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Abstract 
Metareasoning is an important capability for autonomous systems, particularly for those being 
deployed on long duration missions. An agent with increased self-observation and the ability to 
control itself in response to changing environments will be more capable in achieving its goals. This is 
essential for long-duration missions where system designers will not be able to, theoretically or 
practically, predict all possible problems that the agent may encounter. In this paper we describe 
preliminary work that integrates the metacognitive architecture MIDCA with an autonomous TREX 
agent, creating a more self-observable and adaptive agent. 
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1 Introduction 
The need for robust and adaptive agents that can persist in changing environments for long 

duration missions requires metacognitive abilities such as self-observation and self-control, because 
humans cannot be required (or may not be available) to supervise such systems over periods of 
months. We are studying a metacognitive agent comprised of the cognitive architecture MIDCA 
integrated with TREX. TREX is an autonomous system control framework that has shown to be robust 
for a number of autonomous vehicle tasks (Py, Rajan, & McGann, 2010). Currently, most missions 
that the autonomous agent carries out are on a scale of tens of hours (underwater deployment was on 
an average of 12 hours in Rajan, Py, & Barreiro, 2013). Longer deployments, when feasible, are 
desirable due to several probable benefits, such as the ability to achieve different types of missions of 
varying lengths, better data collection with less gaps, and greater ability to respond to opportunities 
that arise during mission pursuit. As hardware improves to provide the physical requirements to enable 
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longer deployment (i.e., battery technology), improvements in software will be required for greater 
autonomy. This includes the ability to adjust or replace reasoning faculties such as planning and 
sensing in the face of unexpected anomalies or serious failure. We present ongoing work towards an 
implementation of an integrated MIDCA-TREX agent. 

The remainder of the paper is organized as follows. Section 2 introduces the TREX agent 
framework including an example of a TREX agent, and Section 3 introduces the MIDCA architecture. 
Section 4 details the integration of MIDCA with TREX to provide more metacognitive abilities, and 
then Section 5 describes preliminary experiments. Finally Section 6 presents related and future work 
together with concluding statements. 

2 TREX: Teleo-Reactive EXecutive Framework 
TREX is an agent framework designed for autonomous robots. Currently it has been deployed on 

underwater unmanned vehicles and used on the PR2 land robot (Py, Rajan, & McGann, 2010). This 
framework balances the need for robotic agents to react quickly as well as the need to pursue long-
term goals. This is achieved by a non-cyclic hierarchy of internal components, referred to as reactors, 
where each reactor has its own sense-plan-act loop. Reactors communicate with one another using 
constraints on state variables. State variables are visible to all reactors but are “owned” by at most one 
reactor. The reactor that owns a state variable is responsible for updating its value. Reactors that wish 
to change a state variable (i.e., the altitude of a robot) owned by another reactor post a goal, which is a 
constraint on a state variable. Goals can either come from other reactors or externally (a user). To 
make this clearer, we walk through an example of a very simple two reactor agent. 

Consider a two-reactor agent that is able to interact with a simulated light fixture. Three state 
variables exist. Luminance represents the amount of light in the room and has two possible states: 
Bright or Dim. Switch represents what would be a physical switch on the light fixture and has two 
possible states: Up or Down. The light variable represents the state of the light bulb which is either 
On or Off. They relate to one another such that when the switch is Up, the light is On and the 
luminance is Bright. 

Two reactors exist in the light switch example (see Figure 1). The state variables light and switch 
are owned by the LightReactor, and the luminance variable is owned by the EuropaReactor.1 The 
LightReactor acts as the direct interface and the manipulator to the light fixture and the EuropaReactor 
acts as the part of the agent that requests whether the room is bright or dim and plans to achieve that 
goal accordingly. Goals are represented as constraints on a variable. For example, one possible goal 
the user could request of the agent is for the luminance variable to be in the state Dim for a duration of 
20 ticks somewhere in the interval between time tick 10 and tick 50. Ticks are the agent’s 
representation of time and can be grounded into actual clock cycles. To achieve this goal, the agent 
must ensure that the switch is Down and the light is Off. These states are achieved if at the current 

time, τ, the EuropaReactor (which 
received the Luminance goal from the 
user) tasks the LightReactor with the goal 
to have its Light variable in the Off state 
between ticks 10 and 50. The 
LightReactor then creates a plan within its 
planning window2 to turn the switch to the 
Down state at tick 15 while observations 

                                                
1 The second reactor includes the Europa constraint-based planner (Frank & Jonsson, 2003) 
2A subsequent section discusses the parameters θ and λ that together define the planning window. 

Figure 1. Two-reactor light switch example 
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are being made.  

