
On Scheduling Co-flows?

Saba Ahmadi1, Samir Khuller1, Manish Purohit2, and Sheng Yang1

1 University of Maryland, College Park
{saba,samir,styang}@cs.umd.edu

2 Google, Mountain View
mpurohit@google.com

Abstract. Applications designed for data-parallel computation frame-
works such as MapReduce usually alternate between computation and
communication stages. Co-flow scheduling is a recent popular networking
abstraction introduced to capture such application-level communication
patterns in datacenters. In this framework, a datacenter is modeled as
a single non-blocking switch with m input ports and m output ports. A
co-flow j is a collection of flow demands {djio}i∈m,o∈m that is said to be
complete once all of its requisite flows have been scheduled.
We consider the offline co-flow scheduling problem with and without
release times to minimize the total weighted completion time. Co-flow
scheduling generalizes the well studied concurrent open shop schedul-
ing problem and is thus NP-hard. Recently, Qiu, Stein and Zhong [13]
obtained the first constant approximation algorithms for this problem
based on LP relaxation with a deterministic 67

3
-approximation and a

randomized (9 + 16
√
2

3
) ≈ 16.54-approximation. In this paper, we give a

combinatorial algorithm based on LP relaxation which improves signif-
icantly upon theirs to yield a deterministic 5-approximation algorithm
with release times. For the case without release time, we obtain a deter-
ministic 4-approximation.

Keywords: Co-flow scheduling, Concurrent Open Shop

? This work is supported by NSF grant CCF 1217890.

1 Introduction

Large scale data centers have emerged as the dominant form of computing infras-
tructure over the last decade. The success of data-parallel computing frameworks
such as MapReduce [8], Hadoop [1], and Spark [17] has led to a proliferation of
applications that are designed to alternate between computation and commu-
nication stages. Typically, the intermediate data generated by a computation
stage needs to be transferred across different machines during a communication
stage for further processing. For example, there is a “Shuffle” phase between
every consecutive “Map” and “Reduce” phase in MapReduce. With an increas-
ing reliance on parallelization, these communication stages are responsible for a
large amount of data transfer in a datacenter. Chowdhury and Stoica [4] intro-
duced co-flows as an effective networking abstraction to represent the collective
communication requirements of a job. In this paper, we consider the problem
of scheduling co-flows to minimize weighted completion time and give improved
approximation algorithms for this basic problem.

The communication phase for a typical application in a modern data center
may contain hundreds of individual flow requests, and the phase ends only when
all of these flow requests are satisfied. A co-flow is defined as the collection of
these individual flow requests that all share a common performance goal. The
underlying data center is modeled as a single m ×m non-blocking switch that
consists of m input ports and m output ports. We assume that each port has unit
capacity, i.e. it can handle at most one unit of data per unit time. Modeling the
data center itself as a simple switch allows us to focus solely on the scheduling
task instead of the problem of routing flows through the network. Each co-flow j
is represented as a m×m integer matrix Dj = [djio] where the entry djio indicates
the number of data units that must be transferred from input port i to output
port o for co-flow j. Figure 3 shows a single co-flow over a 2 × 2 switch. For
instance, the co-flow depicted needs to transfer 2 units of data from input a to
output b and 3 units of data from input a to output d. Each co-flow j also has
a weight wj that indicates its relative importance and a release time rj .

A co-flow j is available to be scheduled at its release time rj and is said to
be completed when all the flows in the matrix Dj have been scheduled. More
formally, the completion time Cj of co-flow j is defined as the earliest time such

that for every input i and output o, djio units of its data have been transferred
from port i to port o . We assume that time is slotted and data transfer within
the switch is instantaneous. Since each input port i can transmit at most one
unit of data and each output port o can receive at most one unit of data in
each time slot, a feasible schedule for a single time slot can be described as a
matching. Our goal is to find a feasible scheduling that minimizes the total,
weighted completion time of the co-flows, i.e. minimize

∑
j wjCj .

1.1 Related Work

Chowdhury and Stoica [4] introduced the co-flow abstraction to describe the
prevalent communication patterns in data centers. Since then co-flow scheduling

has been a topic of active research [6,5,13,18] in both the systems and theory
communities. Although co-flow aware network schedulers have been found to
perform very well in practice in both the offline [6] and online [5] settings, no O(1)
approximation algorithms were known even in the offline setting until recently.

For the special case when all co-flows have zero release time, Qiu, Stein and

Zhong [13] obtain a deterministic 64
3 approximation and a randomized (8+ 16

√
2

3)
approximation algorithm for the problem of minimizing the weighted completion
time. For co-flow scheduling with arbitrary release times, Qiu et al. [13] claim

a deterministic 67
3 approximation and a randomized (9 + 16

√
2

3) approximation
algorithm. However in Appendix E, we demonstrate a subtle error in their proof
that deals with non-zero release times. We further show that their techniques in
fact only yield a deterministic 76

3 -approximation algorithm for co-flow scheduling
with release times.

By exploiting a connection with the well-studied concurrent open shop schedul-
ing problem, Luo et al. [11] claim a 2-approximation algorithm for co-flow
scheduling when all the release times are zero. Unfortunately, as we show in
Appendix F their proof too is flawed and the result does not hold.

1.2 Our Contributions

The main algorithmic contribution of this paper is a combinatorial algorithm for
the offline co-flow scheduling problem with improved approximation guarantees.

Theorem 1 There exists a deterministic, combinatorial, polynomial time 5-
approximation algorithm for co-flow scheduling with release times.

Theorem 2 There exists a deterministic, combinatorial, polynomial time 4-
approximation algorithm for co-flow scheduling without release times.

Our results significantly improve upon the approximation algorithms de-
veloped by Qiu et al. [13] whose techniques yield an approximation factors of
76
3 = 25.33 (See Appendix E) and (8 + 16

√
2

3) ≈ 15.54 respectively for the two
cases. In addition, our algorithm is completely combinatorial and does not re-
quire solving a linear program.

We also extend the primal dual algorithm by Mastrolilli et al. [12] to give a
3-approximation algorithm for the concurrent open shop problem when the jobs
have arbitrary release times.

