morning. Where is it7”

Let us use my_truck to denote Agent 2’s truck and lot to denote the parking lot. We suppose
that at some point Agent 2 will simultaneously, though briefly, hold the contradictory beliefs
Loc(my_truck,lot) and ~Loc(my_truck,lot). If we were to model her reasoning using either
Infp or Infgeriy both of these beliefs would subsequently be disinherited in virtue of the
contradiction.

The intent of the above dialogue is that at its end Agent 2 will believe = Loc(my_truck, lot),
though not because she re-observed her car missing from the lot. We would like a step-logic
to allow a belief to be reinstated once the (partial) cause of its disinheritance, in this case its
direct contradiction, is found to be mistaken, but no heretofore developed step-logic offers this
reinstatement capability.

One proposal with some intuitive appeal is to develop a logic which operates on a prin-
ciple of recency: that more recent observations be trusted, and hence not disinherited, when
they conflict with earlier observations or otherwise inferred beliefs. The appropriate rules of
inference could be altered to accommodate this, but as a general solution this won’t do. The
observation function is meant to model the agent’s interaction with her environment, and ap-
pearances (i.e., beliefs constructed in accord with one’s interaction with the environment) can
be deceiving. Trust in recent observations may be a good initial response, or valuable in certain
circumstances, but a truly robust logic should also be accountable to deceptive appearances,
no matter how recent the observation which led to deception.

Consider the following more comprehensive approach: Suppose that an agent comes to
note a contradiction between two beliefs. Let her initially distrust, and hence disinherit, both
but allow her the further opportunity to note later that one or the other was mistaken for
some known reason. If she does acquire this additional knowledge (about only one of the
contradictory beliefs) then she can reinstate his faith in the other.

To formalize this approach we reintroduce the binary predicate symbol M stkn (originally
discussed in chapter 3), which like Distr, takes as its first argument a (quoted) wif and as its

second argument a step number. Intuitively, M stkn(«, j) states that the wff o is mistaken in
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virtue of something (e.g., an identification-based error) which occurred prior to or at step j.
We will limit the scope of negative introspection (rule 7 from infp) by insisting that a

Distr wif be its only trigger. Strictly speaking this modification is not necessary, but it makes

clear the 1dea being pursued here: that often it i1s useful for an agent to have available the fact

that she does not know that certain distrusted beliefs are mistaken.

i: Distr(a, j) where t/; M stkn(a, j) NEGATIVE INTROSPECTION

i+1: —~K(Mstkn(a,j)r)

Then we add a rule to handle the actual reinstatement of certain disinherited beliefs, specifi-
cally, the one of a pair of contradictands that is not know to be mistaken.

i: Contra({a, B}, k), REINSTATEMENT
M stkn(B, 7),
- K(Mstkn(a, k), i—1)
1i+1: o

We now have the tools needed to solve the Missing truck problem. We use rules 1, 2, and
4 from Infieriv® (the others have no effect on this example) and the two rules above. The

observation function, Obsyy .k, 1s:

Loc(my_truck, lot) if j=1t
) —Loc(my_truck, lot) if j =t
Obsiruck (]) =
M stkn(Loc(my_truck,lot), t2) if j =ts
0 otherwise
where 0 < t; < t5 < #3.1% The sequence of steps shown in figure 4.10. (To condense the
figure an i-theorem, of the form =K ((a,!),j : k), where j < k, is used to abbreviate that
each of =K ((e,1),7), " K((e,1),j+ 1), ..., 7" K((e,1), k), are i-theorems.)  Notice here that
—loc(my_truck, lot) is disinherited at step ¢ 4+ 2 because it contradicts loc(my_truck, lot), but

since the latter turns out to be M stkn the former is reinstated at step t3 + 1.

9 Actually we use rule 4 from In fzeri, along with the additional consequent Contra({a, ~a},) as in rule 6

of Infg.

100nly the relative order of the introduction of these beliefs is important here, not the actual step numbers.
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Step t1:
Step ts:

Step (13 — 1):

Step t3:

Step t341:

Loc(my_truck, lot)

Loc(my_truck, lot), ~Loc(my_truck, lot)

Contra({Loc(my_truck,lot), = Loc(my_truck,lot)}, 15)

Distr(Loc(my_truck,lot), ty), Distr(=Loc(my_truck, lot), t2)

Contra({Loc(my_truck,lot), mLoc(my_truck,lot)}, t2),
Distr(Loc(my_truck,lot), ty), Distr(=Loc(my_truck, lot), t2)
- K (M stkn(Loc(my_truck,lot),t3),ts 1 t3 — 1),

- K (M stkn(—Loc(my_truck, lot), t3)ts 1 t3 — 1),

M stkn(Loc(my_truck,lot), ts),

Contra({Loc(my_truck,lot), mLoc(my_truck,lot)}, t2),
Distr(Loc(my_truck,lot), ty), Distr(=Loc(my_truck, lot), t2)
- K (M stkn(Loc(my_truck,lot),t3),ts 1 t3 — 1),

- K (M stkn(—~Loc(my_truck,lot),ts)ts 1 t3 — 1),

M stkn(Loc(my_truck,lot), ts),

- K (M stkn(Loc(my_truck,lot), t3)ts),

=loc(my_truck, lot)

Figure 4.10: A contradictory observation, =loc(my_truck,lot), is properly reinstated.
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4.4 Chapter Summary

In this chapter we have introduced the step-logic formalism and added general capabilities to
the logics thus far developed. The tools developed here will be used to help solve the Mistaken

Car and both the One- and Two Johns problems in the next chapter.
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Chapter 5

Problem Solutions

In chapter 3 we introduced and sketched informal solutions to our canonical examples of object-
identification errors of the compression type: the Mistaken Car, the One John, and the Two
Johns problems. In this chapter we present formal solutions to all three problems using the

step-logic tools developed in the previous chapter (chapter 4).

5.1 Notation

In this chapter we will make use of the following notation and abbreviations introduced in the

previous chapters (chapters 3 and 4).

o tfith(y, S, i), i.e., “the thing (object of presentation) which was at first identified to be

..” abbreviates «(z)FITB(z,y, S, 1)

MISID(t,S,i) abbreviates ¢ fith(t, S,1) # 1

trta(y, i), i.e., “the unique thing referred to as y prior to step i’ abbreviates tx RT Az, y, 1)
o AM: (Vz)(3yzij)[(Names(z,y,i) A Names(z,z,j) ANy#z A i< j)— Amb(z, )]

a abbreviates «[f]

o H a< Sy,...,S, > if and only if F; «[S1],...,a[S,] and there is no S such that Vk,
1<k<n,S+#S;and F; afS5]
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Additionally a(4/s,) will be used to denote the wif resulting after substituting ¢, for every

occurrence of ¢ in a.’

5.2 The Formalism for Mistaken Car

To reiterate the Mistaken Car problem: An agent walks up to what he thinks is his car in the

parking lot, and then later a friend tells him that he is mistaken: it’s not his car after all.

The inference function we will use, called Obs,,., is defined by:

C(mc,bl), F(me, mk),Vey[At(z,y) — P(z,y)] ifj=1

At(mc, mk) if j=2
Obsmc(3) = § —F(me, mk) ifj=3

MISID(me, {At(me, 1), ~F(mc,mk)}, 2) if y =

) otherwise

where C, F, and bl can be thought of as abbreviations for Color, Fits, and blue (as in the
discussion of chapter 3). Vay[At(z,y) — P(z,y)] is used here instead of the slightly more
complicated wff which appeared earlier, namely Veyz[At(z,y) — (y # z V —AT(X, z))].
The idea is the same though; to let misidentifications cause error to be propagated through
extended MP, in this case to the consequentially mistaken theorem P(me,!). (For the sake of
brevity we have omitted the beliefs Make(me,toyota) and Registered(me, maryland) which
also appeared in the text of chapter 3. The omitted beliefs would be treated like C(me, bl) in
what follows.)

The step numbers for the introduction of the these observations have been chosen to cor-

respond roughly to those in the earlier text. Most importantly the tutorial
MISID(me, {At(me,l), ~F(me, mk)},2))

is introduced after the presentation of the mistaken car, which occurs at step 2 (when the
car is first observed by the reasoner), and after the beliefs produced by the presentation
(i.e., At(me,mk) and —F(me, mk)) have been observed. Step 5, at which the tutorial is

introduced, is after a direct contradiction occurs (specifically the contradictands F(me, mk)

1Renaming variables which appear in t; when necessary. Reality terms, which contain :-variables, are
subject to this possibility.
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and = F(mec, mk) will both appear at step 4) simulating a reasoner who is at first baffled and
then comes to correct his mistake (with the aid of the tutor’s advice).

The inference function we will use, Infar;siq, contains the rules shown in figure 5.1.2
Rules 1-6 have already been discussed, though we have not yet seen the annotated version
of rule 3 (extended MP). The derivation of this rule is analogous to that of MP which we
have seen already; all antecedent theorems together together their derivations comprise the
derivation of the consequent of both rules. (See note (*) in the footnote of figure 5.1.) Also
note that additional stipulations placed on INH and extended MP (notes a,b) now prevent the
applicability of these rules to M stkn beliefs as well as Distr-ed beliefs.

Rules 7 and M are both new.

Rule 7: This rule i1s analogous to rule 5 of Infg.r;, which tracks down the consequences
of Distr-ed beliefs and marks those consequences as Distr-ed. Rule 7 here tracks down the
consequences of M stkn beliefs and marks them as M stkn. There is no need for a rule to track
down the antecedents of a M stkn belief, similar to rule 6 of Infg.ri,, since all mistakes are
assumed to stem initially from a M ISTD-ed observation. Thus the agent will always come to
know that an antecedent belief is M stkn before she comes to know that a consequence of that
belief is M stkn.

Rule M: This rule takes care of the renaming of a misidentified object in the beliefs
produced by the presentation. It says this: If «, containing the term ¢, was produced by
a presentation at step k& and a misidentification of £ comes to the reasoner’s attention at a
later step 7, then at 7 + 1 the reasoner will believe that « holds of the misidentified object
(of presentation), i.e., tfith(t, S, k) where o € S. The rule also marks the offending belief(s)

M stkn as of the step of presentation.

5.2.1 Solution to Mistaken Car

The solution is given in figure 5.2.1. The rule used for each newly inferred theorem is given just
to the left of that theorem (except for those inherited from one step to the next via rule 2, i.e.,

these are the non-underlined theorems). Only those theorems of interest are shown; some irrel-

2Not shown in this figure are rules 5 and 6 from Infg.,;,. They are not needed to solve the Mistaken Car
problem defined by Obsy,. since the contradictands in this problem are both observations, neither of which
lead to or were caused by other beliefs (via MP). In more general settings these additional rules may be needed,
and in such cases should be included.
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Rule 1: 1: Ir a € OBS(i+ 1)
i+1: «o

Rule 2: i: alS] INHERITANCE®
i+1: «af9]
Rule 3: i: a1(B)[S1], .-, an(t)[Sh] EXTENDED MP?

(Vo) [ar(2) A .. A an(@)] — B(2)[Snpi]
F1: AT

Rule 4: i: alS1], —a[Ss-] CoONTRA & D1STR NOTED
i+1: Contra(e,—a,i), Distr(a, ), Distr(—a, 1)

Rule 5: i Distr(a, j) NEGATIVE INTROSPECTION®
i+1: -K(Mstkn(a,j),1)

Rule 6: i: Contra({a, 8}, k), REINSTATEMENT
M stkn(8, 7),
K (Mstkn(a, k),i—1)
1+1: o
Rule 7: 1: a< S1,...,5n >, MISTAKEN CONSEQUENCES?

Mstkn(B1,37), ..., Mstkn(Bn,J)
i+1: Mstkn(a,i)

Rule M: i: MISID(t,S, k) MisiD RENAMING®
1—|— 1: oz(t/tf”b(tygyk)),Mstkn(a,k)

* Where S is {ai1(t), ..., an(t), (V&) [(ar(x) A .. Aap(z)) = B(@)]JUSTU...USht

® Where t/; Distr(a,i—1),t4; Mstkn(a,i—1) t/; -a, and for each 8 € St/; Distr(3,i—1)
and t/; Mstkn(a,i—1). Also, if a is of the form —y then this rule does not apply if F; 7.

The stipulations placed on the antecedent, a[S], of INH in note (a) above apply to each
antecedent wiff here, as well as to 3(t).

¢ Where t/; Mstkn(a, j).
Where each Si contains at least one of f1,...5,.

¢ Where a € S.

Figure 5.1: Infy;5;4 — for correcting compression-based identification errors.
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evant wifs involving negative introspection are omitted. The theorem Vzy[At(z,y) — P(z,y)],
introduced as a 1-observation, is abbreviated by A in the figure for brevity. Derivations are

set in bold type. The comments to the right paraphrase the reasoning process.

5.3 The Formalism for One John

Recall the One John scenario from chapter 3: we imagine that the agent is talking to Sally
about a third person, whom the agent initially comes to identify as his (unmarried) friend
John, merely in virtue of matching John to Sally’s description of the person, or the context of
the conversation, etc., but not in virtue of hearing Sally use the name “John”. Later he finds
out it is not John, but someone else.

Proper naming and the use of names is made explicit with the the predicate symbol Names

(discussed in chapter 3).

The inference function we will use, Obs,;, is defined by:

- M(j), Names(‘y, j, —o0) ifi=1
Obss, (i) = M(j), B(y) if 1 =2
MISID(me,{M(5), B(j)},2) ifi=4
0 otherwise
where M, B, and j can be thought of as abbreviations for Married, BrokenLeg, and john,
respectively. Names(‘j, j, —o0) is used to indicate that j first came to be known as ‘j by the

agent at some arbitrarily distant time in the past (or, that the agent has “always” known j by

the name ‘j).

5.3.1 Solution to One John

The reasoning proceeds much like in the Mistaken Car. Tt is illustrated in the figure (5.3). In
the figure ellipses (...) appearing at step ¢ + 1 indicate that all i-theorems are inherited, and

hence reappear, as i + 1-theorems.)
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Step 0:

Step 1:
(R1) C(mec,bl), F(mc, mk), A Agent: “My car is a blue ...”

Step 2: C(mec,bl), F(me, mk), A,
(R1)  At(mc,1) Agent: “Oh, there’s my car!”

Step 3:  C(mec,bl), F(mc, mk), A, At(mc, 1),
(R3) P(mec,l) [{At(me,1),A}],
(R1) —F(mc,mk) Agent: “Hey, my key doesn’t fit.”

Step 4: C(mc,bl), A, At(mc, 1),
P(me,l) [{At(me,1),A}],
(R4) Contra({F(mc, mk), ~F(mc,mk)}, 3), Agent: “That’s impossible!”
(R4)  Distr(F(mc,mk), 3), Distr(~F(mc,mk), 3)

Step 5:  C(mc,bl), A, At(mc, 1),
P(me, 1) [{At(mc,1),At(me,1) — P(me)}],
Contra({F(mc, mk), = F(mc,mk)}, 3),
Distr(F(mc, mk), 3), Distr(=F(mc,mk), 3),
(R1) MISID(mc,{At(mc,1),—F(mc,mk)},2) Friend: “This isn’t you’re car.”

Step 6  C(mc,bl), A, At(mc, 1),
P(me,l) [{At(me,1),A}],
Contra({F(mc, mk), = F(mc, mk)}, 3),
Distr(F(mc, mk), 3), Distr(=F(mc,mk), 3),
MISID(me, {At(mc, 1), ~F(mc,mk)}, 2),
(RM) Mstkn(At(me,l),2), Mstkn(—~F(mc, mk),2),
(RM) At(tfitb(mc, {At(me, ), 7 F(me,mk)},2), Agent: “I mistook this car for mine.”
(RM) =F(tfitb(me, {At(mc, 1), —F(me, mk)}, 2),
(R5) —K(Mstkn(F(mc,mk),3),5) Agent: “Hmmm, let me see...”

Step 7 C(mec,bl), At(me,l) — P(mc), At(me,1),
Contra({F(mc, mk), = F(mc,mk)}, 3),
Distr(F(mc, mk), 3), Distr(=F(mc,mk), 3),
MISID(mc, {At(mc, 1), ~F(mc, mk)}, 2),
M stkn(At(mc,1),2), M sthkn(—F(mec, mk), 2),
M stkn(P(mc), 2), At(tfitb(me, {At(mc, 1), 2 F(mec, mk)}, 2),
—F(tfitb(me, {At(me, 1), 2 F(mc, mk)}, 2),
- K (M stkn(F(mec,mk), 3),5),
(R6) F(mc, mk) Agent: “Then my key is ok and...”
(R7)  Mstkn(P(mec,l),2),
(R3)  P(tfitb(me, {At(me, 1), F(me,mk)},2),1)
[{At(tfitb(mc, {At(mec, 1), -F(me, mk)}, 2),1), A}]

Figure 5.2: Solution to the Mistaken Car problem.
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Step 0: 0

Step 1:
(R1) —M(j), Names(‘j, j, —o0)

Step 2:
(R1) ...B(j),M(j) Sally: “His leg is broken
and his wife ...”
Step 3:
(R4) Names(‘j,j,—00), Contra({M(j), ~M(j)}, 2),
(R4)  Distr(M(j),2), Distr(-M(5),2) Agent: “That’s impossible!”
Step 4:
(R1) ...MISID(j,{M(j),B(j)},2) Sally: “You’ve misidentified
who I'm talking about.”
Step 5:

(RM) ... Mstkn(M(j),2), Mstkn(B(j), 2),
J

(RM) M (tfith(j, {M(5), B(4)},2), B(tfitb(5, {M (), B(j)},2),
(R5) - K(Mstkn(M(j),3),4) Agent: “So that’s what’s wrong.”

Step 6:
(R6) ...-M(j) <REINSTATE MARITAL BELIEF>”

Figure 5.3: Solution to the One John problem.
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5.4 The Formalism for Two Johns

We now suppose that subsequent to step 6 (from One John, above) Sally tells the agent that
she is talking about someone named “John” (different from the agent’s friend John). The

agent thus becomes aware that “John” is ambiguous, and again must do some renaming.

To make the role of Names more precise inference rule N (below) is used.?

