CMSC 311, Fall 2009
Lab Assignment 3: The Buffer Bomb
Assigned: Mon., Oct. 5, Due: Wed., Oct. 14, 11:59PM

Prof. Arbaugh waa@cs.umd.edu) is the lead person for this assignment.

I ntroduction

Dr. Evil was terribly upset that you stopped his plans forli@lomination by defusing his binary bomb in
the previous lab. Dr. Evil is now on the run. But, Austin PosviErund another potential bomb on Dr. Evil's
computer. Austin has asked you to help him determine theréffit capabilities of this new binary.

Your mission, which you must accept, is to gain control o thew binary and cause it to perform certain
actions as described below. Good luck!

This assignment helps you develop a detailed understamditite calling stack organization on an IA32
processor. It involves applying a seriesbofffer overflow attacken an executable filbeufbomb in the lab
directory.

Note: In this lab, you will gain firsthand experience with one of thethods commonly used to exploit

security weaknesses in operating systems and networkrse®er purpose is to help you learn about the
runtime operation of programs and to understand the nafutesoform of security weakness so that you

can avoid it when you write system code. We do not condonedbefithese or any other form of attack to
gain unauthorized access to any system resources. Thergraneal statutes governing such activities.

L ogistics

You may work in a group of up to two people in solving the pramefor this assignment. The only
“hand-in” will be an automated logging of your successfuaeks. Any clarifications and revisions to the
assignment will be posted on the course Web page.

CSIC Linux Lab Information

We must use the CSIC Linux Lab for this project due to changéisd Linux 2.6 Kernel which make buffer
overflows difficult. Please follow the following steps to uke CSIC Linux Lab:

1. Delete any previous versions of the buflab. Dr. Evil susftdly blocked our analysis of his first
binary. Fortunately for you and the world, Austin Powers agad to escape with Dr. Evil's most
dangerous bhinary yet! Any work on the initial lab will not beaged. So, make sure you're using the
latest version.

2. Log into grades.cs.umd.edu with your Directory ID andspasd to retrieve your CSIC Linux Lab
username and password.

3. sshinto the CSIC Linux Lab terminal servers vaih <username>@linuxlab.cs.umd.edu
Use the user name and password you obtained from above.

4. You now must ssh into one of the internal Linuxlab machirn@& have to do this extra login step
to protect the lab machines from external access since wemed off the buffer overflow protec-
tions provided by Linux 2.6. The following command will getty onto the internal machinessh
lab311.cs.umd.edu . Enter the password you obtained from grades.cs.umd.ealuireYhow on
a machine on which you can perform the lab work.

Hand Out Instructions

This handout is located off of the course web paddigt//www.cs.umd.edu/"waa/311-F09/buflab.pdf
The files for the lab can be foundtatp://www.cs.umd.edu/"waa/311-F09/buflab-handout.t

You can easily obtain a copy of the tar file from CSIC Linux Laithwhewget command as
follows: wget http://www.cs.umd.edu/"waa/311-F09/buflab-hando ut.tar

Then give the commanddr xvf buflab-handout.tar ", This will cause a number of files to be
unpacked in the directory:

MAKECOOKIE: Generates a “cookie” based on your team name.
BUFBOMB: The code you will attack.

SENDSTRING A utility to help convert between string formats.

All of these programs are compiled to run on the CSIC Linux nivaes. They may not run on other Linux
machines, and you do so at your peril. NOTE: The standarck [th@ kernel and specifically those using
Redhat have several mechanisms designed to make buffélomemore difficult. These will be discussed
in class. Itis highly recommended you do the lab on the CSi@iximachines.

In the following instructions, we will assume that you haepied the three programs to a protected local
directory, and that you are executing them in that localatiney.

Team Name and Cookie

You should create a team name for the one or two people in youipgof the following form:

e “ID"where ID is your directory ID, if you are working alone, or

e “ID+ID5” where ID is the directory ID of the first team member ahll; is the directory ID of
the second team member.

You should choose a consistent ordering of the IDs in thergkfarm of team name. Teama¢00+bovik ”
and ‘bovik+ac00 " are considered distinctYou must follow this scheme for generating your team
name. Our grading program will only give credit to those people whose directory IDs can be ex-
tracted from the team names.

