
A General Framework for One Database Private Information
Retrieval

Arkady Yerukhimovich

Dept. of Computer Science, University of Maryland, College Park, MD, USA
arkady@cs.umd.edu

Abstract. In this paper we present and analyze a general scheme for one database computationally
Private Information Retrieval. This scheme was first presented by Ostrovsky and Skeith in [13]. This
general framework shows such a PIR scheme based on any secure homomorphic public key encryption
scheme. We complete the analysis of this framework, present a proof of security, and do a careful
analysis of the communication and computation complexity.

1 Introduction

In Private Information Retrieval(PIR) we view the database as an n-bit string x where the user
wants to retrieve the bit xi while keeping i private from the database. The traditional, information
theoretic, model of PIR was formulated by Chor, et. al. in [3]. The authors show that n bits
of communication are necessary to achieve information theoretic privacy if only one database is
available. In order to circumvent this bound, the authors propose using multiple non-interacting
databases. Much work in this area has produced upper and lower bounds for information theoretic
PIR schemes with different numbers of databases.

A different model of PIR called Computationally Private Information Retrieval(cPIR) was pro-
posed by Kushilevitz and Ostrovsky in [10] to get around this issue of multiple databases. In this
model, the authors showed an O(nε) communication complexity, one database cPIR protocol where
the security of the user’s query is based on a cryptographic assumption. In a further result [12],
Mann generalized this scheme to use any bitwise encryption scheme with certain homomorphism
properties. For a list of results on both information theoretic and computational PIR see [5, 6].

All these results deal with optimizing the communication complexity of cPIR protocols. How-
ever, a problem that has largely been ignored by all of them is the computational complexity of
such algorithms. This is in part due to an obvious lower bound that the server must perform Ω(n)
computation, because if the database does not touch a bit in generating its response it knows the
user did not request that bit thus violating the security. It is this computational cost that caused
people to claim that cPIR is not practical because the trivial solution of sending the entire database
is faster [17]. However, by reducing the cost of computation per bit it may be possible to overcome
this issue since computation is much cheaper than communication. Another common complaint
about the PIR model is that a database is not an n-bit string. In an effort to resolve this, we
present a PIR scheme that allows the database to contain integers instead of bits.

In this paper we present a general framework for PIR introduced by [13]. This scheme further
generalizes the scheme from [12] and presents a construction of cPIR from any homomorphic, secure
public key encryption scheme. We describe this scheme in detail and complete the analysis, showing
its computation complexity and proof of security. We also discuss several concrete implementations
of the general scheme and suggest possible ways for further improvements.

This paper is organized as follows. In section 2, we present some necessary definitions. In
section 3, we explain the cPIR framework as follows. In section 3.1, we present a basic protocol
which does not accomplish the promised communication complexity but is a building block used
in the main construction. In section 3.2, we present the full construction building on the previous
protocol. Then, in section 3.3 we prove the security of the presented protocol and in section 3.4 we
show and analyze two concrete implementations of the presented scheme.

2 Definitions

2.1 CPA Secure Public Key Encryption

The definition presented below is based on Definition 10.3 from [9]. This notion of security was
originally defined by Goldwasser and Micali in [8]. For a more rigorous treatment see Chapter 5
of [7].

A public key encryption scheme is a triple of algorithms (G, E ,D). The key generation algorithm,
G, takes as input 1k, a string of k ones, and outputs (pk, sk) where pk is the public key of the
encryption scheme and sk is the secret key. The encryption algorithm, Epk(m), uses the public
key to compute the encryption of a message m. The decryption algorithm, Dsk(c), computes the
decryption of a ciphertext c using the secret key. We require that for every k, every (pk, sk) output
by G(1k), and every message m it holds that m = Dsk(Epk(m)).

A public key encryption scheme is said to be secure against chosen plaintext attacks(CPA-
secure) if no polynomial time bounded adversary can succeed in the following experiment with
probability greater than 1/2 + negl(k) where negl() is a negligible function, k is the security pa-
rameter, and Π is the environment running the experiment.