1.3 Connection to Concurrent Open Shop

The co-flow scheduling problem as described above generalizes the well-studied
concurrent open shop problem [12,3,9,10,16]. In the concurrent open shop prob-
lem, we have a set of m machines and each job j with weight wj is composed of

m tasks {tji}mi=1, one on each machine. Let pji denote the processing requirement

of task tji . A job j is said to be completed once all its tasks have completed. Any

machine can perform at most one unit of processing at a time. The objective is to
find a feasible schedule that minimizes the total weighted completion time of jobs.
An LP-relaxation using completion time variables yields a 2-approximation algo-
rithm for concurrent open shop scheduling when all release times are zero [3,9,10]
and a 3-approximation algorithm for arbitrary release times [9,10]. Mastrolilli et
al. [12] show that a simple greedy algorithm also yields a 2-approximation for
concurrent open shop without release times using primal-dual techniques. We
prove our combinatorial algorithm yields a 3-approximation for concurrent open
shop with release times.

The concurrent open shop problem can be viewed as a special case of co-flow
scheduling when the demand matrices Dj for all co-flows j are diagonal [6,13]. At
first glance, it appears that co-flow scheduling is much harder than concurrent
open shop. For instance, while concurrent open shop always admits an optimal
permutation schedule, such a property may not be true for co-flows [6]. In fact,
even without release times, the best known approximation algorithm for schedul-
ing co-flows has an approximation factor of ≈ 15.54 [13], in contrast to the many
2-approximations known for the concurrent open shop problem. Surprisingly, we
show that using a similar LP relaxation as for the concurrent open shop prob-
lem, we can design a primal dual algorithm to obtain a permutation of co-flows
such that sequentially scheduling the co-flows after some post-processing in this
permutation leads to provably good co-flow schedules.

2 Preliminaries

We first introduce some notation to facilitate the following discussion. For every
co-flow j and input port i, we define the load Li,j =

∑m
o=1 d

j
io to be the total

amount of data that co-flow j needs to transmit through port i. Similarly, we
define Lo,j =

∑m
i=1 d

j
io for every co-flow j and output port o. Equivalently, a co-

flow j can be represented by a weighted, bipartite graph Gj = (I,O,Ej) where
the set of input ports (I) and the set of output ports (O) form the two sides of
the bipartition and an edge e = (i, o) with weight wGj (e) = djio represents that

the co-flow j requires djio units of data to be transferred from input port i to
output port o. We will abuse notation slightly and refer to a co-flow j by the
corresponding bipartite graph Gj when there is no confusion.

Representing a co-flow as a bipartite graph simplifies some of the notation
that we have seen previously. For instance, for any co-flow j, the load of j on port
i is simply the weighted degree of vertex i in graph Gj , i.e., if NGj (i) denotes
the set of neighbors of node i in the graph Gj .

Li,j = degGj (i) =
∑

o∈NGj (i)

w(i, o) (1)

For any graphGj , let∆(Gj) = maxs∈I∪O degGj (s) = max{maxi L
j
i ,maxo L

j
o}

denote the maximum degree of any node in the graph, i.e., the load on the most
heavily loaded port of co-flow j.

In our algorithm we consider co-flows obtained as the union of two or more co-
flows. Given two weighted bipartite graphs Gj = (I,O,Ej) and Gk = (I,O,Ek),
we define the cumulative graph Gj ∪ Gk = (I,O,Ej ∪ Ek) to be a weighted
bipartite graph such that wGj∪Gk(e) = wGj (e)+wGk(e). We extend this notation
to the union of multiple graphs in the obvious manner.

2.1 Scheduling a Single Co-flow

Before we present our algorithm for the general co-flow scheduling problem, it is
instructive to consider the problem of feasibly scheduling a single co-flow subject
to the matching constraints. Given a co-flow Gj , the maximum degree of any
vertex in the graph ∆(Gj) = maxv degG(v) is an obvious lower bound on the
amount of time required to feasibly schedule co-flow Gj . In fact, the following
lemma by Qiu et al. [13] shows that this bound is always achievable for any
co-flow. The proof follows by repeated applications of Hall’s theorem on the
existence of perfect matchings in bipartite graphs.

Lemma 1. [[13]] There exists a polynomial time algorithm that schedules a sin-
gle co-flow Gj in ∆(Gj) time steps.

Lemma 1 also implicitly provides a way to decompose a bipartite graph G
into two graphs G1 and G2 such that ∆(G) = ∆(G1) + ∆(G2). Given a time
interval [ts, te], the following corollary uses such a decomposition to obtain a
feasible co-flow schedule for the given time interval by partially scheduling a
co-flow if necessary.

Corollary 1. Given a sequence of co-flows G1, G2, . . . , Gn, a start time ts, and
an end time te such that te ≥ ts+

∑j−1
k=1∆(Gk) and te < ts+

∑j
k=1∆(Gk), there

exists a polynomial time algorithm that finds a feasible co-flow schedule for the
time interval (ts, te] such that -

– co-flows G1, G2, . . . , Gj−1 are completely scheduled.

– co-flow Gj is partially scheduled so that ∆(G̃j) = ts +
∑j
k=1∆(Gk) − te

where G̃j denotes the subset of co-flow j that has not yet been scheduled.
– co-flows Gj+1, . . . , Gn are not scheduled.

Proof. We defer the proof to the Appendix C.1.

2.2 Linear Programming Relaxation

By exploiting the connection with concurrent open-shop scheduling, we adapt
the LP relaxation used for the concurrent open-shop problem [9,10] to formulate
the following linear program as a relaxation of the co-flow scheduling problem.
We introduce a variable Cj for every co-flow Gj to denote its completion time.
Let J = {1, 2, . . . , n} denote the set of all co-flows and M = I ∪O denote the set

of all the ports. For any subset S ⊆ J and each port i, let fi(S) be as defined
below.

fi(S) =

∑
j∈S L

2
i,j + (

∑
j∈S Li,j)

2

2
(2)

Figure 1 shows our LP relaxation. The first set of constraints ensure that
the completion time of any job j is at least its release time rj plus the load of
co-flow j on any port i. The second set of constraints are standard in parallel
scheduling literature (see for example [14]) and are used to effectively lower
bound completion time variables.