3 MIDCA: Metacognitive, Integrated, Dual-Cycle Architecture  
MIDCA is a metacognitive architecture that reasons about reasoning (Cox, Maynord, Paisner, 

Perlis, & Oates, 2013; Cox & Oates, 2013). Metacognition has the ability to increase the performance 
of an agent by allowing observation and modification of the agent’s reasoning components (e.g., 
planning and interpretation), not just its behavior. The MIDCA architecture is composed of two cycles 
with one at the object (cognitive) level and the other at the meta-level (see Figure 2). Each cycle 
consists of comprehension and problem-solving processes. The comprehension processes (on the 
right) begins with perception, followed by interpretation and then evaluation. At the object (lower) 
level, perception is of the environment in which the agent finds itself. At the metacognitive (upper) 

level, “perception” monitors the 
object level where the reasoning 
components are observed. This is 
the first part of increased self-
awareness of the system because 
now the meta-level has the 
ability to detect problems in the 
reasoning components of the 
system (such as a failure in the 
planner or a bug in the 
perception of the agent). See 
Anderson & Oates (2007) for an 
extended discussion of 
metareasoning in artificial 
systems.  

The problem-solving 
processes (on the left) begins 
with commitment to one or more 
goals (intend), planning to 
achieve those goal(s) (plan), and 
finally acting to carrying out 
those plans (act). At the 
metareasoning level, these 
processes are essentially the 
same except that actions are not 
to change the environment but to 

change (control) some part of the reasoning level.  
     Figure 2. The MIDCA dual-cycle architecture. 

The metareasoner’s job is to help improve the reasoning of the object layer. For example if a story 
understanding system explains an anomaly in a story but later discovers a different explanation in 
subsequent text, then the meta-level must take a trace of the prior reasoning that produced the faulty 
explanation, explain what caused the failure, and use the explanation to fix the cause of the poor 
explanation process (Cox & Ram, 1999). That is it repairs the interpretation component responsible 
for the explanation or the knowledge used to construct the explanation. 
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4 Using MIDCA to Parameterize TREX Reactors 
All TREX reactors have two important parameters that define a planning window in the future - 

lookahead (θ) and latency (λ) - and which are fixed and are set by the system designer before 
deployment (see again Figure 1). Lookahead specifies how far in the future the reactor should plan, 
and latency is how much time the reactor has to finish planning. (Rajan, Py, & Barreiro, 2013). It is 
important that the reactors be synchronized to allow reliable behavior of the agent. Reactors that need 
to be most reactive (i.e., sensors or actuators) should have lower look ahead and latency (quickest to 
respond) while reactors that will create long-term plans should be allowed higher lookahead and 
latency in order to have more time to plan. Lower lookahead and latency values correlate with reactors 
lower on the hierarchy while higher values correlate with reactors higher on the hierarchy. For an 
example hierarchy, see Figure 20 (a) in Rajan, Py, and Barreiro (2013). 

Lookahead and latency share a relationship with the goals of the agent. Depending on the time 
restraints of a goal, the lookahead and latency values need to be appropriate to allow the relevant 
reactors enough temporal scope and time to plan while at the same time keeping the whole system 
synchronized. Unnecessarily large values of lookahead means that during planning, the reactor will be 
looking into the future to outcomes that are not relevant and this can increase the computation 
overhead of the planning task. If the lookahead is too small, it will not be able to plan to achieve goals 
that require actions taking place at future ticks beyond the scope of the current tick + lookahead.  

We suspect that as an agent is deployed over increasing lengths of time, the kinds of goals the 
agent pursues or the responsiveness of the agent may need to change. There may be times when the 
agent needs to be very accurate and the amount of time to complete tasks is less important, while at 
other times the agent may need to act very quickly regardless of accuracy. Under these different 
conditions, changing the latency and lookahead values, or the constraints of the goals, would allow the 
agent to respond appropriately. By integrating the metacognitive layer of MIDCA with TREX acting 
as the reasoning layer of MIDCA, the agent will be able to adjust reactors to better react to these kinds 
of changes. 

In our setup reported here, we are only implementing the metacognitive layer of MIDCA (upper) 
and are using TREX as our reasoning layer (lower). The TREX layer is one possible implementation 
of the MIDCA reasoning layer. The TREX agent maintains goals it wants to achieve, it plans to 
achieve those goals, and concurrently perceives the world and sends these observations to the reactors 
of the system. Dynamically choosing good lookahead and latency values at run-time is a difficult task 
for a human operator, because the environment is constantly evolving even while the agent is 
performing its tasks. However, it is impossible to determine fixed lookahead and latency values that 
will be efficient across all task conditions. There are some values that may achieve the goals, but are 
not entirely efficient for the agent in terms of speed or response time. For example, having a small 
lookahead value may achieve short-term goals, but it may not be efficient for long-term goals. Our 
current research objective is to experiment with techniques for enabling MIDCA to determine when 
and to what values these parameters should change.  

5 Current Evaluation and Data Collection 
The model of Cox & Raja (2011) defines metareasoning in terms of introspective monitoring and 

meta-level control. Introspective monitoring provides a trace of reasoning in some knowledge 
representation that constitutes the observation of the object level activity. Meta-level control provides 
the ability of a metareasoner to change the future activity of the object level. Together these two sets 
of processes provide high level feedback to the combined agent to improve task performance. Ideally 
MIDCA will run together with TREX in a similar fashion in real-time to determine the effects of 
changing lookahead and latency values on the agent’s ability to achieve goals.  
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In order to modify TREX in real time, MIDCA will make use of an application programming 
interface (API) with the TREX architecture that provides introspective monitoring and meta-level 
control functionality. This API exposes function calls to update latency and lookahead values, as well 
as read current lookahead and latency values of any reactor. The API also allows MIDCA to read and 
write goals to TREX which are interpreted as if they were goals from a user (the same way the agent 
receives goals at the start of a mission). However as this document describes late-breaking research, 
we currently use a manual, scripted setup to test MIDCA with TREX run individually over many 
instances.  

The current configuration uses the light switch example described earlier to explore our ideas in a 
simple domain. The values for the state variables were written in eXtensible Markup Language 
(XML), which included lookahead and latency values for the Europa planner. The goals were also 
created in the same document, with fixed start, end, and duration values. These values could be 
changed by simply altering the XML document. To do so, a low-level XML parser was created using 
the existing library xml.dom.Minidom in Python. A method of the code looped over each reactor, first 
incrementing the lookahead value and then the latency value by 1. The start, end, and duration values 
were also altered. Two was added to each value, minding that the end value of the previous goal did 
not overlap the start value of the next goal. There was a five tick difference between the values to 
prevent such overlapping. Another method added goals directly in the XML document, and were 
monitored to prevent overlapping of the goals.  

Another Python script read the log files and wrote the corresponding configuration files that 
contained the modified lookahead, latency, start, duration, and end values. Another Python document 
contained code for collecting and storing the latency and lookahead values as well as the number of 
goals successfully achieved. When this document ran, it started the TREX agent and created and saved 
a table with the values into a comma separated values file. A document was created containing 3-D 
bar graphs using the library MatLibPlot. Figure 3 shows a graph that was created using MatLibPlot. In 
this graph, the latency values range from 1 to 10. For each latency value, there are 10 lookahead 
values. The z-axis shows the number of goals successful, which can be 0, 1, or 2. These graphs help to 
determine correlations between lookahead and latency values as well as the number of goals achieved. 

Looking at Figure 3 we see that for both low window-parameter values (θ + λ < 9) and high values 
(θ + λ > 17) the agent is able to achieve 2 goals, but when (9 <= θ + λ <= 17) we see that the agent is 
only able to achieve a single goal. While counter-intuitive, after further analysis it was discovered that 
when there were low values, the planner had to be very reactive and was able to achieve planning for 
both goals. When there were high values the planner had enough time to explore many different 

possible plans fully. However, during the middle part of 
the graph, the values were sufficient to allow the planner 
to explore multiple plans (i.e., more than just reactive 
behavior) but not large enough to allow the planner to 
find the end of the correct plan in time (i.e., planning was 
cut off). This is the result that we observed from running 
the manual scripts. In our future work, this is the kind of 
insight (i.e., low or high values achieve more goals than 
middle values) we expect MIDCA to be able to learn 
over time in a single mission and direct the behavior of 
the TREX agent to either be in the low or high values, 
thus improving the number of goals achieved over time. 
MIDCA will gain both the concept and explanation of 
the concept, and use it accordingly. 

 
Figure 3. Number of goals achieved as a function of latency (λ) and lookahead (θ) values 
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6 Related Work, Conclusion and Future Work 
Work on metacognitive architectures includes the CLARION architecture (Sun & Mathews, 2006) 

which makes use of a metacognitive component that is able to monitor and intervene in the other 
reasoning components of the system. While specific implementation details vary, both MIDCA and 
CLARION’s metacognitive components are able to monitor and modify the other reasoning 
capabilities of the respective systems. However the objectives of the two systems are different: 
CLARION has a focus of replicating human-like cognition while MIDCA integrated with TREX is 
focused on increasing goal success within autonomous systems.  

Another current metacognitive architecture is GMU-BICA (Samsonovich, 2009). GMU-BICA 
realizes metacognition without using an explicit metacognitive component that is separate from the 
cognitive processes. However, MIDCA, like CLARION, makes use of an explicit metacognitive 
component (in MIDCA this is the upper layer). The relationships between these three architectures are 
discussed in more detail by Caro, Josyula, Cox, and Jimenez (2014). 

The implementation of autonomous agents performing long-duration tasks has been explored with 
the use of an interaction between the MIDCA architecture and the TREX agent. This paper discusses 
the utilization of a metacognitive component to aid a cognitive component by adjusting its reasoning 
modules (i.e., TREX reactors) with respect to goal achievement. An agent that is able to detect 
unexpected changes and adjust itself to achieve goals is an efficient autonomous agent. The utilization 
of such agents in the metacognitive world can significantly improve projects where agents must plan 
for long duration missions, like an unmanned underwater vehicle. We document our current analysis 
of improving a TREX agent with multiple, separate test problems. The next step in our research 
project is to run MIDCA with TREX automatically and in real-time as a single agent. Analysis will 
center on MIDCA’s ability to detect the best lookahead and latency values, understand the relationship 
of lookahead and latency to goals, and adjust accordingly in a single execution. With more future 
work in the MIDCA architecture, we expect that the combined agent will be able to achieve a greater 
number of goals and become more responsive to change under extraordinary circumstances. 
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