Eavesdropping Indistinguishability Experiment PubKeav
A,Π(k)

1. G(1k) is run to output (pk, sk)
2. Adversary A is given pk as an input.
3. A outputs two messages m0,m1 with |m0| = |m1|.
4. Random bit b← {0, 1} is chosen.
5. The ciphertext c← Epk(mb) is computed.
6. A is given c and outputs a bit b′.
7. A succeeds if b′ = b. We say that in this case PubKeav

A,Π(k) = 1

Note that any adversary can succeed with probability 1/2 by just outputting a random bit b′. Also
note that since A knows pk, he can compute the encryption of any message m′. Therefore, any
encryption scheme that satisfies this notion must be probabilistic. Otherwise A can just compute
Epk(m0) and Epk(m1) and see which of them is equal to c.

2.2 Group-Homomorphic Encryption [13]

An encryption scheme (G, E ,D) is called group-homomorphic if it has plaintext set Gp and cipher-
text set Gc, where Gp and Gc are abelian groups and the following equation holds

D(E(a) ? E(b)) = a ∗ b (1)

2

where a, b ∈ Gp, ? is the group operation over Gc and ∗ is the group operation over Gp. Many of the
known secure encryption schemes have these homomorphic properties. We will see two examples of
such schemes in Section 3.4.

3 PIR Based on Homomorphic Encryption [13]

Theorem 1. There exists a one database computational PIR scheme based on any CPA-secure
homomorphic-encryption scheme with O(nε) communication complexity.

In this section, we present a very general construction of the cPIR protocol of Theorem 1 from any
such encryption scheme. This construction is a secure PIR as long as the underlying encryption
scheme is CPA-secure. For clarity, we start with an O(n) communication complexity protocol to
demonstrate the techniques we will use. We then show how to extend this to an O(nε) protocol.
Then we show several examples of concrete schemes that fit within our general framework.

From now on we will use U to represent the user in the PIR scheme and DB to represent the
database.

3.1 The Basic Protocol

Definition Let, (G, E ,D) be a CPA-secure group-homomorphic encryption scheme as defined
in Section 2.2. Let Gp, Gc be the corresponding groups over the plaintext and ciphertext. Let
IDGp , IDGc represent the identity elements in the corresponding groups. Let g ∈ Gp be an element
in Gp s.t. g 6= IDGp . We use ord(g) to mean the order of g in Gp. Note that g is not necessarily a
generator of Gp, although choosing g to be a generator will be useful as it maximizes ord(g).

We view the database as an array X = {xi}ni=1 where xi ∈ Zord(g). Therefore, if we choose an
element g such that ord(g) > N the database can contain numbers in ZN . However, if the plain
text space is Z2, as is the case in any bit-wise encryption scheme, then we have to view the database
as an n-bit string, as it is in the traditional definition of PIR.

A 1-dimensional protocol We present this protocol as an introduction to the class of PIR
protocols presented in this paper. While it does not accomplish any improvement in communication
complexity over the trivial solution of sending the entire database it serves as a good example of the
technique used in later protocols. Here U views the database as an n-element array X = {xi}ni=1

and he wants to learn the value xi∗ .

1. U forms a query Q = {qi}ni=1 where qi ∈ Gc and

qi =
{
E(g) if i = i∗

E(IDGp) otherwise

2. U sends Q to DB
3. DB sends back

R =
n∑

i=1

xi · qi

Note that summation here represents the group operation of Gc and · represents the Z-module
action, this means that we repeat the group operation xi times on qi before summing.

3

4. U computes

D(R) = D

(
n∑

i=1

xi · qi

)
=

n∑
i=1

xi · D(qi) = xi∗ · g

5. U sees that xi∗ = 1 if and only if D(R) = g. If the discrete log problem is easy over Gp then
U can instead compute xi∗ = logg D(R) and so we can use integers instead of bits as entries in
the database allowing us to overcome the complaint about the database being an n-bit string.

Note that in this context discrete log means the following problem. Given y = x · g = gx and g find
x ∈ Zord(g) where the exponentiation is done over the group Gp. We write this as x = logg y. In
some groups, such as the additive group ZN , this is easy because exponentiation is just equivalent
to multiplication and a logarithm is just equivalent to division.

In this scheme U sends n elements of Gc and DB responds with 1 element of Gc. So U ’s
communication complexity is O(n). However, we can reduce this by balancing the communication
between U and DB as shown in the next protocol.

A 2-dimensional protocol U and DB, view the database as a (
√

n×
√

n) array, X = {x(i,j)}
√

n
i,j=1.

U wants to learn x(i∗,j∗) and does not want DB to learn anything about the values of i∗ or j∗.

1. U forms a query Q = {qi}
√

n
i=1 where qi ∈ Gc and

qi =
{
E(g) if i = i∗

E(IDGp) otherwise

2. U sends Q to DB
3. For each column j, DB computes

Rj =

√
n∑

i=1

x(i,j) · qi

Note, that summation here represents the group operation of Gc and · represents the Z-module
action.

4. DB sends back {Rj}
√

n
j=1 to U

5. U computes

D(Rj∗) = D

√
n∑

i=1

x(i,j∗) · q(i,j∗)

 =

√
n∑

i=1

x(i,j∗) · D(q(i,j∗)) = x(i∗,j∗) · g

6. U sees that x(i∗,j∗) = 1 if and only if D(Ri∗) = g. If, the discrete log problem is easy over Gp

then U can instead compute x(i∗,j∗) = logg D(Ri∗).

Communication Complexity U sends
√

n elements of Gc as his query for a total communica-
tion complexity of

√
n log |Gc|. Setting the security parameter k = log |Gc| we get communication

complexity k
√

n. DB also sends
√

n elements of Gc. Therefore, the total communication complexity
is O(kn1/2) taking k = nε gives CC = O(n1/2+ε).

4

Computation U computes
√

n encryption operations to generate a query and 1 decryption to
interpret the result. DB computes

√
n group operations over Gc. If the elements of the DB are not

bits then DB must also compute
√

n Z-module actions and 1 discrete log computation.

3.2 A Further Improvement

In this section we show how to improve on the previous protocols to achieve O(nε) communication
complexity. We build up to the final protocol by presenting simpler protocols that take advantage
of the same techniques. We then analyze the communication and computation complexity of the
final protocol.

Definition Define φ : Gc → Zl
ord(g) to be an injective mapping from the ciphertexts to an l-

dimensional vector over Zord(g) where ord(g) is the order of g in Gp. Here l can be any integer
sufficiently large that |Zl

ord(g)| = ord(g)l > |Gc|. φ can be any injective mapping between these sets.
We only require that both φ and φ−1 be efficiently computable given the public information. Note
that l ≥ 2 for any such scheme if the underlying encryption scheme is CPA secure. This is because
ord(g) ≤ |Gp| and |Gp| < |Gc|. The second inequality is due to the fact that the encryption scheme
must be probabilistic to be CPA secure. There must be at least one element in |Gc| that decrypts
to each element of |Gp| to ensure correct decryption. If we have randomized encryption then Gc

must contain extra elements on top of this to account for the randomness, so |Gc| > |Gp|.

Another 2-dimensional protocol We present this algorithm to build an understanding of this
class of PIR protocols. It achieves the same communication complexity as the basic 2-dimensional
protocol presented earlier but demonstrates the new techniques.

1. U and DB, view the database as a (
√

n×
√

n) array, X = {x(i,j)}
√

n
i,j=1

2. U forms a query Q =
[
{qi}

√
n

i=1, {pj}
√

n
j=1

]
where qi, pj ∈ Gc, qi∗ and pj∗ are set to encryptions of

g and all other values are set to encryptions of IDGp .
3. U sends Q to DB
4. For each row i, for each t ∈ [l], DB computes

Rj =

√
n∑

i=1

x(i,j) · qi

Rt =

√
n∑

j=1

φ(Rj)t · pj

where φ(Rj)t is the t-th component of φ(Rj). Note that, as before, summation here represents
the group operation of Gc and · represents Z-module action.

5. DB sends back all the Rts to U
6. U computes for every t ∈ [l]

D(Rt) = D

 n∑
j=1

φ(Rj)t · pj

 = φ(Rj∗)t · g

5

7. U calculates φ(Rj∗)t = logg D(Rt) if working over a group where discrete log is easy or checks
if D(Rt) = g otherwise.

8. U uses these values to reconstruct φ(Rj∗) and computes Rj∗ = φ−1(φ(Rj∗)) =
∑√

n
i=1 x(i,j∗) · qi.

9. U recovers x(i∗,j∗) from these values just as in the basic scheme.

The above protocol achieves the following communication complexity which will be shown in a
more general setting later

CCU = 2kn1/2 CCDB = lk

The 3-dimensional protocol We present this protocol to show how to reduce the communication
complexity of the previous protocol by viewing the database as a higher dimension array. This is
used to show how to extend the previous scheme to one that views the database as a d-dimensional
array and has significantly lower communication complexity.