A cookieis a string of eight hexadecimal digits that is (with high lpability) unique to your team. You
can generate your cookie with timeakecookie program giving your team name as the argument. For
example:

unix> ./ makecooki e ac00+bovi k
0x78327b66

In four of your five buffer attacks, your objective will be toake your cookie show up in places where it
ordinarily would not.

The BuFBOMB Program

TheBUFBOMB program reads a string from standard input with a funcgietbuf having the following C
code:

1 int getbuf()

2

3 char buf[12];
4 Gets(buf);

5 return 1;
6}

The functionGets is similar to the standard library functiagets —it reads a string from standard input
(terminated by\n ’ or end-of-file) and stores it (along with a null terminatat)the specified destination.
In this code, the destination is an artayf having sufficient space for 12 characters.

NeitherGets norgets has any way to determine whether there is enough space atdtiration to store
the entire string. Instead, they simply copy the entirengirpossibly overrunning the bounds of the storage
allocated at the destination.

If the string typed by the user etbuf is no more than 11 characters long, it is clear tetbuf will
return 1, as shown by the following execution example:

unix> ./ buf bonb
Type string: howdy doody
Dud: getbuf returned 0x1

Typically an error occurs if we type a longer string:

unix> ./ buf bonb
Type string: This string is too |ong
Ouch!: You caused a segmentation fault!

As the error message indicates, overrunning the buffec#ylyi causes the program state to be corrupted,
leading to a memory access error. Your task is to be morercletie the strings you feeduFBOMB so that
it does more interesting things. These are cadbgploitstrings.

BurFBoOMB takes several different command line arguments:

-t TEAM Operate the bomb for the indicated team. You should alwaygge this argument for several
reasons:
e Itis required to log your successful attacks.

e BurFBOMB determines the cookie you will be using based on your tearrenaust as does the
programMAKECOOKIE.

e We have built features intBUFBOMB so that some of the key stack addresses you will need to
use depend on your team’s cookie.

-h : Print list of possible command line arguments

-n ;. Operate in “Nitro” mode, as is used in Level 4 below.

Your exploit strings will typically contain byte values thdo not correspond to the ASCII values for printing
characters. The prograsENDSTRING can help you generate thessw strings. It takes as input laex-
formattedstring. In this format, each byte value is represented byfewodigits. For example, the string
“012345 ” could be entered in hex format a80 31 32 33 34 35 .” (Recall that the ASCII code for
decimal digitz is Ox3 z.) Non-hex digit characters are ignored, including the kéan the example shown.

If you generate a hex-formatted exploit string in the &hploit.txt , you can apply the raw string to
BUFBOMB in several different ways:

1. You can set up a series of pipes to pass the string threagbSTRING
unix> cat exploit.txt | ./sendstring | ./bufbonb -t bovik
2. You can store the raw string in a file and use I/O redireditosupply it toBUFBOMB:

unix> ./sendstring < exploit.txt > exploit-rawtxt
unix> ./ bufbonb -t bovik < exploit-rawtxt

This approach can also be used when runmiungsomBs from within GDB:

unix> gdb buf bonb
(gdb) run -t bovik < exploit-raw. txt

4

One important point: your exploit string must not contairiebyalueOx0A at any intermediate position,
since this is the ASCII code for newline\if'). When Gets encounters this byte, it will assume you
intended to terminate the stringeSDSTRING will warn you if it encounters this byte value.

When you correctly solve one of the levesjFrBomB will automatically send an email notification to our
grading server. The server will test your exploit string taka sure it really works, and it will update the
lab web page indicating that your team (listed by cookie)dwampleted this level.

Unlike the bomb lab, there is no penalty for making mistaketis lab. Feel free to fire away BUFBOMB
with any string you like.

Level 0. Candle (10 pts)

The functiongetbuf is called withinBuUFBOMB by a functiontest having the following C code:

1 void test()

2 {

3 int val,

4 volatile int local = Oxdeadbeef;

5 entry_check(3); / * Make sure entered this function properly */
6 val = getbuf();

7 /* Check for corrupted stack */

8 if (local !'= Oxdeadbeef) {

9 printf("Sabotaged!: the stack has been corrupted\n®);
10 }

11 else if (val == cookie) {

12 printf("Boom!: getbuf returned 0x%x\n", val);

13 validate(3);

14 }

15 else {

16 printf("Dud: getbuf returned 0x%x\n", val);

17 }

18 }

Whengetbuf executes its return statement (line Sgetbuf), the program ordinarily resumes execution
within functiontest (at line 8 of this function). