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Abstract
We describe our Meta-cognitive, Integrated, Dual-Cycle
Architecture (MIDCA), whose purpose is to provide
agents with a greater capacity for acting in an open
world and dealing with unexpected events. We present
MIDCA 1.0, a partial implementation which explores
a novel machine-learning approach to goal generation
using the Tilde and FOIL algorithms. We describe
results from this goal generation algorithm and pre-
view MIDCA 1.1, a partially implemented version that
will guide the goal insertion process using statistical
anomaly detection and categorization techniques. Fi-
nally, we outline the next steps towards a complete,
functional implementation of the MIDCA architecture.

Introduction
A number of interesting research projects exist within
the artificial intelligence and cognitive science communi-
ties that integrate multiple high-level cognitive functions
and perform complex tasks in dynamic environments. Well
known examples include ACT-R (Anderson, 1993), Co-
gAff (Sloman, 2011), Companion Cognitive Systems (For-
bus, Klenk, & Hinrichs, 2009), DIARC (Krause, Scher-
merhorn, & Scheutz, 2012), EPILOG (Morbini & Schu-
bert, 2011), Icarus (Langley & Choi, 2006), MCL (Ander-
son, Oates, Chong, & Perlis, 2006; Schmill et al., 2011),
SNePS(Shapiro, 2000), and Soar (Laird, 2012). However,
most if not all intelligent agent architectures define au-
tonomous behavior as goal-following behavior. That is, an
agent is considered autonomous and intelligent if, when
given a goal by a human, the agent can determine on its own
the actions that achieve the goal. We claim that this is insuf-
ficient.

The automated planning community represents input
problems as an initial state and a goal state along with a do-
main theory containing an action model (see Ghallab, Nau,
& Traverso, 2004). The subsequent task for a planning agent
is to generate a sequence of actions that when executed from
the initial state achieve the goal state. Once the plan is suc-
cessfully executed, the agent either halts or waits to be given
another goal. This “wait to be told what to do” model of au-
tonomy presents agents as autonomous because they do not
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have to be told how to achieve the goal that solves the prob-
lem. The alternative model of autonomy we advocate here
consists of self-motivated processes of generating and man-
aging an agent’s own goals in addition to goal pursuit. This
model - called Goal-Driven Autonomy (Cox, 2007; Klenk et
al., 2013) - casts agents as independent actors that can rec-
ognize problems on their own and act accordingly. Goals are
seen as dynamic and malleable and can arise in three cases:
goals can be subject to transformation or abandonment (Cox
& Veloso, 1998; Talamadupula, et al., 2010), they can arise
from sub-goaling on unsatisfied preconditions during plan-
ning, and they can be generated from scratch during inter-
pretation.

What is missing in the planning and agent communities
is a recognition that autonomy is not just planning, acting
and learning. It also must incorporate a first-class reason-
ing mechanism that interprets and comprehends the world
as plans are executed. It is this comprehension process that
not only perceives actions and events in the world, but can
recognize threats to current plans, goals, and intentions. We
claim that a balanced integration between planning and com-
prehension leads to agents that are more sensitive to surprise
in the environment and more flexible in their responses.

In our approach, flexibility is realized through a process
we call goal insertion, where an agent inserts a goal (that
may already have been learned somehow) into its planning
apparatus. Goals are produced through the process of goal
generation, the general term that includes creation and de-
ployment of autonomous goals where the agent takes initia-
tive to come up with new concerns and to pursue new op-
portunitites. Goals arise as an agent detects discrepancies
between its sensory inputs and its expectations. The agent
explains what causes the discrepancy, then solves the prob-
lem by generating a new goal to remove or mitigate the prob-
lem’s cause (Cox, 2007).

In this paper we present a cognitive architecture called
MIDCA that integrates planning, comprehension, and
metacognition. In the following section, we briefly overview
the MIDCA architecture. We will describe a statistical data-
driven approach to goal generation that can be contrasted
with a knowledge-rich explanation-based method. Subse-
quently we describe a machine learning technique for data-
driven goal generation and report preliminary results in a
very simple blocksworld domain. The next section then dis-
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cusses future research and we conclude with a brief sum-
mary.