1. U and DB, view the database as a (n1/3 × n1/3 × n1/3) array, X = {x(i,j,k)}n
1/3

i,j,k=1

2. U forms a query Q =
[
{qi}n

1/3

i=1 , {pj}n
1/3

j=1 , {ok}n
1/3

k=1

]
where qi, pj , ok ∈ Gc s.t. qi∗ , pj∗ , ok∗ are set

to encryptions of g and all other values are set to encryptions of IDGp .
3. U sends Q to DB
4. For each row i, for each t, u ∈ [l], DB computes

Rjk =
n1/3∑
i=1

x(i,j,k) · qi

Rkt =
n1/3∑
j=1

φ(Rjk)t · pj

Rtu =
n1/3∑
k=1

φ(Rkt)u · ok

5. DB sends back all the {Rtu} to U
6. U performs the following computations

– For each t ∈ [l]
– – For each u ∈ [l] compute

D(Rtu) = D

n1/3∑
k=1

φ(Rkt)u · ok

 = φ(Rk∗t)u · g

– – Use these l values to get Rk∗t =
∑n1/3

j=1 φ(Rjk)t · pj

– Get the l values Rk∗t for all t ∈ [l]
7. U gets x(i∗,j∗,k∗) from this the same way as in the 2-dimensional scheme.

This protocol achieves the following communication complexity.

CCU = 3kn1/3 CCDB = l2k

6

The d-dimensional protocol Using the same techniques as in the two protocols presented earlier
we can extend the protocol to a d-dimensional scheme where U and DB view the database as a
d-dimensional array.

Communication Complexity The communication complexity of the d-dimensional PIR scheme
presented above is as follows. Let k = log |Gc| be the security parameter of the encryption scheme.

– U ’s query consists of d sets of n1/d elements of Gc each.
– DB’s response consists of ld−1 elements of Gc. This is because for every extra dimension l new

elements are created for each element at the previous dimension.

Summarizing, we get the following communication complexity.

CCU = O(kdn1/d) CCDB = O(ld−1k) (2)

Setting d to be a large constant, but keeping d << n, and l, k = O(log n) we get the promised
result.

CCtotal = O(nε) for any ε > 0 (3)

Computation The total computation that is performed per query by U and DB in the d-
dimensional PIR scheme presented above is as follows.

– U computes the dn1/d encryptions necessary to generate his query.

encryptions = dn1/d (4)

– DB performs the following computations to answer a query. We can rewrite the 3 equations de-
scribing DB’s response for the 3-dimensional protocol as d equations for the d-dimensional proto-
col. We number these equations in the order presented above from 1 to d. In equation i, DB per-
forms n1/d group operations for each of li−1n(d−i)/d elements for a total of li−1n(d−i+1)/d group
operations in level i. Starting at level 2, DB also computes φ once for each of the li−1n(d−i)/d

elements for a total of li−1n(d−i)/d computations of φ per level when i ≥ 2. Writing this as a
summation over the d equations we get.

group ops over Gc =
d∑

i=1

li−1n(d−i+1)/d = O(n) if l << n (5)

Z-module actions =
d∑

i=1

li−1n(d−i+1)/d = O(n) if l << n (6)

computations of φ =
d∑

i=2

li−1n(d−i)/d = O(n(d−2)/d) if l << n (7)

– U performs the following computations to interpret the response. For the 1-dimension scheme
U computes one decryption. In the i-dimension scheme U computes li−1 decryptions and li−2

computations of φ−1 to get to the situation in the (i − 1)-dimension scheme. If working over

7

a group where discrete log is easy and using a database containing numbers instead of bits, it
also computes a discrete log for each decryption. Therefore we get,

decryptions =
d−1∑
i=0

li =
ld − 1
l − 1

(8)

discrete logs =
d−1∑
i=0

li =
ld − 1
l − 1

(9)

computations of φ−1 =
d−2∑
i=0

li =
ld−1 − 1

l − 1
(10)

3.3 Security

We now prove the security of the 1-dimensional PIR scheme of Section 3.1. This proof can be
trivially modified to work for any of the other schemes presented here by just including additional
hybrid steps to deal with multiple encryptions of g and showing that we can not distinguish a query
with multiple encryptions of g from a query with 1 encryption of g.

Definition Let Qi to be a vector of length n of encryptions of IDGp except at position i which
contains an encryption of g. Let Qj be the same for index j. Let Q0 be a vector of n encryptions of
IDGp . Note that Qi and Qj are exactly the distributions for queries for indices i and j. Let k be a
security parameter for the underlying encryption scheme and let negl(k) be a negligible function.

Claim (1). For any probabilistic polynomial time(PPT) adversary A, |Pr[A(Qi) = 1]−Pr[A(Q0) =
1]| ≤ negl(k)

Proof. Assume that for some PPT adversary A, |Pr[A(Qi) = 1]−Pr[A(Q0) = 1]| = ε. We use this
adversary to construct an adversary A′ that breaks the CPA-security of the underlying encryption
scheme (G, E ,D) as follows.

A’ - Given pk from G and playing the CPA indistinguishability game

1. Compute n− 1 values Epk(IDGp) and place them in all places of the query, Q, except at index i
2. Set m0 = IDGp , m1 = g
3. Receive c← Epk(mb) where b← {0, 1} is a uniformly random bit.
4. Place c into position i of Q.
5. Run A(Q) and output what it outputs.

Note, that when b = 0 Q has the same distribution as Q0 and when b = 1 Q has the same
distribution as Qi. So,

Pr[A′ succeeds in CPA game] = Pr[A(Q) = 0|b = 0] · Pr[b = 0] + Pr[A(Q) = 1|b = 1] · Pr[b = 1]
= (1/2)(1− Pr[A(Q0) = 1]) + (1/2)Pr[A(Qi) = 1]

= 1/2 +
ε

2
Since we assumed that the underlying Encryption scheme was CPA-secure and so no A′ can succeed
except with probability negligibly greater than 1/2, this implies the ε ≤ negl(k) and so no PPT
adversary A can distinguish between Qi and Q0 with non-negligible probability.

8

Claim (2). For any PPT adversary A, |Pr[A(Qj) = 1]− Pr[A(Q0) = 1]| ≤ negl(n)

Proof. The proof for this is the same as for claim 1 just replacing index i with index j.

Lemma 1. For any PPT adversary A |Pr[A(Qi) = 1]− Pr[A(Qj) = 1]| ≤ negl(n)

Proof. Using claims 1 and 2 we get that

|Pr[A(Qi) = 1]− Pr[A(Qj) = 1]| = |(Pr[A(Qi) = 1]− Pr[A(Q0) = 1])−
(Pr[A(Qj) = 1]− Pr[A(Q0) = 1])|

= |negl1(k)− negl2(k)| = negl(k)

where negl1(), negl2(), negl() are all negligible functions.

This lemma shows that no polynomially bounded adversary can distinguish between the distribu-
tions of queries for index i and for index j as long as the underlying encryption scheme satisfies
CPA-security. The same proof can be extended to work for higher dimensional schemes by just
modifying the argument to deal with multiple places containing encryptions of g.

3.4 Implementations

Historically several implementations of the general scheme presented above have appeared in lit-
erature. We briefly present two of these schemes and explain how to set up the general scheme to
instantiate them.

Bit-Wise cPIR Schemes [10, 12] The original formulation of PIR viewed the database as an
n-bit string. For this reason the earliest computational PIR protocols only dealt with Gp = Z2.
The first such one-database scheme proposed is the PIR protocol presented by Kushilevitz and
Ostrovsky in [10]. This was the first one-database PIR scheme to accomplish sub-linear communi-
cation complexity. The protocol is based on the Goldwasser-Micali public key encryption scheme
of [8]. This is a homomorphic encryption scheme with Gp = Z2 and Gc = {x ∈ Z∗N} s.t J(x) = +1,
where N is the product of two large primes and J(x) is the Jacobi symbol. An encryption of 0 is a
random quadratic residue modulo N and an encryption of 1 is a random non-quadratic residue in
ZN . The homomorphism property comes from the fact that the product of two quadratic residues
is a quadratic residue and the product of a quadratic residue with a non-quadratic residue is a
non-quadratic residue. The element g = 1 6= IDZ2 is chosen as a non-identity element. Notice that
ord(g) = 2. Therefore a natural function to use as φ : Gc → Zl

2 is the function that maps an integer
in Z∗N to its binary representation. This function is clearly publicly computable and invertible.