LP1 : min
∑
j∈J

wjCj (3)

subject to, ∀j ∈ J, and ∀i ∈M, Cj ≥ rj + Li,j (4)

∀i ∈M, and ∀S ⊆ J,
∑
j∈S

Li,jCj ≥ fi(S) (5)

Fig. 1. LP Relaxation for Co-Flow Scheduling

3 High Level Ideas

We use LP1 and its dual to develop a combinatorial algorithm (Algorithm 1)
in Section 4.1 to obtain a good permutation of the co-flows. This primal dual
algorithm is inspired by Davis et al. [7] and Mastrolilli et al. [12]. As we show in
Lemma 5, once the co-flows are permuted as per this algorithm, we can bound the
completion time of a co-flow j in an optimal schedule in terms of ∆(

⋃
k≤j Gk),

the maximum degree of the union of the first j co-flows in the permutation.
A näıve approach now would be to schedule each co-flow independently and

sequentially using Lemma 1 in this permutation. Since all co-flows k ≤ j would
need to be scheduled before starting to schedule j, the completion time of co-flow
j under such a scheme would be

∑
k≤j ∆(Gk). Unfortunately, for arbitrary co-

flows we can have
∑
k≤j ∆(Gk) >> ∆(

⋃
k≤j Gk). For instance, Figure 4 shows

three co-flows such that ∆(G1)+∆(G2)+∆(G3) = 300 > ∆(G1∪G2∪G3) = 101.
One key insight is that sequentially scheduling co-flows one after another

may waste resources. Since the amount of time required to completely schedule
a co-flow k only depends on the maximum degree of the graph Gk, if we augment
graph Gk by adding edges such that its maximum degree does not increase, then
the augmented co-flow can still be scheduled in the same time interval. This
observation leads to the natural idea of “shifting” edges from a co-flow j later in
the permutation to a co-flow k (k < j) as such a shift does not delay co-flow k
further but may significantly reduce the requirements of co-flow j. For instance

in Figure 4, shifting the edge (c, d) from graph G2 to G1 and the edge (e, f) from
G3 to G1 leaves ∆(G1) unchanged but drastically reduces ∆(G2) and ∆(G3).
In Algorithm 3, we formalize this notion of shifting edges and prove that after
all such edges have been shifted, sequentially scheduling the augmented co-flows
leads to provably good co-flow schedules.

4 Approximation Algorithm for Co-flow Scheduling with
Release Times

In this section we present a simple combinatorial 5-approximation algorithm
for minimizing the weighted sum of completion times of a set of co-flows with
release times. Our algorithm consists of two stages. In the first stage, we design a
primal-dual algorithm to find a good permutation of the co-flows. In the second
stage, we show that scheduling the co-flows sequentially in this ordering after
some preprocessing steps yields a provably good co-flow schedule.

4.1 Finding a permutation of co-flows

Although our algorithm does not require solving a linear program, we use the
linear program in Figure 1 and its dual (Figure 2) in the design and analysis of
the algorithm.

max
∑
j∈J

∑
i∈M

αi,j(rj + Li,j) +
∑
i∈M

∑
S⊆J

βi,Sfi(S)

subject to,
∑
i∈M

αi,j +
∑
i∈M

∑
S/j∈S

Li,jβi,S ≤ wj ∀j ∈ J

αi,j ≥ 0 ∀j ∈ J, i ∈M
βi,S ≥ 0 ∀i ∈M, ∀S ⊆ J

Fig. 2. Dual of LP1

Our algorithm works as follows. We build up a permutation of the co-flows
in the reverse order iteratively. Let κ be a constant that we optimize later. In
any iteration, let j be the unscheduled job with the latest release time, let µ be
the machine with the highest load and let L be the load on machine µ. Now if
rj > κL, we raise the dual variable αµ,j until the corresponding dual constraint
is tight and place co-flow j to be last in the permutation. But if rj ≤ κL, then
we raise the dual variable βµ,J until the dual constraint for some job j′ becomes
tight and place co-flow j′ to be last in the permutation. Algorithm 1 gives the
formal description of the complete algorithm.

Algorithm 1: Permuting Co-Flows

1 J is the set of unscheduled jobs and initially J = {1, 2, · · · , n}
2 Initialize αi,j = 0 for all i ∈M, j ∈ J and βi,S = 0 for all i ∈M,S ⊆ J
3 Li =

∑
j∈J Lij ∀i ∈M // load of machine i

4 for k = n, n− 1, · · · , 1 do
5 µ(k) = argmaxi∈MLi // determine the machine with highest load
6 j = argmaxj∈Jrj // determine job that released last
7 if rj > κ · Lµ(k) then
8 αµ(k),j = (wj −

∑
i∈M

∑
S3j Li,jβi,S)

9 σ(k)← j

10 end
11 else if rσ(k) ≤ κ · Lµ(k) then

12 j′ = argminj∈J
(
wj−

∑
i∈M

∑
S3j Li,jβi,S

Lµ(k),j

)
13 βµ(k),J =

(
wj′−

∑
i∈M

∑
S3j′ Li,j′βi,S

Lµ(k),j′

)
14 σ(k)← j′

15 end
16 J ← J \ σ(k)
17 Li ← Li − Li,σ(k), ∀i ∈M
18 end
19 Output permutation σ(1), σ(2), · · · , σ(n)

4.2 Algorithm For Scheduling a Permutation of Co-flows

Algorithm 1 gives a permutation of co-flows. We assume without loss of generality
that the co-flows are ordered based on this permutation, i.e. σ(j) = j.

As we discussed in Section 3, naively scheduling the co-flows sequentially in
this order can lead to very bad solutions. On the other hand, by appropriately
moving edges from a co-flow j to an earlier co-flow k (k < j), we can get a
provably good co-flow schedule. The crux of our algorithm lies in the subroutine
MoveEdgesBack defined in Algorithm 2.

Algorithm 2: The MoveEdgesBack subroutine.

1 Function MoveEdgesBack(Gk, Gj)
2 for e = (u, v) ∈ Gj do
3 δ = min(∆(Gk)− degGk (u),∆(Gk)− degGk (v), wGj (e));
4 wGj (e) = wGj (e)− δ;
5 wGk (e) = wGk (e) + δ;

6 end
7 return Gk, Gj ;

Given two bipartite graphs Gk and Gj , MoveEdgesBack greedily moves
weighted edges from graph Gj to Gk so long as the maximum degree of graph Gk

does not increase. The key idea behind this subroutine is that since the co-flow
k requires ∆(Gk) time units to be scheduled feasibly, the edges moved back can
now also be scheduled in those ∆(Gk) time units for “free”.

If all co-flows have zero release times, then we can safely move edges of a
co-flow Gj to any Gk such that k < j. However, with the presence of arbitrary
release times, we need to ensure that edges of co-flow Gj are only moved to
co-flows Gk such that these edges are only scheduled after time rj , i.e. after they
are released. Algorithm 3 describes the pseudo-code for co-flow scheduling with
arbitrary release times. Here q denote the number of distinct values taken by
the release times of the n co-flows. Further, let t1 < t2 < . . . < tq be the ordered
set of the release times. For simplicity, we define tq+1 = T as a sufficiently large
time horizon.

At any time step ti, let G′j ⊆ Gj denote the subgraph of co-flow j that has
not been scheduled yet. We consider every ordered pair of co-flows k < j such
that both the co-flows have been released and MoveEdgesBack from graph G′j
to graph G′k. Finally, we begin to schedule the co-flows sequentially in order
using Corollary 1 until all co-flows are scheduled completely or we reach time
ti+1 when a new co-flow gets released and the process repeats.

Algorithm 3: Co-Flow Scheduling

1 for i = 1, 2, . . . , q do
2 // Find a schedule for time interval (ti, ti+1]
3 for j = 1, 2, . . . , n do
4 G′j ← Unscheduled(Gj);
5 end
6 for k = 1, 2, . . . , n− 1 do
7 if rk < ti then
8 for j = k + 1, . . . , n do
9 if rj < ti then

10 G′k, G
′
j ←MoveEdgesBack(G′k, G

′
j);

11 end

12 end

13 end

14 end
15 Schedule(G′1, G

′
2, . . . , G

′
n, ti, ti+1) using Corollary 1;

16 end

4.3 Analysis

We first analyze Algorithm 3 and upper bound the completion time of a co-flow j
in terms of the maximum degree of the cumulative graph obtained by combining
the first j co-flows in the given permutation.

Analyzing Co-Flows with Zero Release Times For ease of presentation
we first analyze the special case when all co-flows are released at time zero. In
this case, we have q = 1 in Algorithm 3 and thus the for loop in lines 1-16 is
only executed once. The following lemma shows that after the MoveEdgesBack
subroutine has been executed on every ordered pair of co-flows, for any co-flow j,
the sum of maximum degrees of graphs G′k (k < j) is at most twice the maximum
degree of the cumulative graph obtained by combining the first j co-flows.

Lemma 2. For all j ∈ {1, 2, . . . n},
∑
k≤j ∆(G′k) ≤ 2∆(

⋃
k≤j Gk).

Proof. Since the graphs G′k keep changing during the course of the algorithm,
for the sake of analysis, let Gk|j where k < j be the state of the graph G′k
immediately after we have transferred all possible edges from G′j to G′k. Let Gj|j
denote the graph G′j after all possible edges have been moved to G′j−1. Since,
we move edges back to a graph G′k only if it does not increase the maximum
degree, we have the following.

∆(G′k) = ∆(Gk|j) for all k ≤ j. (6)

For any j ∈ {1, 2, . . . , n}, consider the set S of graphs G1|j , G2|j , . . . Gj|j .
Let u be a vertex of maximum degree in Gj|j , i.e. degGj|j (u) = ∆(Gj|j) and
consider any edge e = (u, v) incident on u in Gj|j . Since edge (u, v) was not
moved to any of the graphs Gk|j for k < j, we must have that either u or v
had maximum degree in Gk|j . Let Su = {Gk|j | degGk|j (u) = ∆(Gk|j)} and
Sv = {Gk|j | degGk|j (v) = ∆(Gk|j)} denote the subsets of the graph where
vertex u or v has the maximum degree respectively.

Now, let Ĝj =
⋃j
k=1Gk|j be the union of the graphs Gk|j . Since Ĝj contains

all edges from the graphs G1, . . . , Gj and no edges from graphs Gl for l > j, Ĝj
is identical to the cumulative graph of the first j co-flows. In particular, we have
the following.

∆(Ĝj) = ∆(
⋃
k≤j

Gk) (7)

Let us now consider the maximum degree of the graph Ĝj .

∆(Ĝj) ≥ max
{
degĜj (u), degĜj (v)

}
(8)

≥ max

{ ∑
G∈Su

degG(u),
∑
G∈Sv

degG(v)

}
(9)

= max

{ ∑
G∈Su

∆(G),
∑
G∈Sv

∆(G)

}
(10)

From Equation (6), we have the following.∑
k≤j

∆(G′k) =
∑
k≤j

∆(Gk|j) =
∑
G∈S

∆(G) (11)

However, since Su∪Sv = S as either u or v has maximum degree in every graph
in S, we get the following.

∑
k≤j

∆(G′k) ≤ 2 max

{ ∑
G∈Su

∆(G),
∑
G∈Sv

∆(G)

}
(12)

≤ 2∆(Ĝj) = 2∆(
⋃
k≤j

Gk) (13)

where the last equality follows from Equation (7).

Lemma 3. Consider any co-flow j and let Cj(alg) denote the completion time
of co-flow j when scheduled as per Algorithm 3. Then Cj(alg) ≤ 2∆(

⋃
k≤j Gk).

Proof. Let G′1, . . . , G
′
n denote the co-flows after all the edges have been moved

backward. According to Lemma 1 each co-flow G′k could be finished at time
∆(G′k), thus when the co-flows are scheduled sequentially, we get the following.

Cj(alg) =
∑
k≤j

∆(G′k) ≤ 2∆(
⋃
k≤j

Gk)

where the last inequality follows from Lemma 2.

Analyzing Co-Flows with Arbitrary Release Times When the co-flows
have arbitrary release times, we can bound the completion time of each co-flow j
in terms of the maximum degree of the cumulative graph obtained by combining
the first j co-flows and the largest release time of all the jobs before j in the
permutation.

Lemma 4. For any co-flow j, let Cj(alg) denote the completion time of co-flow
j when scheduled as per Algorithm 3. Then Cj(alg) ≤ maxk≤j rk+2∆(

⋃
k≤j Gk)

Proof. We defer the proof to Appendix C.4.

Analyzing the Primal-Dual Algorithm We are now in a position to an-
alyze Algorithm 1. Recall that we assume that the jobs are sorted as per the
permutation obtained by Algorithm 1, i.e., σ(k) = k, ∀k ∈ [n].