The Metacognitive Integrated Dual-Cycle
Architecture

Computational metacognition distinguishes agent reason-
ing about reasoning from reasoning about the world (Cox,
2005). The Metacognitive, Integrated, Dual-Cycle Architec-
ture (MIDCA) (Cox, Maynord, Paisner, Perlis, & Oates,
in press; Cox, Oates, & Perlis, 2011) consists of action-
perception cycles at both the cognitive (i.e., object) level and
the metacognitive (i.e., meta-) level. The output side of each
cycle consists of intention, planning, and action execution,
whereas the input side consists of perception, interpretation,
and goal evaluation. A cycle selects a goal and commits to
achieving it. The agent then creates a plan to achieve the
goal and subsequently executes the planned actions to make
the world match the goal state. The agent perceives changes
to the environment resulting from the actions, interprets the
percepts with respect to the plan, and evaluates the interpre-
tation with respect to the goal. At the object level, the cycle
achieves goals that change the environment. At the meta-
level, the cycle achieves goals that change the object level.
That is, the metacognitive perception components introspec-
tively monitor the processes and mental state changes at the
cognitive level. The action component consists of a meta-
level controller that mediates reasoning over an abstract rep-
resentation of the object-level cognition.

To illustrate these distinctions, consider the object level
as shown in Figure 1. Here the meta-level executive func-
tion manages the goal set G. In this capacity, the meta-level
can add initial goals (g0), subgoals (gs) or new goals (gn) to
the set, can change goal priorities, or can change a particular
goal (∆g). In problem solving, the Intend component com-
mits to a current goal (gc) from those available by creating an
intention to perform some task that can achieve the goal (Co-
hen & Levesque, 1990). The Plan component then generates
a sequence of actions (πk, e.g., a hierarchical-task-net plan,
see Nau, et al., 2001) that instantiates that task given the
current model of the world (W∗) and its background knowl-
edge (e.g., semantic memory and ontologies). The plan is
executed to change the actual world (W ) through the effects
of the planned actions (ai). The goal and plan are stored in
memory and constitute the agent’s expectations about how
the world will change in the future. Then given these ex-
pectations, the comprehension task is to understand the ex-
ecution of the plan and its interaction with the world with
respect to the goal.

Comprehension starts with perception of the world in the
attentional field. Interpretation takes as input the resulting
percepts (pj) and the expectations in memory (πk and gc) to
determine whether the agent is making sufficient progress. A
Note-Assess-Guide (NAG) procedure (Anderson & Perlis,
2005; Perlis, 2011) implements the comprehension process.
The procedure is to note whether an anomaly has occurred;
assess potential causes of the anomaly by generating hy-
potheses; and guide the system through a response. Re-
sponses can take various forms, such as (1) test a hypoth-

Figure 1: Object-level detail with meta-level goal manage-
ment shown (taken from Cox, Maynord, Paisner, Perlis, &
Oates, in press)

esis; (2) ignore and try again; (3) ask for help; or (4) insert
another goal (gn). In the absence of an anomaly, the agent
incorporates the changes inferred from the percepts into the
world model (∆W∗) and the cycle continues. This cycle
of problem-solving and action followed by perception and
comprehension functions over discrete state and event rep-
resentations of the environment.

The NAG procedure at both meta- and object-levels has
two variations that represent a bottom-up, data-driven track
and a top-down, knowledge rich, goal-driven track. The
data-driven track we call the D-track; whereas the knowl-
edge rich track we call the K-track. The representations for
expectations significantly differ between the two tracks. K-
track expectations come from explicit knowledge structures
such as action models used for planning and ontological con-
ceptual categories used for interpretation. Predicted effects
form the expectations in the former and attribute constraints
constitute expectation in the latter. By contrast, D-track ex-
pectations are implicit. Here the implied expectation is that
the distribution of observations will remain the same. Sta-
tistically significant change beyond a threshold constitutes
an expectation violation. In past work on the INTRO (Cox,
2007) system, the K-track has been implemented as a case-
based explanation process (Cox & Burstein, 2008). In the
current implementation of MIDCA, comprehension is per-
formed solely with D-track processes. For the purposes of
this paper, we will describe the D-track implementation that
generates new goals (i.e., gn) during interpretation.