Setting Gc, Gp, g, and φ as above the recursive scheme from [10] with d− 2 levels of recursion
is just the above scheme on d-dimensions with each level of the recursion viewed as looking for
certain bits out of the answer generated at the previous level.

In [12], Mann generalized this scheme to use any other homomorphic encryption scheme that
uses Z2 as its plaintext (bit-wise encryption). His scheme is just the same instantiation of the
general protocol as [10] except using different encryption and decryption protocols and making the
corresponding changes in Gc and φ

One thing to notice about any such scheme is that since log |Gc| = k, the security parameter,
and for any g ∈ Gp = Z2, ord(g) ≤ 2 we need to set l = k so that |Zl

2| = 2l = 2k = |Gc| and φ can

9

be injective. We can compute the communication and computation complexity for any such scheme
using equations 2, 4 - 10. Doing so for communication complexity we get

CCU = O(kdn1/d) CCDB = O(kd)

This unfortunately causes a problem because to achieve total communication complexity O(nε) we
need n = Ω(kd2

) where ε = 1/d, otherwise the kd term dominates in the total communication
complexity. Since we need k to be sufficiently large to make the underlying encryption scheme
secure this forces the database to be unrealistically large. Another shortcoming of these schemes is
that since Gp = Z2 the database can only contain bits.

Going Beyond the n-bit String [2] A newer cPIR scheme with some new features is the cPIR
scheme from [2]. In this scheme the database is an array of n integers instead of bits. In some
people’s eyes this makes this scheme much more realistic. In this scheme, the encryption used is the
Paillier public key encryption scheme of [14]. In this encryption scheme Gp = ZN and Gc = Z∗N2

for N = pq the product of two large primes. This scheme also chooses g = 1 as the non-identity
element of Gp. Note that unlike the scheme from [10], here ord(g) = N . Now since |Z∗N2 | < N2

and ord(g) = N we only need l ≥ 2 since |Z2
ord(g)| = N2 > |Z∗N2 |, which is minimal for any secure

encryption scheme, as mentioned earlier. The authors suggest using a map φ(x) = (b x
N c, x mod N)

where x ∈ Z∗N2 . This provides the necessary mapping φ and such that it is easily computable
and invertible. In fact we can compute φ by the division algorithm and computing φ−1 is just a
multiplication and an addition. Also, since Gc = Z∗N2 we need k = log |Gc| = 2 log N

Setting Gp, Gc, g, and φ as above into this general scheme we obtain the cPIR scheme from
[2]. Again, we can plug these values into equations 2, 4 - 10 to find the communication and
computation complexity of this scheme. Doing this for communication complexity we get

CCU = O(kdn1/d) CCDB = O(2d−1k)

Note that we do not have a kd term in either of these equations unlike the bit-wise scheme. This
makes DB’s communication complexity much lower. In order to achieve total communication com-
plexity O(nε) in this scheme we need to set n = Ω(2d2

) where ε = 1/d. This still requires the
database to be very large, however it is much better than the bitwise schemes. Another big bonus
of this scheme is that since the discrete log in Gp is easy, it is just equivalent to division since ZN is
an additive group, and ord(g) = N we can allow the database to contain elements of ZN instead of
just bits. We can recover the value of the entry we want by solving the discrete log problem in ZN .
The downsides of this scheme are as follows. Since Gc = ZN2 the group operations are on numbers
of length 2 log N instead of log N as in the other scheme. Also, since the database now contains
elements of ZN instead of bits, the Z-module action performed by DB in each step becomes much
more costly.

4 A Note on Computation

In the general scheme presented above the computation for the user is dominated by O(n1/d)
calls to E . The database’s computation time is dominated by O(n) group operations over the
ciphertext group Gc and Z-module operations. Therefore, there are several potential ways to reduce
the computation performed.

10

One way to reduce the computation cost is to reduce the cost of the group operation over Gc.
This significantly speeds up the computation that must be performed by the database as it also
speeds up the Z-module operations. One way to do this is to use an encryption scheme where Gc

is an additive group. It may be possible to accomplish this by using the lattice based encryption
schemes presented by Regev in [15, 16].