Lemma 5. If there is an algorithm that generates a feasible co-flow schedule
such that for any co-flow j, Cj(alg) ≤ amaxk≤j rk + b∆(

⋃
k≤j Gk) for some

constants a and b, then the total cost of the schedule is bounded as follows.

∑
j

wjCj(alg) ≤ (a+
b

κ
)

n∑
j=1

∑
i∈M

αi,jrj + 2(aκ+ b)
∑
i∈M

∑
S⊆J

βi,Sfi(S)

Proof Sketch. Algorithm 1 judiciously sets the dual variables such that the dual
constraint for an co-flow j is tight. Analyzing the cost of schedule obtained in
terms of the dual variables yields the lemma. The formal proof is deferred to
Appendix B.

Theorem 1 There exists a deterministic, combinatorial, polynomial time 5-
approximation algorithm for co-flow scheduling with release times.

Proof Sketch. The theorem follows from lemmas 4 and 5 along with an appro-
priate choice of the constant κ. The formal proof is deferred to Appendix C.2.

Theorem 2 There exists a deterministic, combinatorial, polynomial time 4-
approximation algorithm for co-flow scheduling without release times.

Proof Sketch. The theorem follows from lemmas 3 and 5 along with an appro-
priate choice of the constant κ.

References

1. https://hadoop.apache.org.

2. https://cloud.google.com/dataflow/.
3. Z.-L. Chen and N. G. Hall. Supply chain scheduling: Conflict and cooperation in

assembly systems. Operations Research, 55(6):1072–1089, 2007.
4. M. Chowdhury and I. Stoica. Coflow: A networking abstraction for cluster appli-

cations. In Proceedings of the 11th ACM Workshop on Hot Topics in Networks,
pages 31–36. ACM, 2012.

5. M. Chowdhury and I. Stoica. Efficient coflow scheduling without prior knowledge.
In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, pages 393–406. ACM, 2015.

6. M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow scheduling with varys. In
Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pages
443–454, New York, NY, USA, 2014. ACM.

7. J. M. Davis, R. Gandhi, and V. H. Kothari. Combinatorial algorithms for min-
imizing the weighted sum of completion times on a single machine. Operations
Research Letters, 41(2):121–125, 2013.

8. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

9. N. Garg, A. Kumar, and V. Pandit. Order scheduling models: Hardness and al-
gorithms. In FSTTCS 2007: Foundations of Software Technology and Theoretical
Computer Science, pages 96–107. Springer, 2007.

10. J. Y.-T. Leung, H. Li, and M. Pinedo. Scheduling orders for multiple product
types to minimize total weighted completion time. Discrete Applied Mathematics,
155(8):945–970, 2007.

11. S. Luo, H. Yu, Y. Zhao, S. Wang, S. Yu, and L. Li. Towards practical and near-
optimal coflow scheduling for data center networks. IEEE Transactions on Parallel
and Distributed Systems, PP(99):1–1, 2016.

12. M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson, and N. A. Uhan. Minimiz-
ing the sum of weighted completion times in a concurrent open shop. Operations
Research Letters, 38(5):390–395, 2010.

https://hadoop.apache.org.
https://cloud.google.com/dataflow/

13. Z. Qiu, C. Stein, and Y. Zhong. Minimizing the total weighted completion time
of coflows in datacenter networks. In Proceedings of the 27th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’15, pages 294–303, New York,
NY, USA, 2015. ACM.

14. M. Queyranne. Structure of a simple scheduling polyhedron. Mathematical Pro-
gramming, 58(1-3):263–285, 1993.

15. A. S. Schulz. Scheduling to minimize total weighted completion time: Performance
guarantees of lp-based heuristics and lower bounds. In International Conference on
Integer Programming and Combinatorial Optimization, pages 301–315. Springer,
1996.

16. G. Wang and T. E. Cheng. Customer order scheduling to minimize total weighted
completion time. Omega, 35(5):623–626, 2007.

17. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
cluster computing with working sets. HotCloud, 10:10–10, 2010.

18. Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y. Zhang, D. Li, and
S. Wang. Rapier: Integrating routing and scheduling for coflow-aware data center
networks. In Computer Communications (INFOCOM), 2015 IEEE Conference on,
pages 424–432. IEEE, 2015.

A Figures

Input
Ports

2

3 1

4

2 3

1 4

a

c

b d
a b

c d

Output
Ports

Bipartite Graph
Representation

Matrix
 Representation

Fig. 3. An example co-flow over a 2 × 2 switch. The figure illustrates two equivalent
representations of a co-flow - (i) as a weighted, bipartite graph over the set of ports,
and (ii) as a m×m integer matrix.

B Analysis of Primal Dual Algorithm

We devote this section to prove Lemma 5.
Let Sj be the set of jobs {1, · · · , j}. Let βi,j = βi,Sj . Also let Lµ(j)(Sj) =∑
k≤j Lµ(j),k = ∆(

⋃
k≤j Gk). We will first state a few lemmas for the correctness

of primal-dual.

Lemma 6. The following statements hold.

100 ba

dc

e f

G1

ba

dc

e f

G2

1

99

ba

dc

e f

G3

1

99

Fig. 4. Example that illustrates sequentially scheduling co-flows independently can
lead to bad schedules.

(a) Every nonzero βi,S can be written as βµ(j),j for some job j.
(b) For every set Sj that has a nonzero βµ(j),j variable, if i ≤ j then ri ≤

κ · Lµ(j)(Sj).
(c) For every job j that has a nonzero αµ(j),j, rj > κ · Lµ(j)(Sj).
(d) For every job j that has a nonzero αµ(j),j, if i ≤ j then ri ≤ rj.

The correctness of Lemma 6 can be directly obtained from Algorithm 1.

Lemma 7. For every job j,
∑
i∈M αi,j +

∑
i∈M

∑
k≥j Li,jβi,k = wj.

Proof. ∑
i∈M

αi,j +
∑
i∈M

∑
S/j∈S

Li,jβi,S = wj

∑
i∈M

αi,j +
∑
i∈M

∑
k≥j

Li,jβi,k = wj

Lemma 8. (Proved in [15]). For any i ∈M and S ⊆ J , we have that (
∑
j∈S Li,j)

2 ≤
(2− 2

n+1)fi(S).

Lemma 8 is for the widely used parallel constraints. Now, with everything
ready, we will restate and prove Lemma 5.