Rule N: i: Names(‘z,y, k), a(z) UsE oF NAMES

R )

Rule N is grounded in the interplay between the use and mention of standard names. It
makes explicit that the function of a name when used is to stand for an object. The rule
says this: If the agent believes that o of some object z (a use of z) and she believes that the
standard name of that object (the quoted form, ‘z) names some object y, possibly different
from the first (a mention of z), then the agent will come to believe that « of y. For instance,
since “Merle” names my sister (T believe that) then if T come to believe that Merle is in town,
I'll also come to believe that my sister is in town.

When a name, ‘z, does not uniquely refer, use of that name is confusing. This too is
reflected in rule N. For instance, ignoring the third argument of Names for the moment, if
Names(‘j, smith), Names(‘j, jones), and smith # jones are all i-theorems, then the non-
judicious use of rule N will produce both jones # jones and smith # smith as i+ 1-theorems.
A cautious reasoner will refrain from using the ambiguous term (at least in ambiguous contexts)

thereby circumventing this difficulty.
Recall that the predicate symbol Amb is used to state that a name does not refer uniquely

beyond a certain step. The renaming on ambiguous terms is accomplished via rule A below:

Rule A: i: Amb(‘z, k), a(z) AMBIGUITY RENAMING

i+1: Az /trta(‘z,k))

3Like the rules of MP and INH, the proper conditions for the application N will need to be stipulated.
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This rule takes an antecedent wff a(z) which uses the ambiguous term z and eliminates
the offending term replacing it with ¢rta(‘z, k), which mentions but does not use z.

The inference function, Infpisamsig, used to solve Two Johns contains those of In farisiq
(with the appropriate modifications to the stipulations to limit the use of ambiguous terms)
plus rules N and A (see figure 5.4).*

The new observation function, Obss;, adds two observations, namely AM and

Names(‘j,tfitb(j, {M(])’ B(])}’ 2)’ 2)

to those appearing in Obsy;. Names(‘j, tfith(j,{M(j), B(j)},2),2) says of the object the
agent took to be ‘his’ John, that it is named “John”. The addition of this theorem introduces
the ambiguity. Obsy; is shown below. We pick step 7, the first step beyond the resolution
of One John, for the introduction of Names(‘j,tfith(j, {M(j), B(j)},2),2).° Any later step

would also be fine.

—~M(5), Names(‘j, , —o0), AM ifi=1
M(y), B(3) ifi=2
Obsy;(i) = 8 MISID(j,{M(5), B(5)},2) ifi=4

Names(‘5,tfith(5,{M(5), B(j)},2),2) ifi=7

(] otherwise

5.4.1 Solution to Two Johns

The solution to Two Johns is depicted in figure 5.5. We pick up from step 6, the last step in
the solution to One John (shown in figure 5.3) adding AM as a 1- through 6-theorem, as per

Obssy;. For the sake of brevity we have omitted the derivation of Amb(‘j,2) which is:
[AM, Names(9,j), Names(‘j,tfitb(j,{M(j), B(j)},2)), MISID(j, {M(3),B(j)},2), —oo < 2]

None of the omitted derivations have any effect on the reasoning. The formal treatment of
the theorem —oo < 2, found in the derivation above (it appears because it binds to the last

conjunct of the antecedent of AM) has been omitted as well.

4 As well as extended modus ponens which is required to infer Amb(‘j, 2) from the axiom AM.

5This theorem must necessarily be introduced after the agent comes to know about the second John (step 4),
but not necessarily before he has resolved his initial misidentification, as is done here. The current formalism,
however, requires this additional restriction.
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Rule 1: i: IF 0« € OBS(i +1)
i+1: «

Rule 2: i: alS] INHERITANCE®?
i+1: «ofS5]

Rule 3: i: a1(t)[S1], - - -, an(t)[S], EXTENDED MP%¢

Vel(ar(2) A ... A an()) = A(@)][Sns]
it1: BST

Rule 4: i: a[S1], ~a[S2] CoNTRA & DISTR NOTED
i+1: Contra(a,na,1), Distr(a,i), Distr(-a, 1)

Rule 5: i: Distr(a, j) NEGATIVE INTROSPECTION®
i+1: —~K(Mstkn(a,j)?)

Rule 6: i: Contra({o, 8}, k), REINSTATEMENT?
M stkn(B,5),
K (Mstkn(a,k),i—1)
i+1: o

Rule 7: i: a < S1,...,8m >, MISTAKEN CONSEQUENCES®
Mstkn(f1,37),..., Mstkn(Bn,7)
i+1: Mstkn(a,1)

Rule M: i: MISID(t,S, k) Misib RENAMINGT
i+1: Q(t/tfitb(t,5,k))s ]lffstkn(a, k)

Rule N: i: Names(‘z,y, k), a(z) UsE oF NAMEs?
i+1: Az /y)

Rule A: i: Amb(‘z, k), a(z) AMBIGUITY RENAMING

i4+1: Qjirtatar)

* Where S is {ai(t),...,an(?),Ve[(ar(z) A ... Aap(z)) = S(2)]JUSTU...U St

* Where t/; Distr(a,i—1),t4; Mstkn(a,i—1) t/; -« and for each 8 € St/; Distr(p,i—1)
and t/; Mstkn(a,i—1). Also, if « is of the form =y then this rule does not apply if F; 7.

The stipulations placed on the antecedent, a[S], of INH in note (a) above apply to each
antecedent wiff here, as well as to 3(t).

¢ Where t/; M stkn(a, j).

4 Where a does not use the term y if F; Amb(‘y, k). (For rule 3 this applies to each a;
and 3.)

Where each Si contains at least one of f1,...5,.

f Where a € S.

9 Where t; = # y.

Figure 5.4: Infpisamsig — for disambiguating after a dispersion-based misidentification
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Step 6:
Names(‘j, j, —o0), Contra {M( ), M(5)},2), AM
Distr(M(j),2), Distr(—=M (j

(
(j
3, stkn(M() 2), M stkn(B(j), 2),

MISID(j, {M(j), B(j)},?
M(tfith(j, {M(5), B(j)},2), B(tfith(j, {M(j), B(5)},2),
- K (Mstkn(M(5),2),4), "M (j)

Step 7:
(R1) ...Names(‘j,tfith(j,{M(j), B(j)},2),2) Sally: “His name is ‘John”’

Step 8:
(R3) ...Amb(‘4,2) Agent: “Oh, they have the same name.

Step 9:
Contra({M(j),~M(j)},2), AM, Distr(M (), 2), Distr(-M(5), 2),
M stkn(M(j5),2), Mstkn( (J),2), K (Mstkn(M(j),2),4), Amb(‘j,2),
(RA) Names(‘j,tfith(trta(‘'j,2),{M(j),B(j)},2),2), Names(‘j,trta(‘j,2), —o0),
(RA) —M(trta(‘4,2)), MISID(trta(‘j,2),{M(j), B(4)},2),
(RA)  M(tfith(trta(‘y, 2), {M(4), B(j)}, 2), B(tfitb(trta(‘s, 2), {M(5), B(4)},2)

Figure 5.5: Solution to the Two Johns problem — continued from the solution to One John.
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Chapter 6

Indexicality: A Case Study for FOL

We have now completed our discussion of our terminological change work and turn our atten-
tion to a separate discussion of indexicality. An indexical is an expression whose referent is
dependent on the context in which that expression is used; it’s meaning changing as the con-
text changes. “I”, “now”, and “here” are examples. We have already touched on the changing
meaning of “now” with our discussion of step-logics. We have seen also that even proper names
can have an indexical nature with our discussion of presentations and this and that (chapter
3). Our discussion now turns to the indexicality of the “I”.

Though this is a separate theme from that which we just covered we are still concerned
with reasoned change in belief, but here the change is not so much over time or proper names,
but rather over context of who is uttering a phrase. Even though this treatment uses classical
first-order logic rather than step-logics, it shares a feature with the preceding proper names
treatment in that both treatments show that dealing with indexical or changing meanings is
far trickier than one might expect.

Our treatment of “I” here is based on a paper by Ohlbach in which he shows that a FOL
representation of knowledge about indexicals is non-trivial. He, and we in turn, discuss the
indexical “I” in the context of one of Smullyan’s logic puzzles which illustrates sharply how

the meaning of “I” changes with context.
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6.1 Knights and Knaves

The Knights and Knaves problem ([Smullyan, 1978]) can be stated as follows: An island exists
whose only inhabitants are knights, knaves, and a princess. The knights on the island always
tell the truth, while the knaves always lie. Some of the knights are poor and the rest of them
are rich. The same holds for the knaves. The princess is looking for a husband who must be a
rich knave. In uttering one statement, how can a rich knave convince the princess that he is
indeed a prospective husband for her? !

In [Ohlbach, 1984] we find the framing and solution of this problem in a formal theorem-
proving context using first-order logic (FOL). Though trying to write the problem in FOL may
not appear to be difficult at first, it is shown by Ohlbach not to be entirely elementary. He
examines, and finds inadequate, two different approaches before he finally settles on a third.
This final approach, though successful in that it gets the desired “solution”, is unsatisfactory.
Specifically, Ohlbach uses a truth predicate with two arguments, T'(z,y), which asserts that
its first argument z is true, but has no clear meaning for its second argument in terms of the
original problem. Its justification is that the predicate allows a theorem-prover to perform
certain unifications that lead to the intended solution. But it does not accomplish the goal
of finding a knowledge representation faithful to the original problem, as well as having the
solution as a logical consequence.