MIDCA 1.0
To determine the degree to which the introduction of reason-
ing improves the performance of agents, we must construct a
baseline system which lacks reasoning. The performance of
systems which make us of reasoning can then be compared
to the performance of this baseline system. What follows is
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the construction and evaluation of such a baseline within the
framework of MIDCA, in an early implementation called
MIDCA 1.0.

For the implementation of MIDCA 1.0 we used a
modified blocksworld for the domain. This version of
blocksworld includes both rectangular and triangular blocks,
as well as the possibility for blocks to catch on fire and
for fires to be put out. Using blocksworld avoids many of
the difficulties that come with more complex domains, such
as intractability resulting from scale, inaccuracies stemming
from imperfect perception, or complications introduced by
stochastic processes. The fire element was added to create a
fairly obvious anomaly to which the system could respond.

MIDCA 1.0 is a simplified version of the complete
MIDCA architecture whose components are shown in the
schematic of Figure 1. It is composed of three parts: a world
simulator that generates successor states based on valid ac-
tions taken in the blocksworld domain; a goal generator;
and a planner. For the planner, we used SHOP2 (Nau et
al., 2003), a domain-independent task decomposition plan-
ner. This planner constitutes the Plan and Intend components
of Figure 1 - the Intend component being implicit in the
planner. Whereas the full MIDCA architecture has a meta-
cognitive component, which manages goals, MIDCA 1.0
has no goal management, and simply passes goals from the
goal generator to the planner. In MIDCA 1.0, the goal gener-
ator constitutes the Interpret component of Figure 1, and the
Evaluate component of Figure 1, whose role it is to evaluate
generated goals to help in goal selection and management, is
absent. The Act component of Figure 1 is incorporated into
the blocksworld simulator, and the Perception component of
Figure 1 is implicit in the transfer of world state representa-
tion to the goal generator.

Goal generation is implemented using a conjunction of
two algorithms, both of which work over predicate repre-
sentations of the world. Tilde (Blockeel, & De Raedt, 1997)
is an extension of C4.5 (Quinlan, 1993), the standard de-
cision tree algorithm, and FOIL (Quinlan, 1990) is a rule
generation algorithm producing conjunctions of predicates
to match a concept reflected in a training set. Given a world
state interpretation, the state is first classified using Tilde
into one of multiple scenarios, where each scenario has an
associated goal generation rule generated by FOIL. Given
an interpretation and a scenario, different groundings of the
variables of the FOIL rule are permuted through until ei-
ther one is found which satisfies that rule, in which case a
goal can be generated, or until all permutations of ground-
ings have been attempted, in which case no goal can be gen-
erated. In effect, this approach results in a decision tree gen-
erated by Tilde in which each leaf corresponds to a rule gen-
erated by FOIL. We call this data structre a TF-Tree. This
approach to goal generation is naı̈ve in the sense that it con-
stitutes a mapping between world states and goals which is
static with respect to any context; there is no explicit reason-
ing in this goal generation scheme.

TF-Trees are constructed through a supervised learning
process which requires the creation of domain-specific train-
ing sets. Both training and test sets consist of world states
and their associated “correct” goal mappings. Using a test

Figure 2: Block Visualization

set reflective of states encountered in the world, we can
determine the baseline level of accuracy with which this
reasoning-free approach selects the right goal.

When MIDCA 1.0 is launched, it is passed an initial
world state. From that state, a TF-Tree trained on data con-
structed to match the domain is used to generate a goal ap-
propriate to that state. That goal is passed to SHOP2, which
generates a plan to achieve it. The plan is then executed to
completion in the world simulator. Upon plan completion,
the resulting world state is passed back to the goal genera-
tor, and the TF-Tree is used to select a new goal, restarting
the process. Note that goals are not generated for the inter-
mediate states(states between the starting and end state) in a
plan.