A way to reduce the computation that must be performed by both parties is to reduce the
size of the security parameter, k. This reduces the size of the ciphertext group since k = log |Gc|
and therefore makes all operations over Gc cheaper. Also this would most likely lower the cost
of encryption and decryption as both of those operations run in time polynomial in k. However,
simply reducing the size of k without changing the encryption scheme reduces the security of the
cPIR scheme. Since the security guarantee is a function of k we can not reduce k too much without
making the scheme insecure. Therefore, the way to use this to significantly improve the computation
is to find an encryption scheme that is secure for shorter keys.

5 Other Constructions

The scheme presented in this paper achieves O(nε) communication complexity. However, it can
be further extended to achieve polylog communication complexity as explained in [13] by using a
”length-flexible” cryptosystem such as the one from [4]. A concrete example of such a PIR scheme,
presented in [11], achieves O(log2 n) communication complexity.

Another approach that has been used to construct polylog communication complexity PIR
schemes is by using a new computational hardness assumption called the Φ-Hiding assumption.
This assumption and the first cPIR scheme using it were developed by Cachin, Micali, and Stadler
in [1]. This cPIR construction can not be expressed as a special case of the general framework
presented in this paper and is thus outside the scope of this paper. We refer the reader to the cited
papers for details on these schemes.

6 Conclusion

In this paper we presented and analyzed a very general one-database PIR scheme based on ho-
momorphic public key encryption. The presented scheme allows one to plug in various encryption
schemes to optimize computation or security. We hope that this paper serves as a guide for future
research in the area, helping people find ways to improve the computational cost of computationally
secure private information retrieval.

7 Acknowledgements

I would like to thank William Gasarch for suggesting this problem to me. I also thank William
Gasarch and S. Dov Gordon for insightful comments that aided me in the writing of this paper.

References

1. C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with polylogarith-
mic communication. Lecture Notes in Computer Science, 1592:402–414, 1999. citeseer.ist.psu.edu/

cachin99computationally.html.

11

2. Y. Chang. Single database private information retrieval with logarithmic communication, 2004. citeseer.ist.

psu.edu/chang04single.html.
3. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In FOCS ’95: Proceedings of

the 36th Annual Symposium on Foundations of Computer Science (FOCS’95), page 41, Washington, DC, USA,
1995. IEEE Computer Society. http://citeseer.ist.psu.edu/485350.html.

4. I. Damgard, M. Jurik, and J. Nielsen. A generalization of paillier’s public-key system with applications to
electronic voting, 2003. citeseer.ist.psu.edu/damgard03generalization.html.

5. W. Gasarch. PIR website. http://www.cs.umd.edu/~gasarch/pir/pir.html.
6. W. Gasarch. A survey on private information retrieval, 2004. citeseer.ist.psu.edu/gasarch04survey.html.
7. O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, New

York, NY, USA, 2004.
8. S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299, 1984. http:

//theory.lcs.mit.edu/~cis/pubs/shafi/1984-jcss.pdf.
9. J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman & Hall/CRC Press, 2007.

10. E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: SINGLE database, computationally-private
information retrieval. In IEEE Symposium on Foundations of Computer Science, pages 364–373, 1997.
citeseer.ist.psu.edu/kushilevitz97replication.html.

11. H. Lipmaa. An oblivious transfer protocol with log-squared communication, 2004. citeseer.ist.psu.edu/

lipmaa05oblivious.html.
12. E. Mann. Private access to distributed information, 1998. http://eprint.iacr.org/.
13. R. Ostrovsky and W. E. Skeith. A survey of single database pir: Techniques and applications. Cryptology ePrint

Archive, Report 2007/059, 2007. http://eprint.iacr.org/2007/059.
14. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. Lecture Notes in Computer

Science, 1592:223–??, 1999.
15. O. Regev. New lattice based cryptographic constructions. Journal of the ACM, 51(6):899–942, 2004. Preliminary

version in STOC’03.
16. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC ’05: Proceedings

of the thirty-seventh annual ACM symposium on Theory of computing, pages 84–93, New York, NY, USA, 2005.
ACM Press. http://www.cs.tau.ac.il/~odedr/.

17. R. Sion and B. Carbunar. On the practicality of private information retrieval. In NDSS ’07: Proceedings of
the 14th Annual Network and Distributed System Security Symposium (NDSS’07), 2007. http://www.carbunar.
com/pir.pdf.

12