Ohlbach’s conclusion is that knowledge representation is too hard in FOL, and too depen-
dent upon tricks. We will not dispute that it takes some time to come up with a satisfactory
representation of the problem, but this is not necessarily the fault of FOL. We contend that
there is a straightforward treatment of the problem that is faithful to its intent and that does
allow a formal proof of the desired result. However, it requires employing concepts that are not
usually found in the context of problem-solving via resolution theorem-provers, namely, ideas
from natural language processing. Nevertheless, we are not replacing one trick by another, but
rather introducing a well-understood and general formalism for problems of this sort.

The rest of this chapter is organized as follows: Section 6.2 discusses issues of problem rep-

1 The intended solution is the statement “I am a poor knave.” The reader can readily verify that this indeed
is a solution. Note the self-referential nature of the statement; this feature is a special case of indexicality,
which we address below. For general treatments of self-reference, see [Perlis, 1985], where another of Smullyan’s
puzzles is treated, and [Smith, 1986].
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resentation, especially the role played by the pronoun “I” in the Knights and Knaves problem.
Section 6.3 reviews general consequences for truth-values of statements containing indexicals
such as “I”, and section 6.4 applies this to the Knights and Knaves problem. Section 6.5
gives our formal treatment, including a resolution-refutation proof by answer extraction. Sec-
tion 6.6 compares our solution to Ohlbach’s and suggests a broader context for dealing with

self-utterances in automatic theorem-proving.

6.2 Problem Representation

Finding a suitable representation for problems in Al is often a difficult task. However, the
formalism used to represent a problem is not necessarily the cause of the difficulty, though
we grant that sometimes it is. Often it is the problem itself that is resisting representation
and, when this occurs, further insight into the problem is necessary. The Knights and Knaves
problem is a prime example of this. Ohlbach’s interpretation of the problem results in his
asking “Is there a statement x that T (being a rich knave) can say to convince the princess
that T am indeed a rich knave?” Formally this might look like (and does in Ohlbach’s second

treatment):?
OHL: Fu[CanSay(I,u) < T(and(knave(I),rich(I)))]

where T is the predicate meaning True and “and” although a function symbol, intuitively
takes two statements as arguments and returns another single conjunctive statement.?

This interpretation may appear to be reasonable given the English statement of the prob-
lem, but as Ohlbach discusses, this representation (along with other associated axioms) is not
sufficient to derive the intended result.

Part of the difficulty is not hard to see. The constant “I” stands for a fixed person (who is
a rich knave). The point of the biconditional in OHL, and especially of the right-hand side,

is to test whether the speaker is a rich knave, based on the ability to utter u. That is, the

2Ohlbach’s first treatment involved the axiom Ju[CanSay(I,u) — T(and(knave(I),rich(I)))] which (in
addition to yielding a trivial and unhelpful answer) does not seem to correspond to his English interpretation
“There exists a statement which I can say and which implies that I am really a rich knave.” In fact, it seems
to us that the goal statement Ju[CanSay(I, u) A Vp[CanSay(p,u) — T(and(rich(p), knave(p)))] comes much
closer to the English.

3 Actually, a name of the statement.

99



problem really seems to be asking, “What statement, when made by anyone, will convince the
princess that the person making the statement is a rich knave?” The first problem with OHL
is then the following: “I” should not be bound to a fixed individual, but should represent any

“man in the street” who might utter u. We suggest the alternative version:
G: JuVp[CanSay(p, u) — T(and(rich(p), knave(p)))]

We claim to have now adequately represented the goal statement;* but this is still not
enough. For although this goal statement expresses what we want, there are other problems
arising from the truth conditions of utterances containing the pronoun “I”. These will enter

into axioms in the problem representation, rather than the goal statement.

6.3 Utterance Instances of Statements

This brings us to what we think is the key issue in this puzzle, an issue which has broader sig-
nificance as well. Specifically, utterances are instances of statement uses, and these instances,
in general, have truth-values, rather than the statement in and of itself. In particular, terms
in a statement may have no definite reference outside the context of an utterance. Although
this concept is familiar to linguists® and philosophers (it is the so-called problem of indexicals
which is discussed below) it is worth going into detail in here, since the issue of representing
knowledge in the Knights and Knaves problem hinges on this very phenomenon.

Typically, we think of a statement as being either true or false. This, however, is not always
the case. For example, the statement: “I am a knave” will have a truth-value dependent upon
who the speaker is; and so would be falsely uttered by any knight and truly by any knave.®
Statements that contain indexicals have meanings, and hence truth-values, that depend upon
context. Another example is the statement: “It is raining”. In certain cases when uttering this
statement the speaker intends to express that it is raining at some particular place at some

particular time. The time and place implied in these cases are “here” and “now” respectively;

4Both G and the second wff in footnote 2 will do equally well.

5Including those who work in natural language processing; see for instance [Allen, 1984], [Allen and Perrault,
1980], and [Harper and Charniak, 1986].

6Hence, this statement can be uttered by neither knights nor knaves, in the Knights and Knaves problem!

100



“here” and “now” are indexicals whose referents are significant in determining the truth or
falsity of such situated statements.

Generally speaking, an indexical in an utterance is a sub-expression of that utterance whose
meaning is determined (and thus understood) by the context in which the utterance is stated.
Because of the indeterminacy of truth-values of sentences that contain indexicals, we will refer
only to the truth-value of utterance-instances of such statements. An utterance-instance of
a statement contains a context in which the statement was (or is) made including who the

utterer is.

6.4 “Who Am I7”

If we look closely at any of Ohlbach’s representations of the Knights and Knaves problem,
we notice that the constant “I” seems to be playing two different roles. In all of his goal
statements “I” is presumably used as the name of a particular person. Ohlbach’s second goal
statement, OHL, illustrates this usage. On the other hand, in the intended solution to the

problem, the “u” of the goal statement is bound to the term:
and(not(rich(I)), knave(I))

(which we abbreviate by anriki) where, the same symbol “I” appears as before but now what
is of interest is its potential presence within CanSay(I,anriki), i.e., as part of a potential
utterance whose truth value depends upon who the speaker is. That 1s, any number of people
might utter anrikz, and its meaning would be different in each case. We now have an utterance-
instance and need to know who “I” is before assigning a truth-value. “I” must be viewed as
a pronoun and not a proper name here. In particular, the knighthood or “knavehood” of “I”
determines the truth of anriki. Of course, in the world in question, only knaves (and rich
ones at that) could utter anriki. But that is the point; the princess must be able to deduce
precisely that fact: that anyone at all who utters anriki must consequently be a rich knave.
In what follows, we remove this ambiguity by introducing a new binary predicate letter,
TU, into the language of Knights and Knaves. TU’s first argument is intended to denote a
person and its second an utterance. Intuitively TU(p, u) is true if and only if u is true when

uttered by person p. In particular, when u contains “I” as a subexpression, TU (p, u) is true if
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and only if the substitution-instance of u resulting from replacing all occurrences of “I” in u

by p 1s true. Thus the statement:
TU(John,“T am six feet tall”)

is true if and only if John (the utterer) is indeed six feet tall.”

6.5 Formalization

We now introduce our notation for representing the problem. We use a first-order theory,
embellished with a quotation mechanism (see, for example, [Perlis, 1985]) which contains the

following terms, predicate letters and function letters:
I: constant (the word “I”)
knave : unary function letter (knave(x) stands for the term “x is a knave”)
rich : unary function letter
not : unary function letter
and : binary function letter
CanSay : binary predicate letter (CanSay(p, v) means “p can say u”)

TU : binary predicate expression (TU(p, u) means term “u” would be true if occurrences

of “I” in u are replaced by p)
T : unary predicate expression (7'(¢) means the term ¢ is true)

Using the above notation, we can now present the axioms which capture the Knights and

Knaves problem as we see it. For simplicity, we suppose all variables range over knights,

knaves, the princess, and utterances.®

"This is somewhat comparable to the formulation of Barwise and Perry [1983] when they speak of an
utterance in a “situation” concerning “I”: u[l am six feet tallle is true (where u is the utterance “I am six feet
tall” and e is a situation in which John is present and makes utterance u) iff John is indeed six feet tall in
situation e.

We use TU as an acronym for “truly utters”; i.e., TU(p,u) says “p would be telling the truth if p were to
utter u.”

8 This follows the convention of Ohlbach. The use of either typed or relativized variables would eliminate
unusual readings at the expense of more complex formulae.
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All clauses required to solve this problem can be derived from only three first-order axioms
and one schema which are sufficient to represent the needed facts about the world in which

the knights, knaves, and princess live, namely:
(1) Vpu[T(knave(p)) < (CanSay(p,u) — -TU(p,u))]
i.e., p is a knave iff the things u that p can say are precisely those which would be false
if p uttered them.
(2) Yyz[T'(and(y,z)) < (T(y) ANT(2))]
This captures the meaning of the function letter and.
(3) Vs[T(s) = ~T(not(s))

This axiom captures the meaning of the function letter not.