An example of the output from this process is shown in
Figure 2. Here we added fire as a feature to the blocksworld
domain. This domain functions precisely in the same man-
ner as standard blocksworld, with the addition that blocks
that are on fire can be extinguished using a putout oper-
ation. Goals can now consist of two components, a stack-
ing component, and a putout component. In Figure 1, these
components correspond to gn, and together they constitute
G. In the state shown, a triangle block is on the table and
three square blocks are stacked to form a tower. The middle
block in the tower is on fire, which is represented by aster-
isks inside the block. This state has been passed to the goal
generator, which has generated goals to stack the triangle
block on top of the tower and to put out the fire (on(b3, b4),
putout(b2)). SHOP2 has then created a plan to accomplish
these goals, which is shown, along with the next action to be
taken, beneath the state representation. At the next time step,
the world state will have changed in response to the action
pickup[b3], where b3 is the triangular block, being taken.

Goal Generation Results
We ran the TF-Tree algorithm over scenario sets to evaluate
performance. The first scenario set consists of four scenarios
of the following description:

1. A short tower, a square, a triangle.

2. A tall tower, a square, a triangle.

3. A tall tower topped by a triangle, a short tower,

a square, a triangle.

4. A tall tower, a short tower, a square, a triangle.
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Goals are of the form on(X,Y ), where X and Y are
blocks. The associated goals for each scenario are:

1. Place the square on the tower.

2. Place the triangle on the tower.

3. Transfer the triangle at the top of the tall

tower to the short tower.

4. Transfer the top of the tall tower onto the square.

For illustration purposes, this is what the decision tree
generated by Tilde looks like:

triangle(A),on(A,B),square(B) ?

+--yes: [scen_003]

+--no: on(C,D),on(D,E),on(E,F),square(F) ?

+--yes: on(F,G),on(G,H),square(H) ?

| +--yes: [scen_002]

| +--no: clear(I),on(I,J),on(J,K),on(K,L),table(L) ?

| +--yes: [scen_004]

| +--no: clear(M),on(M,N),on(N,O),table(O) ?

| +--yes: [scen_004]

| +--no: [scen_002]

+--no: [scen_001]

Here is what a block arrangement from each of the four
scenarios could look like:

Scenario 1:

------

| s |

------

------ ------ /\

| s | | s | / \

------ ------ / t \

-------------------------------------------------------

Scenario 2:

------

| s |

------

------

| s |

------

------

| s |

------

------ ------ /\

| s | | s | / \

------ ------ / t \

-------------------------------------------------------

Scenario 3:

/\

/ \

/ t \

------

| s |

------

------

| s |

------

------ ------

| s | | s |

------ ------

------ /\ ------ ------

| s | / \ | s | | s |

------ / t \ ------ ------

-------------------------------------------------------

Scenario 4:

------

| s |

------

------

| s |

------

------ ------

| s | | s |

------ ------

------ /\ ------ ------

| s | / \ | s | | s |

------ / t \ ------ ------

-------------------------------------------------------

Here are the rules generated by FOIL:
Scenario 1:

goal(A,B) :- square(A), clear(B), clear(A), A<>B, on(B,C),

square(C).

Scenario 2:

goal(A,B) :- clear(B), on(A,C), on(B,D), square(D),

not(square(A)).

Scenario 3:

The disjunction of:

goal(A,B) :- square(B), clear(B), clear(A), on(A,C), on(B,D),

on(C,E), on(E,F), on(D,G), on(G,H), on(F,I), not(on(I,H)).

goal(A,B) :- clear(B), clear(A), on(A,C), on(B,D), on(C,E),

on(E,F), on(D,G), table(G), on(F,H), not(on(H,G)).

goal(A,B) :- clear(B), clear(A), on(A,C), on(B,D), on(C,E),

on(E,F), on(D,G), on(G,H), on(F,I), on(I,H).

goal(A,B) :- clear(B), clear(A), on(A,C), on(B,D), on(C,E),

on(E,F), on(D,G), on(F,H), on(H,G).

Scenario 4:

goal(A,B) :- clear(A), square(B), clear(B), on(A,C), on(B,D),

not(on(C,D)), table(D), on(C,E), not(on(E,D)).