Lemma 5. If there is an algorithm that generates a feasible co-flow schedule
such that for any co-flow j, Cj(alg) ≤ amaxk≤j rk + b∆(

⋃
k≤j Gk) for some

constants a and b, then the total cost of the schedule is bounded as follows.

∑
j

wjCj(alg) ≤ (a+
b

κ
)

n∑
j=1

∑
i∈M

αi,jrj + 2(aκ+ b)
∑
i∈M

∑
S⊆J

βi,Sfi(S)

Proof. By applying Lemma 7:

n∑
j=1

wj · Cj =

n∑
j=1

∑
i∈M

αi,j +
∑
i∈M

∑
k≥j

Li,jβi,k

 · Cj
=

n∑
j=1

∑
i∈M

αi,j · Cj +

n∑
j=1

∑
i∈M

∑
k≥j

Li,jβi,k · Cj

First let’s bound
∑n
j=1

∑
i∈M αi,j · Cj :

n∑
j=1

∑
i∈M

αi,j · Cj

≤
n∑
j=1

∑
i∈M

αi,j

{
a ·max

i′≤j
ri′ + b · Lµ(j)(Sj)

}

By applying Lemma 6 parts (c), (d):

≤
n∑
j=1

∑
i∈M

αi,j

(
a · rj + b · rj

κ

)
≤
(
a+

b

k

) n∑
j=1

∑
i∈M

αi,jrj

Now we bound
∑n
j=1

∑
i∈M

∑
k≥j Li,jβi,kCj :

n∑
j=1

∑
i∈M

∑
k≥j

Li,jβi,kCj

≤
n∑
j=1

∑
i∈M

∑
k≥j

Li,jβi,k ·
{
a ·maxi′≤jri′ + b · Lµ(j)(Sj)

}
≤

n∑
j=1

∑
i∈M

∑
k≥j

Li,jβi,k ·
{
a ·maxi′≤kri′ + b · Lµ(j)(Sj)

}
By applying Lemma 6 part (b):

≤
n∑
j=1

∑
i∈M

∑
k≥j

Li,jβi,k ·
{
aκ · Lµ(k)(Sk) + b · Lµ(j)(Sj)

}
≤ (aκ+ b)

n∑
k=1

∑
i∈M

∑
j≤k

Li,jβi,k ·
(
Lµ(k)(Sk

)

≤ (aκ+ b)

n∑
k=1

∑
i∈M

βi,k
∑
j≤k

Li,j ·
(
Lµ(k)(Sk

)
≤ (aκ+ b)

n∑
k=1

∑
i∈M

βi,k (Li(Sk)) ·
(
Lµ(k)(Sk

)
≤ (aκ+ b)

∑
i∈M

n∑
k=1

βi,k
(
Lµ(k)(Sk)

)2

By applying Lemma 8:

≤ (aκ+ b)
∑
i∈M

n∑
k=1

βi,k

(
2− 2

n+ 1

)
fµ(k)(Sk)

≤ 2(aκ+ b)
∑
i∈M

n∑
k=1

βi,kfµ(k)(Sk)

By applying Lemma 6 part (a):

= 2(aκ+ b)

n∑
k=1

βµ(k),kfµ(k)(Sk)

≤ 2(aκ+ b)
∑
i∈M

∑
S⊆J

βi,Sfi(S)

Therefore,

Cost ≤
(
a+

b

κ

) n∑
j=1

∑
i∈M

αi,σ(j)rj + 2(aκ+ b)
∑
i∈M

∑
S⊆J

βi,Sfi(S)

C Missing Proofs

C.1 Proof of Corollary 1

Proof. By scheduling co-flows G1, G2, . . . , Gj−1 sequentially using Lemma 1, we

can completely schedule these co-flows by time ts +
∑j−1
k=1∆(Gk) ≤ te. Similarly

using Lemma 1, we find a schedule S for co-flow Gj that requires ∆(Gj) time

steps. We schedule only the first te− (ts+
∑j−1
k=1∆(Gk)) matchings from S after

all the previous co-flows have been completed. This partial scheduling of co-flow
Gj ends at time te as desired. Let G̃j ⊂ Gj denote the partial co-flow that has
not yet been scheduled. Inspecting schedule S, we observe that S schedules the
partial co-flow G̃j from time steps te− (ts +

∑j−1
k=1∆(Gk)) to ∆(Gj). Hence, we

must have ∆(G̃j) ≤ ts +
∑j
k=1∆(Gk)− te.

C.2 Proof of Theorem 1

Theorem 1 There exists a deterministic, combinatorial, polynomial time 5-
approximation algorithm for co-flow scheduling with release times.

Proof. For scheduling co-flows with arbitrary release times, Lemmas 4 and 5
(with a = 1 and b = 2) together imply that -

∑
j

wjCj(alg) ≤ (1 +
2

κ
)

n∑
j=1

∑
i∈M

αi,jrj + 2(κ+ 2)
∑
i∈M

∑
S⊆J

βi,Sfi(S)

To minimize the approximation ratio, we substitute κ = 1
2 and obtain

∑
j

wjCj(alg) ≤ 5

 n∑
j=1

∑
i∈M

αi,jrj +
∑
i∈M

∑
S⊆J

βi,Sfi(S)

 ≤ 5 ·OPT

where the last inequality follows from weak duality as α and β constitute a
feasible dual solution.

C.3 Proof of Theorem 2

Theorem 2 There exists a deterministic, combinatorial, polynomial time 4-
approximation algorithm for co-flow scheduling without release times.