(4) Vp[TU(p, f(I)) = T(f(p))]

Here f is a function variable. An instance of this schema with rich replacing f is

TU(Bill, rich(I)) « T(rich(Bill)).°
Since (4), above, is a functional axiom schema, (ordinary) theorem provers would have to
be given a mechanism to select substitution instances in some appropriate fashion. In order
to avoid this added difficulty (although it should not be computationally very expensive in
this case) we will continue our analysis in terms of a finite axiomatization of this schema,
which requires no such mechanism. The following four axioms recursively establish all possible
instances of schema (4) in terms of the leftmost function symbol occurring in TU’s second

argument.
TUana: Yuvp[TU (p, and(u,v)) — (TU(p,u) A TU(p, v))]
TUpor: Yup[TU (p, not(w)) — =TT (p, u)]
TUrich: Vp[TU(p,rich(I)) < T(rich(p))]
TUknave: Yp[TU(p, knave(I)) < T(knave(p))]

Figure 6.1 shows axioms (1)-(3) and the above four TU axioms rewritten in clause form to be
used in our resolution proof of the solution to Knights and Knaves. For ease in reading we

omit those clauses which have no bearing on our proof.

?Note that this schema is akin to Tarski’s convention T(a) < a in cases where o contains the indexical “I”.
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KS1: =T (knave(p)) V ~CanSay(p, uw) V ~TU (p, u)
KS2: =T (knave(p)) V CanSay(p, u) vV TU (p, u)
KS3: T'(knave(p)) V =-CanSay(p, u) vV TU(p, u)

Al: =T(and(y,z)) Vv T(y)
A2: =T(and(y,z)) v T(z)
A3: T(and(y, z)) Vv -T(y) Vv -T(z)

N1: T(s) V T(not(s))
N2: -T(s) V =T (not(s))

TU1: TU(p, and(u,v))V =TU(p,u) V-TU(p,v)
TU2: -TU(p, and(u,v)) VTU(p, u)

TU3: -TU(p, and(u,v)) VTU(p,v)

TU4: TU(p, not(u)) vV TU(p, u)

TUS5: =TU(p, not(u)) VvV =TU(p, u)

TUG6: TU(p, rich(I)) VvV =T (rich(p))

TUT7: =TU(p, rich(I))V T(rich(p))

TUS8: TU(p, knave(I)) V =T (knave(p))

TU9: —TU(p, knave(I))) V T(knave(p))

Figure 6.1: Clause form of axioms for use in solution to the Knights and Knaves problem.
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We are now ready for the clauses which represent our goal statement. In line with our

earlier discussion, we take as our goal statement:

G : Ju¥p[CanSay(p, u) — T(and(rich(p), knave(p)))]

In the clauses that follow, “g” is a Skolem function resulting from the elimination of the

existential quantifier in the negation of G.
G1: CanSay(g(u),u)) V T(and(rich(g(u)), knave(g(u))))
G2: ~CanSay(g(u),u) VT (and(rich(g(u)), knave(g(u))))

Figure 6.2 depicts our resolution proof with answer extraction showing the desired solution,
anriki, to the Knights and Knaves problem. In the figure axioms are abbreviated by their
names given above (e.g. TUL, etc.). Clauses that are the result of a step in the proof are
named (R1, R2, F13, etc.) so that they may referred to later in the proof. For compactness
and 1s abbreviated by a, rich by r, knave by k, not by n, and CanSay by C'S. Parentheses are
eliminated when possible. Key substitutions in factorization steps are shown in boxes beside
the resultant clause in which they are instituted. Fac abbreviates “factorization”. In clause
F13, anriki, our desired solution is bound to the Ans term, u. Since this term is not altered
in any subsequent steps leading to the derivation of the null clause it has been dropped from

clauses R14-R35. It reappears in clause R36 as the solution.

6.6 Discussion

Ohlbach has pointed out an interesting problem in knowledge representation. We agree in
principle with his conclusion that knowledge representation is hard. In fact, if someone has
to invent a new trick each time they wish to represent a problem, the task would become
hopeless. Furthermore, if the language used by the AI practitioner forced the need for tricks,
then there would certainly be an argument for selecting another language.

We feel, however, that neither FOL nor automatic theorem-proving imposes any such
restriction on the Knights and Knaves problem. The complexity that Ohlbach discovered in
trying to represent this problem is due to indexicals. In fact, his second argument of the

predicate T'(z,y) might be dealing with indexical-binding in some way. We have found that
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Resolvants

Resultant Clause

Al,
G1VAns(u)
N2, R1
Al R2
A3, R3
TU9, R4
N1, R5
TUG6, R6
TU5, R7
TU3, R8
TU2, R9
R10, Fac
KS2, F11
R12, Fac

G1, A2
F13, R14
G2, R15

A3, R16

N1, R17

KS3, R18
F13, R19
TU2, R20
TU5, R21
TUG, R22
N1, R23

R15, KS1
TU1, R25
TU4, R26
TUT, R27
N2, R28

R24, R29
TUS, R30
R15, KS3
R31, R32
TU3, R33
TU9, R34
R31, R35

R10: S(gu,u) VvV -TU(gu,a(nr(I),v)) V-TU(p,a(u’, k(1)) V Ans(u)
Fl1l: CS(gu,u) Vv -TU(gu,anriki) ‘ uw,v,p=nr(D),k(I), gu ‘

R12: S(gu,u) vV CS(gu,anriki) Vv =T(k(gu)) vV Ans(u)

F13:  CS(g(anriki),anriki) v T (k(g(anriki)))

V Ans(anriki)
R14: CS(gu,u)V T(k(gu)

R1: S(gu,u) vV T(r(gu)) V Ans(u)
R2: S(gu,u) vV - T(nr(gu)) V Ans(u)
R3: S(gu,u) vV —T(a(nr(gu),z)) V Ans(u)
R4: S(gu,u) vV - T(nr(gu)) Vv -T(z) V Ans(u)
R5: S(gu,u) vV —T(nr(gu)) Vv =TU(p, k(1)) V Ans(u)
R6:  CS(gu,u) vV T(r(gu))V-TU(p, k(1)) V Ans(u)
RT: S(gu,u) vV TU(gu,r(I)) vV -TU(p, k(1)) V Ans(u)
RS: S(gu,u) vV =TU(gu,nr(I)V -TU(p, k(I)) V Ans(u)
R9: Sggu, )V aTU(gu,nr(I)V =TU (p,a(u’, k(1 ))) V Ans(u)
(
(

R15:  CS(g(anriki), anriki)
R16: (a(r(g(anriki)), ]c( (anriki)))
R1T7: (r(g(anriki))) v g (9 (anrik’i)?))

R18: T(nr(g(anriki))) Vv -T
R19:

k(g(anriki)))

-CS(g(anriki),t) v TU (g(anriki),t) v T(nr(g(anriki)))
R20:  TU(g(anriki),anriki) vV T(nr(g(anriki)))
R21:  TU(g(anriki),nr(I)) vV T(nr(g(anriki)))
R22: —TU(g(anriki), r(I))V T(nr(g(anriki)))
R23:  =T(r(g(anriki))) vV T(nr(g(anriki)))
R24:  T(nr(g(anriki)))
R25:  —T'(k(g(anriki))) v ~TU(g(anriki), anriki)
R26:  —T'(k(g(anriki))) Vv ~TU (g(anriki), k(I)) V -TU(g(anriki), nr(I))
R27:  —T'(k(g(anriki))) Vv -TU (g(anriki), k(I)) V TU (g(anriki), r(I))
R28: —T'(k(g(anriki))) v -TU(g(anriki), k(1)) V T(r(g(anriki)))
R29:  T'(k(g(anriki))) Vv -TU (g(anriki), k(I)) V T (nr(g(anriki)))
R30: —T'(k(g(anriki))) v -TU(g(anriki), k(I))
R31:  —T(k(g(anriki)))
R32: T(k(g(anriki))) v TU(g(anriki), anriki)
R33:  TU(g(anriki), anriki)
R34:  TU(g(anriki), k(1))
R35:  T(k(g(anriki)))

R36: Ans(anriki)

Figure 6.2: A resolution solution to the Knights and Knaves problem.
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a proper treatment of indexical-binding makes for a natural and correct (in that a proper
solution is found) representation of the Knights and Knaves problem.

Our solution was longer than Ohlbach’s. His optimized proof had 20 steps, while ours has
36. Thus the new issues we have introduced into the problem representation have not reduced
the complexity; rather they have increased it, but not excessively so. The use of indexicals
seems viable within an automatic theorem-proving context.

We feel that this problem is indicative of a whole class of problems that can be handled
in a similar fashion, i.e., not dependent upon isolated or ad hoc tricks. In the Knights and
Knaves problem we defined TU in terms of the indexical “I” only. This is because “I” is
the only indexical of importance in this problem. In broader contexts, however, this would
be insufficient and generalizations of TU would be necessary. We offer TU as a step toward
a uniform solution to the problem of automatic theorem-proving with indexicals. It will be

interesting to see how well generalizations of TU handle other indexicals and other problems.
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Chapter 7

Typ-constants and Range Defaults

We now turn to the third major theme of this thesis: representing default knowledge. It
is widely accepted that default (or non-monotonic) reasoning is endemic in commonsense
reasoning. Defaults can be, and often are, viewed as typicality statements of the form “P’s are
typically Q’s”. In this chapter we present a different way to view defaults and offer a formal
treatment by extending a first-order language to include representations of typical mental
notions, in the form of constant symbols called typicality- (or simply, typ-) constants.

Upon inspection of this formalism we uncover an apparently new aspect of default knowl-
edge, which we call range or irreducible disjunctive defaults. Here typicality is viewed as
spreading over a range of possible default conclusions. “Cardinals are typically red or russet”
is a reliable default while both “cardinals are typically red” and “cardinals are typically russet”
are not. The range “red or russet” is essential, though shown here to require adjustment of
previous formalisms.