Given this TF-Tree structure (the decision tree learned by
Tilde with rules learned by FOIL at the leaves), generating a
goal from a world state in predicate representation works as
follows: The decision tree will classify the world state into
one of multiple scenarios, each scenario being distinguished
from others by the kind of actions considered appropriate.
Each scenario has an associated rule generated by FOIL. To
generate the goal, the variables in the rule must be grounded
to blocks in the world state, and so groundings are permuted
through until either one which satisfies the rule is found, in
which case a goal can successfully be generated, or until all
permutations have been determined invalid, in which case
no goal can be generated.

For example, in generating a goal for the block arrange-
ment belonging to scenario 1 shown above, the first node
of the decision tree(also shown above) checks to see if it
is the case that triangle(A) ∧ on(A,B) ∧ square(B) for
some blocks A and B. This is not the case, so we fol-
low the “no” link to the next node, which checks to see if
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on(C,D) ∧ on(D,E) ∧ on(E,F ) ∧ square(F ) is true for
some set of blocks C,D,E, and F . This is also not the case,
so we follow the “no” link to a leaf of the tree, which classi-
fies the block arrangement as belonging to scenario 1.

The variables A and B in the associated rule as generated
by FOIL then will give us the arguments for goal(A,B),
we just need to find groundings of A,B, and C such that
square(A)∧clear(B)∧clear(A)∧A <> B∧on(B,C)∧
square(C). The only groundings of variables in this case
which satisfy the rule are if A is the single square on the
ground, B is the second block of the tower, and C is the first
block of the tower. So, we have just generated the goal of
placing the single square onto the tower, the goal which we
trained TF-Tree to learn.

We were interested in how the performance of the TF-
Trees’ degraded as the size of their training corpus de-
creased. Table 1 shows the accuracy across different training
corpus sizes.

The units on training corpus size correspond to sets of
nearly exhaustively listed valid and invalid goals for a given
block arrangement. Each set will contain up to n2 goals,
where n is the number of blocks.

Table 1: Goal generation accuracy across training corpus
sizes.

Training Corpus Size Accuracy Iterations Std. Dev.
5 0.59 1 -
10 0.68 7 10
25 0.88 1 -

100 1.0 3 0.125
1000 1.0 1 -

Constructing a classifier from the output of Tilde and
FOIL is time consuming, so the numbers in table 1 are from
single iterations. To determine the variability of these accu-
racies, we ran 7 iterations over corpus sizes of 10, getting a
mean accuracy of 0.68 with a standard deviation of 0.125.
On 3 iterations over corpus sizes of 100, mean accuracy was
1.0, with standard deviation 0.

The second scenario set on which we tested TF-Tree is for
a more rigorous test of the method and consists of 8 scenar-
ios, with the following descriptions:

1. Three towers, two of height 2 or 3, one of height

4 or 5, and one triangle and one square on the

ground.

2. Three towers, two of height 4 or 5, one of height

2 or 3, and one triangle and one square on the

ground.

3. Three towers, the first of height 2 or 3, the

second of height one greater than the first, the

third of height one greater than the second, and

one triangle and one square on the ground.

4. Two towers, each of height 2, 3, 4, 5, or 6, one

topped by a triangle, and one triangle and one

square on the ground.

5. Two towers, both of height 2, 3, 4, 5 or 6, both

topped by a triangle, and on triangle and one

square on the ground.

6. One tower of height 2 or 3, and one triangle and

one square on the ground.

7. One tower of height 4, and one triangle and one

square on the ground.

8. One tower of height 5, 6, 7, or 8, and one

triangle and one square on the ground.

The goals associated with those 8 scenarios are as follows:

1. Place the ground triangle on top of the tall tower.

2. Place the ground square on the top of the short

tower.

3. Move the top square of the tallest tower to the top

of the shortest tower.

4. Place the ground triangle on the tower lacking a

triangle top.

5. Place the ground triangle on the ground square.

6. Place the ground square on the tower.

7. Place the ground triangle on the tower.

8. Place the top square of the tower onto the ground

square.

Goal generation accuracy over these 8 scenarios was 0.78,
as was classification accuracy. The implication of these
numbers being the same is that the error was introduced
solely by the classification tree as generated by Tilde and
not the rules learned by FOIL. Table 2 is a confusion matrix
showing scenario classifications.

Table 2: Classification confusion matrix for the 8 scenario
set.

Actual\Predicted 1 2 3 4 5 6 7 8
1 763 735 1502 0 0 0 0 0
2 716 780 1504 0 0 0 0 0
3 0 0 3000 0 0 0 0 0
4 0 0 0 3000 0 0 0 0
5 0 0 0 0 3000 0 0 0
6 0 0 0 0 0 3000 0 0
7 0 0 0 0 0 0 3000 0
8 0 0 732 0 0 0 0 2268

The difficulty that Tilde had in classifying scenarios 1 and
2 can be explained by the similarities between scenarios 1, 2,
and 3. These three scenarios each contain three towers(more
than the other five scenarios) and so in this way are more
complex. In addition, the differentiating characteristics of
these three scenarios are not as obvious as the other five sce-
narios. Here the only differentiating factor is the height of
the three towers. Tilde proved incapable of learning to dis-
tinguish between these relatively complex and similar sce-
narios, but given the simplicity of the approach this isn’t
surprising.

Discussion
A more sophisticated approach to goal generation is needed
to deal with similar, but importantly different, situations. In
MIDA 1.0 world states in isolation are the only thing de-
termining goals. In an approach which takes the context of
how the present state relates to past states, and has some con-
ception of the reasons behind the form of the present state,
there is more information available for differentiation and
interpretation. Generation of goals for arrangements such as
scenarios 1, 2, and 3 are where our baseline performs poorly,

51



and where future implementations of MIDCA will perform
better.

Because MIDCA 1.0 employs goal generation based on
statistics, rather than reasoning, it constitutes a useful per-
formance baseline for evaluating future reasoning-based ap-
proaches to this problem. In addition, MIDCA 1.0 provides
us with an early implementation of the MIDCA architecture
that we intend to expand to operate on more complex do-
mains and to utilize more advanced methods for anomaly
detection, failure assessment and goal management.

The approach we present in this paper differs from the
prevailing approach to agent behavior in that agents are not
extrinsically provided with goal-states to achieve. Rather,
starting from an initial state, the agent must determine on its
own the appropriate goals to work toward. Once goals are
produced, a plan to achieve a goal is generated and enacted
within the environment in the standard fashion.

In MIDCA 1.0, the goal generator has no capacity for
reasoning, rather it generates goals by means of a TF-Tree
trained on a training corpus mapping states to appropriate
goals. The blocksworld domain is amenable to this method
of goal generation, as well as to methods employing reason-
ing.

In the blocksworld domain, an agent making use of rea-
soning may have a conception of purposes behind actions
and the ultimate outcome the agent is trying to achieve. For
example, the agent may have the notion that it is presently
trying to build a building out of blocks. As such, when pre-
sented with some input the agent can reason over possible
actions, evaluating them with respect to the degree to which
each action increases the ’building-like’ nature of the block
set. Or, for example, an agent may desire to achieve the goal
on(triangle, square) because the triangle can be seen as
a roof, the square can be seen as a house, and a roof on a
house can protect against the elements. This approach is dis-
tinct from the approaches consisting of direct input/output
mappings in that the rationale behind action selection is ex-
plicit in the reasoning, rather than implicit in the mapping.
By including these rationales explicitly, the adaptability of
the agent can be improved.

Future and Related Research
Related Research
Work on approaches conforming to the Goal-Driven Auton-
omy model includes (Munoz-Avila, Jaidee, Aha, and Carter,
2010). Munoz-Avila et. al. use a case based reasoning ap-
proach towards managing goals. Given a state, they con-
struct a mapping from goals to expectations, along with a
mapping from expectation violations to new goals. These
mappings are then used for the dynamic modification and
maintenance of a collection of goals.

Further work includes (Jaidee, Munoz-Avila, Aha, 2011).
Here, a GDA approach is used in conjunction with case-
based reasoning and the added element of reinforcement
learning for acquiring domain knowledge, encoded as cases,
which would otherwise have to be hand crafted for the do-
main. Using case-based reasoning, the approach of Jaidee et.
al. creates distributions of (state, action) pairs over expected

states, and (goal, discrepancy) pairs over discrepancy-
resolution goals. Reinforcement learning is used to learn
goals’ expected values, in terms of utility.