Proof. We use algorithm 1 to get a permutation {1, 2, · · · , n} for a set of co-flows
J . If we schedule the co-flows using alorithm 3, according to lemma 3, for every
co-flow j:

Cj ≤ ∆(
⋃
k≤j

Gk)

Lemma 5 with a = 0 and b = 2, imply that:∑
j

wjCj(alg) ≤ 2

κ

∑
j∈J

∑
i∈M

αi,jrj + 2 · 2
∑
i∈M

∑
S⊆J

βi,Sfi(S)

Since all the release times are zero,∑
j

wjCj(alg) ≤ 4
∑
i∈M

∑
S⊆J

βi,Sfi(S) ≤ 4 ·OPT

C.4 Proof of Lemma 4

Proof. Consider any co-flow j. Let ti = maxl≤j rl denote the earliest time when
all co-flows in the set {1, 2, . . . , j} have been released. In Algorithm 3, consider
the ith iteration of the for loop. Let Gk,i denote the graph corresponding to

co-flow k in iteration i before edges have been moved back, i.e., Gk,i denotes
the state of co-flow k in iteration i after line 5. Since some edges from co-flow
k may have already been scheduled in earlier iterations, we have Gk,i ⊆ Gk.
Let G′k,i denote the graph corresponding to co-flow k after the MoveEdgesBack
subroutines have been executed, i.e. at line 14. We now claim that

Cj(alg) ≤ ti +
∑
k≤j

∆(G′k,i) (14)

If ti+1 ≥ ti +
∑
k≤j ∆(G′k,i), Corollary 1 guarantees that co-flows 1 ≤ k ≤ j

will be completely scheduled sequentially in this iteration. Completion time of
co-flow j is thus ti +

∑
k≤j ∆(G′k,i) as desired.

On the other hand, if ti+1 < ti +
∑
k≤j ∆(G′k,i), let p denote the first co-flow

such that ti+1 < ti +
∑
k≤p∆(G′k,i). Corollary 1 now finds feasible schedules for

time slots ti to ti+1 such that all co-flows k ≤ p − 1 are completely scheduled
and co-flow p is partially scheduled so that we have the following.

∆(G′p,i+1) = ∆(Gp,i+1) = ti +
∑
k≤p

∆(G′k,i)− ti+1 (15)

∆(G′k,i+1) = ∆(Gk,i+1) = 0,∀k ≤ p− 1 (16)

Also, since all the co-flows 1 ≤ k ≤ j had already been released at time ti, any
new co-flows that get released do not affect the movement of edges from graphs
corresponding to co-flows 1 ≤ k ≤ j. Hence, we have -

∆(G′k,i+1) = ∆(G′k,i),∀p < k ≤ j (17)

From equations (15) - (17), we get

ti+1 +
∑
k≤j

∆(G′k,i+1) = ti +
∑
k≤j

∆(G′k,i) (18)

Proceeding this way inductively, we obtain

ti+x +
∑
k≤j

∆(G′k,i+x) = ti +
∑
k≤j

∆(G′k,i) (19)

where i+x is the last iteration such that ti+x < ti+
∑
k≤j ∆(G′k,i). By Corollary

1 at the end of iteration i+ x, co-flow j is completely scheduled at time ti+x +∑
k≤j ∆(G′k,i+x) = ti +

∑
k≤j ∆(G′k,i) as desired, thus completing the proof of

the claim.
We can now bound Cj(alg) as follows.

Cj(alg) ≤ ti +
∑
k≤j

∆(G′k,i) ≤ ti + 2∆

⋃
k≤j

Gk,i

 ≤ ti + 2∆

⋃
k≤j

Gk

 (20)

where the second inequality follows from Lemma 2.

D A Combinatorial 3-approximation Algorithm For
Concurrent Open Shop with Release Times

Theorem 1. Algorithm 1 gives a 3-approximation for concurrent open shop
scheduling with release times.

Proof. We use algorithm 1 to get a permutation {1, 2, · · · , n} for a set of jobs
J . If we schedule the jobs according to this permutation sequentially, we’ll get:

Cj ≤ max
i′≤j

ri′ +
∑
k≤j

Lµ(j),k

Lemma 5 with a = 1 and b = 1, imply that:

∑
j

wjCj(alg) ≤ (1 +
1

κ
)
n∑
j=1

∑
i∈M

αi,jrj + 2(κ+ 1)
∑
i∈M

∑
S⊆J

βi,Sfi(S)

To minimize the approximation ratio, we substitute κ = 1
2 and obtain

∑
j

wjCj(alg) ≤ 3

 n∑
j=1

∑
i∈M

αi,jrj +
∑
i∈M

∑
S⊆J

βi,Sfi(S)

 ≤ 3 ·OPT

where the last inequality follows from weak duality as α and β constitute a
feasible dual solution.

E Correction of Algorithm by Qiu et al. [13]

We now give a brief overview of the approximation algorithm given by Qiu,
Stein, and Zhong [13].

Interval-Indexed LP Formulation

In the first step we write an interval-indexed linear programming relaxation for
the co-flow scheduling problem similar to that for the concurrent open shop
problem by Wang and Cheng [16].

Let C̄j denote the approximated completion time of co-flow j obtained by
an optimal feasible solution to this LP relaxation. We first order the co-flows in
non-decreasing order of these approximated completion times, i.e. we have the
following.

C̄1 ≤ C̄2 . . . ≤ C̄n (21)

Let Vj denote the maximum load on any port by the first j co-flows taken
together in the above ordering, i.e.

Vj = max

[
max
i

{
j∑

k=1

∑
o

dkio

}
,max

o

{
j∑

k=1

∑
i

dkio

}]
.

Qiu et al. [13] prove that these Vj values provide a good approximation for the
optimal completion times of the co-flows. In particular, they show the following
where C∗j denotes the completion time of co-flow j in an optimal schedule.∑

j

wjVj ≤
16

3

∑
j

wjC
∗
j (22)

Grouping Co-flows

Divide time into geometrically increasing intervals as follows - [1], [2], [3, 4], [5, 8], [9, 16],
Let Il = (2l−2, 2l−1] denote the lth interval.

Now group the co-flows based on the interval where their V values lie and
let Sl denote the set of co-flows assigned to interval Il. So for all co-flows j ∈ Sl,
we have 2l−2 < Vj ≤ 2l−1.

Algorithm 1

– For l = 1, 2, . . .
• Wait until the last co-flow in Sl is released.
• Group all co-flows in Sl and schedule as per Algorithm 1 in [13]. This

would take time at most Vk ≤ 2l−1 where k is the last job in the group.

Analysis Qiu et al. claim the following (Proposition 1 in [13]).

Proposition 1. For any co-flow j, let Cj(alg) denote the completion time of
co-flow j as per Algorithm 1. Then we have

Cj(alg) ≤ max
1≤g≤j

{rg}+ 4Vj .

Since C∗j ≥ max
1≤g≤j

{rg}, Proposition 1 and Equation (22) together imply the

following theorem (Theorem 1 in [13]).

Theorem 2. There exists a deterministic polynomial time 67/3 approximation
algorithm for co-flow scheduling, i.e.∑

j

wjCj(alg) ≤ 67

3

∑
j

wjC
∗
j .

Error

We now show that the Proposition 1 stated above is incorrect. Consequently,
Theorem 1 no longer holds. Recall that Algorithm 1 groups jobs based on their
V values alone and does not consider their release times.

Consider a simple case where m = 1 and we have just one input port and
one output port. Say we have two jobs j1 and j2 such that j1 needs to send 3

units of data and j2 needs to send 1 unit of data. Also say rj1 = 0 and rj2 = 100.
By definition, we have Vj1 = 3 and Vj2 = 4; note that both the jobs belong to
the same interval I3 = (2, 4]. Now since both jobs belong to the same interval,
Algorithm 1 waits for both the jobs to be released and then schedules them
together (after time 100). In this case, the claim in Proposition 1 clearly does
not hold for job j1.

Proposition 2 in [13] makes a similar claim for a grouping algorithm using
randomized intervals. Again, the above instance serves as a counterexample to
the claim.Consequently, Theorem 2 in [13] does not hold.

In the following section, we show that the deterministic grouping algorithm
can be modified to yield a 76

3 -approximation algorithm. Note that this is worse
than the 67

3 factor claimed earlier. It is not immediately clear whether the ran-
domized algorithm from [13] can be corrected via a similar modification.

E.1 Corrected Grouping Algorithm

We first solve the interval-indexed LP formulation to obtain approximated com-
pletion times C̄j . Without loss of generality, we assume that the co-flows are
ordered as per Equation (21).

As shown by Leung, Li, and Pinedo (Theorem 13 in [10]), the analysis of
Wang and Cheng [16] can be extended to the case of general release times to
obtain the following. ∑

j

wjC̄j ≤
19

3

∑
j

wjC
∗
j (23)

This is analogous to Lemma 3 in [13] that shows that
∑
j wjVj ≤

16
3

∑
j wjC

∗
j

where Vj is the maximum load on any port by the first j co-flows taken together
(as per the ordering).

Since C̄j denotes the approximation completion time of co-flow j as computed
by the valid LP relaxation, we also have the following where rj denotes the release
time of co-flow j.

C̄j ≥ rj (24)

C̄j ≥ Vj (25)

Algorithm Divide time into geometrically increasing intervals as follows -
[1], [2], [3, 4], [5, 8], [9, 16], Let Il = (2l−2, 2l−1] denote the lth interval.

Now group the co-flows based on the interval where their C̄ values lie and
let Sl denote the set of co-flows assigned to interval Il. So for all co-flows j ∈ Sl,
we have 2l−2 < C̄j ≤ 2l−1.

Algorithm

– For l = 1, 2, . . .
• Wait until the last co-flow in Sl is released AND all co-flows in Sl−1 have

finished. (whichever is later).

• Group all co-flows in Sl and schedule as per Algorithm 1 in [13]. This
would take time at most Vk ≤ 2l−1 where k is the last job in the group.

Analysis Let C̃l denote the time by which all co-flows in Sl have been scheduled
by the above algorithm.

Claim. C̃l ≤ 2× 2l−1 = 2l for every group Sl.

Proof. We prove by induction. For group S1, we start executing the schedule
at maxj∈S1

rj ≤ maxj∈S1
C̄j ≤ 21−1 = 1 and the schedule takes time at most

Vk ≤ 21−1 = 1 where k is the last co-flow in the group. So the base case is true.
Now assume that the claim is true for some group Sl. As per the algorithm,

the co-flows in group Sl+1 start executing at C̃l or maxj∈Sl+1
rj whichever is

later. By induction, we are guaranteed that C̃l ≤ 2l. Also maxj∈Sl+1
rj ≤

maxj∈Sl+1
C̄j ≤ 2l. Thus the co-flows in group Sl+1 start executing latest at

time 2l. We know that all these co-flows require at most Vk ≤ C̄k ≤ 2l time
units to complete. As a result, all the co-flows in this group are scheduled by
time 2l + 2l = 2l+1.

And thus the claim follows by induction.

Claim. For any co-flow j, let Cj(alg) denote the completion time of co-flow j as
per the algorithm. Then Cj(alg) < 4C̄j .

Proof. Consider any co-flow j, and let l be such that j ∈ Sl. Hence we have
C̄j > 2l−2. By the previous claim, we have

Cj(alg) ≤ C̃l ≤ 2l = 4× 2l−2 < 4C̄j

Corollary 2. There is a deterministic 76
3 -approximation for co-flow scheduling

with arbitrary release times.

Proof. Claim E.1 and Equation (23) together imply a 76
3 -approximation algo-

rithm for co-flow scheduling with release times.

F Counterexample to Claim by Luo et al. [11]

Luo et al. [11] claim a 2-approximation algorithm for the co-flow scheduling
problem by proving that it is equivalent to concurrent open shop scheduling.
One of the key ingredients of their proof is the following claim that is implicit
in Lemma 3 in [11].

Claim (Restated from [11]). Given two co-flows Gk and Gl, we can find a feasible
schedule such that for both the co-flows such that Ck+Cl = min{∆(Gk)+∆(Gk+
Gl), ∆(Gl) +∆(Gk +Gl)}.

Counterexample

We show that Claim F is erroneous via a simple counterexample. Consider two
co-flows on a 3× 3 datacenter as shown in Figure 5. Note that while co-flows G1

and G2 have ∆(G1) = 1 and ∆(G2) = 2, the combined co-flow G1 +G2 also has
∆(G1+G2) = 2. Consequently, the RHS in Claim F equals∆(G1)+∆(G1+G2) =
3.

1

1 1

1

v1u1

v2u2

u3
v3

u1

u3

v1

v2
u2

v3

Co-flow G1
Co-flow G2

Fig. 5. Simple counterexample to Claim F

On the other hand, as seen in Figure 6, if co-flow G1 is scheduled so that C1 =
∆(G1) = 1, then the matching constraints force co-flow G2 to have completion
time C2 = 3. On the other hand, delaying one edge of co-flow G1, leads to a
schedule with C1 = C2 = 2. In both cases, we have C1 + C2 = 4 (instead of 3)
leading to a contradiction to the claim.

1 2Time: 3 1 2

OR

Fig. 6. Simple counterexample to Claim F

	On Scheduling Co-flowsThis work is supported by NSF grant CCF 1217890.