The difficulty we find is that of representing the denial of default information, for instance
that “cardinals are typically red” i1s not a legitimate default. We shall see that representing
such denials are important parts of commonsense reasoning but that their representation is
not completely straightforward. Although we first observed this for our own #yp-constant
formalism, we show that the phenomenon is quite general to all default formalisms, and yet is
unexplored in the literature. We present a formal proposal to solve the range default problem

and discuss its shortcomings.
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7.1 Typicality

Defaults can be, and often are, viewed as typicality statements of the form “typically X’s are
Y’s”. Much effort in AT has been directed toward the development of logic-based approaches
for interpreting, representing, and reasoning about typicality statements. A variety of for-
malisms have been proposed, including, but not limited to, Delgrande’s conditional logic[Del-
grande, 1987], [Delgrande, 1988] McDermott and Doyle’s (NML)[McDermott and Doyle, 1980],
Reiter’s Default Logic (DL)[Reiter, 1980], and McCarthy’s circumscription[McCarthy, 1980].
These, and other, approaches differ markedly from one another in their interpretation of typi-
cality, in technique, and in how successful they are in modeling default reasoning (see [Ether-
ington, 1988] for a good review of the different formalisms). Despite their vast differences,
these formalisms share the common view that typicality statements are regarded as rules of
thumb that are applied, (in a way highly dependent on the formalism), to objects in the “real”
domain of the reasoner.

A very different way to view typicality (and hence defaults), and the intuition behind
the treatment presented here, is to treat a reasoner’s mental concept of a typical or generic
instance, which roughly corresponds to a general (indefinite) description, as an object in its
own right. That such mental objects have certain properties “encodes” the defaults about the
concepts that the objects represent. For example, I have a “mental notion” of what is for me
a typical tree. That this typical tree notion (for me) has “leaves” encodes my default that
“typically trees have leaves”; that it has “branches” encodes my default that “typically trees
have branches”. That I rely on the properties of my typical tree notion to (defeasibly) decide
about the status of a real tree (i.e., that it too has leaves and branches) encodes the process
of jumping to a default conclusion.

In this chapter we formalize this intuition by extending a first-order language to include
representations of these mental notions, in the form of constant symbols called typicality (or
simply, typ) constants, which are written as typg for expressions @ in the language associated
with an indefinite description. As reified objects of thought {yp constants have properties (this
is how we encode defaults) and are subject to manipulation in the reasoning process. That
they are not “real” objects forces us to treat them somewhat judiciously and not altogether

like actual objects, but they are objects to reason about nonetheless.
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Enriching a formal reasoner’s ontology to accommodate mental notions or concepts in
general is not a new idea, nor is it new to AI ([Rapaport, 1981], [Rapaport, 1986] and [McCarthy,
1979] are examples). Indeed Brachman[Brachman, 1985] discusses the very idea of reifying
typical mental notions to represent defaults in frame-like inheritance networks, yet no one
seems to have carried this out in a logic-based approach to see what, if any, advantages and/or
shortcomings might arise. One of Brachman’s objections to the treatment of typicality in
frame-like approaches is that the interpretation of the typicality concepts themselves is open
to confusion and debate. There is no such confusion in the formalism we present here; a typ
constant is, indeed, a “prototypical individual that somehow typifies the kind” ([Brachman,
1985] p 89.)

We should point out that we are not taking a detailed stand on the psychological nature or
properties of mental concepts, except to grant that they are highly idiosyncratic. Rather, the
very fact that people can conjure up, discuss, and reason about what, for them, is a typical
tree, dog, or book, etc., lends some degree of cognitive plausibility to the approach introduced
here, and to a large degree cognitive plausibility has motivated the efforts we report on.!
Plausibility, of course, is fine as a motivator but the real test is whether or not typ constants
exhibit desirable logical and computational properties.

As it turns out the typ constant formalism enjoys some very nice computational features
which we discuss in section 7.2.1 after presenting the formalism itself in section 7.2. Then
in section 7.3 we will discuss a severe limitation of the formalism which serves to illuminate
a representational issue that has significance beyond our framework; namely the inability to
express what we call range defaults. To our knowledge this more general form of the traditional
default has thus far gone undetected in the literature. We conclude the paper with a discussion

of the importance of range defaults and a brief exploration into their representation.

1 Furthermore, truly robust commonsense reasoning agents ought to have the ability to reason about inex-
istants, e.g., Santa Claus, unicorns, and the “golden mountain”, in general; mental typicality concepts are a
special subclass of inexistants.
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7.2 The Theory

We begin with a standard FOL with language £. By way of notational convention, let &, ¥,
and various subscripted ®;’s stand for formulae of £ containing one free variable. We extend £
to include one new constant symbol, typg, for each ® in £. We will call this extended language
L’ and the symbol ‘@’ will be used to stand for a closed term in £’.

As alluded to above, the intended interpretation of the constant {ypg is the reasoner’s
notion of the typical ®-entity so, for example, if ® is Bird(z) then typg is 1P Bird(c)) the
(reasoner’s) typical bird notion. (Note: From here on, for convenience, we drop the ‘(z)’ from
the typ constant notation and write, say, {ypg;.4 instead of typBird(x))' Defaults, then, are
encoded in expressions of the form ®(typg) which can be read “the typical ¥ is a ®”(e.g.,
the default that “the typical bird flies” (or “typically birds fly”) is encoded by Fly(typpird))-
Sometimes we will write ‘¥ % &’ instead of ‘D(typw)’ (notice the transpositioning of ‘@’ and
“U’) because it is visually closer to the traditional way of depicting defaults and, hence, easier
to read.? The X2’ style is merely a notational convenience; WD g not a new logical connective.

One proper axiom schema, A, and one (default) inference rule schema, D are added to the

logic as follows: For all formulae ® and ¥ (containing one free variable) and closed terms a of

ﬁl
A: O(typas)

D: ®(typy ), ¥(a), Unknown —~®(a)

®(a)

Axiom schema A just assures that ® applies to (typs); e.g., that the typical bird is a bird

(i.e., Bird(typpird)), the typical singing bird sings and is a bird, i.e.,

Sings(typsingsaBira) N Bird(typsingsaBird)

and so on.
Rule schema D sanctions the judicious use of the encoded defaults which appear as the

left most component to the antecedent of the rule. The intuition behind the rule is this: if a

20n the other hand, uncovering the range defaults that we discuss in section 7.3 was due, in part, to the
original notation.
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is a U-thing then assume it to be as much like the typical W-entity as possible. Thus if the
typical W-entity has property ® then so too should a, unless known to the contrary. Bear in
mind that ‘@’ in the rule is not confined to the original language, £, but rather can be any
term in £’, and in particular may itself be a typ constant. This fact will be exploited in the
next section when we show how to combine the encoded defaults to create encodings of new
(i.e., newly formed) defaults.

The condition “Unknown —®(a)” attached to schema D represents a criterion that tests for
the appropriate application of the encoded default, thereby giving the formalism its nonmono-
tonic flavor. For the purposes of this paper we need not choose a particular implementation of
“Unknown” though several possibilities come to mind, including fix-point consistency checking
in the style of Reiter’s Default Logic (DL) and McDermott and Doyle’s NML (both undecid-
able), circumscription (semi-decidable) 2, and the negative introspection facility of step-logics

(decidable) [Elgot-Drapkin, 1988] and [Elgot-Drapkin and Perlis, 1990].

7.2.1 Features

One nice feature of the typ constant approach to default reasoning is that, like circumscrip-
tion, it requires no special logical connective (e.g., the ‘=’ connective of [Delgrande, 1987],
[Delgrande, 1988]) which is semantically distinguished from first-order material implication
in order to write defaults. (Recall that P g only a notational convenience.) Nor are we
committed to a modal operator that loosely corresponds to our “Unknown” (e.g., the ‘M’
operator of McDermott and Doyle[McDermott and Doyle, 1980]).

Delgrande helps point out another nice feature of our formalism by distinguishing the ability
to reason with defaults from the ability to reason about defaults. Reasoning with a default is
simply using it to come to (or not) a conclusion about an individual instance of the default
rule. Thus we conclude that “Tweety” flies because she is a bird and birds typically fly. Default
formalisms are geared toward this kind of reasoning and hence have a fair amount of success
with it. Reasoning about defaults, on the other hand, essentially amounts to a reasoner’s
automatic ability to update its default database given some starting set of defaults. This, as

Delgrande observes, is in general beyond the reach of DL and NML. For example, DL is unable

3In NML and circumscription, D would be written as an axiom schema rather than an inference rule.
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to reason from “typically birds fly” and “typically flying things have wings” to “typically birds
have wings”. To do so would require a mechanism within the logic that automatically adds
new rules of inference to a default theory since defaults in DL are themselves inference rules
and not part of the logical language; DL has no such mechanism.