Future Research
In MIDCA 1.0, each plan is executed to completion before
a new goal is generated. This is not ideal, as situations may
arise in the middle of the execution of a plan for which a new
goal should be generated. There are difficulties, however, in
simply generating a goal for every new world state. To ad-
dress this issue, we have begun implementing MIDCA 1.1,
our first attempt to improve on baseline performance using
reasoning. This system adds D-track approaches to anomaly
detection and categorization to the existing framework. We
apply a statistical metric called the A-distance to streams
of predicate counts in the perceptual input. This enables
MIDCA to detect regions whose distributions of predicates
differ from previously observed input (Cox, Oates, Paisner,
& Perlis, 2012). These areas are those where change occurs
and potential problems exist. The presence of an anomaly
detection schema will allow MIDCA 1.1 to interrupt a plan
in progress if it detects that a significant change in the world
state has occurred, possibly preventing wasteful or damag-
ing pursuit of goals that are no longer relevant.

When a change is detected, its severity and type can be
determined by reference to a neural network in which nodes
represent categories of normal and anomalous states. This
network is generated dynamically with the growing neural
gas algorithm (Fritzke, 1995) as the D-track processes per-
ceptual input. This process leverages the results of analy-
sis with A-distance to generate anomaly archetypes, each
of which represents the typical member of a set of similar
anomalies the system has encountered. When a new state
is tagged as anomalous by A-distance, it is associated with
one of these groups. In MIDCA 1.1, this categorization can
provide evidence that could corroborate or refute the assign-
ment of the current world state to a scenario by Tilde. More
generally, knowing the type of an anomaly allows a system
to prioritize explanations and goals that have worked with
the same anomaly type in the past.

The K-track NAG procedure is still under development,
but we plan to implement a process similar to that used by
the Meta-AQUA system (Cox & Ram, 1999) and other case-
based interpretation systems. In Meta-AQUA frame-based
concepts in the semantic ontology provide constraints on ex-
pected attributes of observed input and on expected results
of planned actions. When the system encounters states or
actions that diverge from these expectations, an anomaly oc-
curs. Meta-AQUA then retrieves an explanation-pattern that
links the observed anomaly to the reasons and causal rela-
tionships associated with the anomaly. A response is then
generated from salient antecedents of the instantiated expla-
nation pattern (see Cox, 2007 for details).

One obvious approach to the interaction between the D-
track and K-track would be simply to call K-track algorithms
only on regions detected by D-track anomaly detection. This
would be more efficient because the overhead for the K-track
method is greater than that of the A-distance and growing
neural gas methods. But more sophisticated approaches ex-
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ist. For instance the weight of one procedure over the other
may be a function of features including resources available
and factors such as urgency. Many other issues remain to be
examined in detail. These include the decision between plan
change and goal change and the allocation of responsibility
for this decision between meta-level goal management and
the Intend component.

A more complete approach would introduce goal manage-
ment to this process. Using this approach, the goal genera-
tor would produce new goals whenever D-track or K-track
anomaly detectors report a potential problem, then leave it
up to goal management to determine if each goal should be
kept. A goal management framework would include a list
of goals, partially ordered according to precedence and pre-
condition relations. This list of goals would be maintained
such that new goals are inserted into the correct locations, or
discarded if they are deemed unhelpful, and goals which are
no longer applicable would be discarded as well. A goal may
cease to be applicable if it was a sub-goal of a goal which has
already been achieved, if it was a sub-goal of a goal which
itself has been discarded, or if it had a time window which
has expired or preconditions which can no longer be met.

Concluding Remarks
In this paper we have presented an architecture, MIDCA,
whose purpose is to increase an agents capacity to deal with
novel and open ended situations by structuring that agent’s
behavior around dynamically generated goals. We covered
a basic implementation conforming to the MIDCA archi-
tecture, MIDCA 1.0. Within MIDCA 1.0 goal generation
is achieved using a comparatively simple approach which
generates goals by considering world states in isolation. In
future implementations of the MIDCA architecture, perfor-
mance will be improved by introducing to goal generation
the capacity to reason over causal relations in the environ-
ment, by introducing a goal management scheme, and by
employing anomaly detection methods such as A-Distance
to determine the appropriate times to make use of goals.
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