The theory presented here is able to model both reasoning with and about defaults (as can
Delgrande’s formalism and circumscription) in a highly desirable and natural way. To see this
recall that the symbol ‘a’ in rule D may stand for either (1) a general term that is not a typ
constant or (2) a constant symbol of the form typg,. In the first case rule D operates, in spirit,
much like a default rule in DL whereby a “real” domain object can be attributed a property
by default. So, for example, Flies(tweety) follows from Flies(typpira), Bird(tweety), and
Unknown(—Flies(tweety)). In case (2) where ‘a’ is typg, , defaults can be combined to create
new defaults. For example Winged(typpira) follows from Flies(typpira), Winged(typriies),
and Unknown(—=Winged(typgira)).* More generally, the following results characterize the way

that the our theory combines defaults:

Theorem 7.1 (Transitivity Theorem for ‘typ’)

If - @5 (typs, ), - Ps(typs, ), and F Unknown(—®s(typs, )), then - 3(typs, ).
Note: Transitivity is easier to see when the theorem is written as:

F &y 2y b By L By, b Unknown—(®1 2L &3) =k &1 2 @y

Proof: Using the default rule D (above) where ® is ®3, ¥ is ®3, and a is typg, the result

follows immediately. Il

Theorem 7.2 (Compositionality Theorem for “4yp’ and ‘—’)

(i) If + ®5(typs, ), F Ve [Pa(z) — P3(z)], then F P3(typas, ).

(Alternatively: F @, e Py F By — B3 = By typ ®3)

(ii) I F Vz[®@1(z) — ®2(2)], F P3(typas,), and F Unknown(—®3(typs,)) then - ®3(typs, ).

(Alternatively, F &1 — &y, F &y Wy &3, Unknown— (P, Wy D3) =+ Py Wy 3)

Proof:

*In our more suggestive notation, (Bird tup Winged) follows from (Bird tvp Flies), (Flies tvp Winged),

and Unknown—(Bird tup Winged).

113



(i) Follows immediately using substitution and modus ponens.

(ii) F @1(typs, ) from axiom A. F ®y(typg, ) then follows from part (i) of the composition-

ality theorem. By the transitivity theorem, - ®3(typs,).

7.2.2 Some Observations

Much like circumscription, the bare theory presented here cannot adjudicate between priori-
tized competing or interacting defaults. Some additional machinery would be required to give
intuitive results when an ordering relation (be it subset-superset, chronological, etc.) exists
between interacting defaults, but we see no principled reason to suspect that this cannot be
done.

On the other hand, one feature (among others) that distinguishes the present theory from
circumscription (when the predicate ab is used to write defaults) is the subtle difference in the
way the two formalisms treat “transitivity”. In our approach, defaults combine to reflect the
truly transitive reasoning: from “typically P’s are Q’s” and “typically Q’s are R’s” conclude
“typically P’s are R’s”. On the other hand, circumscription’s ab-default representation pro-
duces something like “typical P’s which are typical Q’s are R’s” from the same initial defaults.

More precisely, consider the circumscription ab-defaults (1)~(4) below:
(1) Va[(P(x) A ab(z, aspecty)) — Q(x)]
(2) V2[(Q(x) A —ab(z, aspects)) — R(x)]
(3) Va[(P(z) A ~ab(z, aspect,) A —ab(, aspects)) — R(z)]
(4) Va[(P(z) A ~ab(z, aspects)) — R(z)]

Default (3) follows from (1) and (2), but (4) does not (where ‘aspects’ is a new aspect relating
P and R). The difference between the two is that (3) reflects a more “cautious” sort of default
composition than (4). Cautious because it “notes” the defaults that are being composed by
conjoining the aspects that appear in them. Default (4) is what a truly transitive circumscrip-
tive reasoner would produce given (1) and (2) and is, indeed, an analog of the result given in
Theorem 1. We mention the distinction to point out that #yp constants, in and of themselves,
are not the cause of the discrepancy; if one prefers, a cautious reasoner can be modeled using

typ constants by replacing rule D by:
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D’: ®(typy), ¥(a), Unknown —®(a’)

®(a’)

where a’ = typaas, if a is of the form typs,; @’ = a otherwise.

7.3 An Apparent Weakness Spawns a New Idea: Range

Defaults

Very often, perhaps even most often, the mental concepts which correspond to typ constants
either have or do not have (i.e., have the negation of) a given property. My typical person
notion has two eyes, two arms, and a mouth; it is not an infant (i.e., it is a non-infant), nor
is 1t the President of the United States. For me then, typperson 1s partially characterized
by HasTwoEyes(typperson ), - .., " PresidentO fThel S(typperson ). But some attributes of
typical mental notions (and hence of {yp constants) are not as well behaved. Again to use my
typical person notion as an example, I think of it as being singularly gendered; it is male or
female, not neuter and not hermaphroditic, yet it has no specified gender. There are too many
male and too many female people to exclude either male-ness or female-ness as a possibility
from my typical person notion. Moreover I know that both of the defaults “typically people
are male” and “typically people are female” are too restrictive and hence are inappropriate.
In short T have a range of possible default conclusions that can be drawn regarding the typical
person and that range is maximally determined; it cannot be restricted any further.’
Perhaps the most general form of what we call range or irreducible disjunctive defaults is
partly obscured in the example above by the fact that gender is normally thought of as being
exhausted by Male and Female (i.e., Male — —Female). In fact any number of properties,
exhaustive or not, can be the range of a default. Consider this example: If you are anything
like me your typical wood-notion has a color, it is either light brown (like pine) or dark brown
(like walnut), but you can’t pin it down any more than that. Clearly these color choices do
not exhaust the possibilities for wood since there is black, pink, and even purple(!) wood.
Not only do you believe that most wood is light brown or dark brown, you also believe that

you cannot narrow or restrict this range of your default about wood color. There is just too

5Compare to [Levesque, 1986], where the opposite phenomenon is discussed.
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much light brown wood to exclude light brown from the range of the default; similarly for dark
brown.

How can these range defaults be faithfully represented in our theory? The short answer is
that they can’t because the theory has no way to distinguish between the negation of a default
(which is itself a default) and the assertion that that default does not obtain. More precisely
if we let ®1,...,®,% be the range (in the sense of the above example about wood) of a default

about ¥ then we denote a range default by:”

By 7.1 we intend, firstly, that:

VAELE FRVERNRVE (7.2)
holds, and secondly that the range cannot be restricted any further. That is, for every proper
subset, {®;,...,®;}, of {®1,...,®,} the set of sentences given by:

VALY SAVANNRVE (7.3)

are rejected as defaults. Let us introduce a new predicate letter, INAP (for “inappropriate”),
and assume a quotation mechanism to reify wffs (in the style of [Perlis, 1985])® to try to express

this latter condition. What we desire 1s to assert:
INAP(¥ 2 &; v ...V ;) (7.4)

(for every proper subset, {®;,...,®;}, of {®1,...,®,}) which is intended to mean that the

defaults of 7.3 do not obtain. This we might try to express by an axiom such as:
INAP(U L ®; v .. .V &;) — =(®; V...V ;) (typs) (7.5)

But now we get a contradiction which is most easily seen in the case where the n of sentence
7.2 is equal to 2 and the axiom Yz[®1(z) < —®3(z)] holds. In that case sentence 7.4 amounts
to:

INAP(®,) A INAP(®,) (7.6)

6We intend that no ®; is a subset of a disjunct of any others.
"The box notation is not part of the formal language.

8 We will not show the quotation marks explicitly.
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which together with 7.5 gives:

_|(I)1 A _|(I)2 (i.e., (I)l A _|<I)1) (77)

7.3.1 Why Bother?

Why bother with range defaults or, more precisely, with IN AP at all? Why not just represent
the default 7.1 by 7.2 and ignore marking 7.3 as inappropriate? After all, 7.2 will give the
right result for any instance of a W-thing. That is, knowing that a particular chair is made
of wood and that typically wood is light brown or dark brown would lead one to conclude
(unless she knows to the contrary) that the chair is light brown or dark brown; no more, no
less. A reasoner need not block the defaults “typically wood is light brown” and “typically
wood is dark brown” to reach this conclusion. Likewise, in our formal theory the appropriate
disjunction (e.g., Light Brown(chair) V DarkBrown(chair)) can be proven given the proper
disjunctive default, and the overrestrictive conclusion(s) (e.g., Light Brown(chair)) will not
be proven.

The answer is that there are cases in commonsense reasoning where it is not only important
to reach the correct default conclusion, but also to have meta-knowledge about one’s own
defaults which itself can be reasoned with and about. As an example consider this: you know
that cardinals are typically either red or russet in color but you can’t pin it down any further
since there are so many of each of the two colors.” Suppose you look out into the back yard
of your house and notice that many cardinals, but only red ones, have gathered to eat. The
simple default that typically cardinals are red or russet does not lead to the conclusion that the
collection of birds in your back yard is in any way unusual. But you may have excellent reason
to think i1t is an oddity because you have additional information, namely that it is not the case
that typically cardinals are red. You can use this observation, that an unusual collection of
birds has gathered in your yard, to wonder: Why have only red cardinals gathered? Do the
russet cardinals not like the trees in the yard? And so on.

The above sort of knowledge that one may have about cardinals is precisely what a range
default about cardinal color expresses, and this knowledge is crucial to the reasoning illus-

trated. Thus, not only is the formal representation of range defaults of interest in a purely

9Males are red, females russet.
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theoretical sense (Can a formalism represent them?), it also has pragmatic ramifications for

robust commonsense reasoning formalisms.

7.3.2 Other Formalisms and Range Defaults

The difficulty in representing range defaults is not peculiar to the fyp constant approach. There
is no way to write meta-level assertions about defaults in DL since, as we noted earlier, DL’s
defaults are inference rules and not part of the language, and thus there is no way to express
that defaults are inappropriate. Circumscription, the most widely studied default mechanism,
appears to have its own problems with range defaults. At first blush it seems that ab-defaults
can be used in a rather straightforward way to get the desired representation. For example

the range default about wood color might be expressed by the following three expressions:

Ve[(W(z) A —ab(z, aspect1)) — (LB(z) V DB(z))] (7.8)
=Vz[(W(z) A —~ab(z, aspects)) — LB(z)] (7.9)
=Ve[(W(z) A —ab(z, aspects)) — DB(z)] (7.10)

where LB, DB, and W stand for “light brown” ,“dark brown”, and “wood”, respectively. But
this is not without cost!® . Sentence 7.8 is fairly straightforward and needs no explanation;
7.9 and 7.10, however, are not so easily dismissed. The mere appearance of aspects and
aspects 1s somewhat unintuitive. What is their role? In a default rule an aspect serves as a
bridge between two predicates to keep the effects of abnormality in check. But 7.9 and 7.10
are not defaults, rather they are the negations of defaults and their associated aspects seem
unwarranted.

Regardless of the need for these aspects another difficulty arises when 7.8-7.10 are taken

together together with, say, the wif “W(chair)”. We would expect to get:
LB(chair) vV DB(chair) (7.11)

but 7.9 and 7.10 are counterexample axioms to 7.8 and [Perlis, 1986] shows that 7.11 will not
be proven without some additional machinery (such as the scoping mechanism of [Etherington

et al., 1990] ).

10Tgnoring the fact that 2 — 1 of these aspects would need to be introduced for each range default, where n
is the number of disjuncts in the range default.
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7.4 Discussion

The representation of the denial of default information is an important part of commonsense
reasoning. Such representation is not a simple matter of negating traditional representations,
nor of typ-constant representations.

Is there a way to express range defaults using typ constants? Yes. But it appears we
must modify our theory to do so. One way is to add a new inference rule relating IN AP to
the encoded defaults and, additionally, alter rule D to accommodate expressions of the form
INAP(a).'! Another way, that we are currently exploring, is to reinterpret typ constants as
sets of properties, typ sets, that apply to a typical mental notion. Thus typgy may or may not

contain ® and/or its negation, =®. In particular, INAP(®(typy)) iff @ & typg.

11 The inference rule we have in mind is: from ®(typy ) infer =INAP(®(typy)). The modification to D
requires the addition of Unknown INAP(®(a)) to the antecedent of the rule.
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Epilogue (Summary and Future Work)

As stated at the outset of this dissertation our concern here has been with the general topic
of reasoned change in belief. We have looked at belief change specifically as it relates to: (i)
terminological change where new terms and new meanings may become important to a reasoner
over time, particularly in the context of mistaken past beliefs; (ii) the changing meaning of the
pronominal indexical “I”; and (iii) the problem of representing the denial of default information
with an eye toward an agent’s need to change her defaults (i.e., deny one default and accept
another in its place) as she comes to learn more about the world.

This has been a representational effort; the particular kinds of tasks for belief change studied
here seem to require for their formalization a rather formidable collection of predicates. We
have presented formal treatments of: (i) TU in the context of the indexical “I” in FOL. (ii)
Distr and Mstkn in a new active step-logic which can, under certain specified conditions,
recover from contradictions. (iii) FITB, RTA, and MISID, in in the context of of objects of
presentation, specifically with regard to object-identification errors, again in step-logic.

At the start we also indicated that this work can be viewed as a series of inroads toward
accomplishing the long range goal of building a sophisticated reasoning system which has
abilities suited to an advice-taker. Such a system, it is hoped, will accept advice from outsiders
about 1ts own beliefs — be 1t about the inappropriateness of a default or about an object-
identification error — and then reason through to more appropriate beliefs. Let us take a brief
look at some of the issues that arise out of this work which will need to be addressed in order

to continue along the path toward this goal.

e The most glaring single gap in this treatment of reasoned belief change is the lack of a
semantics in the terminological change and other related step-logic work. This is dif-

ficult because of the presence of contradictions. However, recent work on semantics of
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contradictions (though not in a step-logic setting) may be relevant [Grant and Subrah-
manian, 1992]. Another unusual feature for any potential semantics is the self-referential

character of the logic, e.g., references to the logic’s own history.

Seeking cognitive verification of both the short-chain and lazy-corroboration hypotheses
(chapter 4) are empirical endeavors. If either, or both, should turn out to be incorrect
then our method of tracing through belief derivations (all-at-once de-recovery) should be
altered to account for the computational inefficiency which may arise in searching through
prohibitively bulky derivations. A one-step-at-a-time approach might keep track, only of
a theorem’s most recent justifying beliefs, not the entire chain of reasoning. For instance

a new rule for modus ponens might look like:

i: af[S1], o — B[S2]

i+1: oo — ]

Here 3’s derivation contains a and @ — § to the exclusion of S; and S3. A mechanism
must be provided which, in response to the agent’s distrust of a former belief, will trace
through these limited derivations, step-by-step as reasoning progresses. It seems that
step-logic’s inherent step-wise nature will be amenable to such an approach, though a

mindful eye should beware of circular derivations, e.g., as in:

PP—Q1,...,Qn-1— Qn,Qn—P ifj=1
Obsi'ncons(j) = -P lf] =k

0 otherwise

for a fixed k. The details and a related recovery theorem are left for future research.

One concern which arises in regard to implementing a step-logic directly from its logical
description is that of space. In robust domains the number of observations can be
arbitrarily large, and so too can the number of theorems appearing at any step. This
in turn creates a computational speed problem. Applying each inference rule in every
way possible to all of a step’s theorems may take much too long to be practical in most

real-time problem solving or planning domains.
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These concerns can be attacked on at least two fronts: One is to make the applicability
of inference rules context-, focus-of-attention-, or goal-dependent, so that rules are only

considered for application under the appropriate circumstances.

The other is to somehow inhibit the inheritance of beliefs, the primary offender of space
consumption, allowing for reinstatement (in a more general form than discussed in chap-
ters 4 and 5) when necessary. Reinstatement may then rely on some sort of relevance
mechanism.'? One way to restrict inheritance is to associate a decay value, d, with each
theorem. The decay value of theorems which persist from one step to the next solely in
virtue of inheritance will diminish as if the belief represented by the theorem is even-
tually pushed aside, or into “long-term memory”, to make room for others. The time
(i.e., step) may come when a theorem no longer appears, and once this happens it is not
available for use in inference. But it may be possible to retrieve these older beliefs (i.e.,
make them current theorems once again) if and when the agent becomes newly interested
in them. Theorems proven by other means, e.g., modus ponens, will have their decay
values enhanced as they are likely to be currently relevant to the reasoner.

A preliminary start in this direction are the following inference rules. Here max stands

for some maximum decay value (chosen by the designer of the logic); d, d1, and ds are

decay values associated with the given wifs at the specified step.

OBSar i:
i+1: o |maz|
INHgx i: o ||d|| where d > 0

i+1: «o|d-1|

M Py i: a l|di]], o — B ||dz| where d1,d> > 0

i+1: B |maz

12 A idea akin to this for fixed-sized set of i-theorems (called STM) has been explored in the memory model
of [Elgot-Drapkin et ol., 1987].

122



Once beliefs “decay out of memory” they can be stored in some efficient manner, say in a
hash-table, and retrieved when relevant. If we represent the storage data-structure by the
predicate Stored, then the rule RETy; simulates the retrieval of & — (3, a presumably

relevant belief when « 1s an i-theorem.

RET 4 i: a ||d1]], Stored(a — B) ||dz2|| where d1,dz > 0

i+1: o — f||maz|

These approaches only serve to retard the growth of the number of represented beliefs as
time and reasoning progress, not to stall it completely. But if the limited-corroboration
hypothesis proves to be correct, a plausible account of relevance, focus of attention, and
decay are worked out, and an an efficient treatment of Stored is offered — all major

endeavors — then these suggestions might offer some promise.

Our treatment of presentations (chapter 3) has been extremely informal. But a deeper
understanding of term-change (and of the factors present in the other cognitive tasks as

well) may result from a careful study of presentations and perception-based beliefs.

We assume the correct reality terms are introduced through by tutors, though this is not
always realistic. We would like to formalize a hypothesize-and-test process based on our
reality terms that enables an agent to speculate about, and perhaps uncover, his own

mistakes.

The Two Johns problem can be generalized to the N Johns problem in which an agent’s
belief set represents the conflation of N different people named “John”. The Mistaken
Car problem can be generalized to the Mistaken Objects problem wherein an agent’s
belief (or set of beliefs) reflects multiple object-identification errors at one time. Both

generalizations are in need of exploration.

Gilbert’s Spinozist analysis of comprehension, acceptance, and rejection of beliefs [Gilbert,

1991] may turn out to have deeper ties with various themes here. In particular, the notion
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of past beliefs that are not viewed as mistaken but that are viewed as open to question,
may be related to Spinozist comprehension. Also, there may be another “mode” of be-
lief, namely “tentative acceptance” that does not commit the reasoner to action based on
such a belief but is more like “trying a belief on for size”. Such a mode would resemble

acceptance insofar as reason goes, but not action.
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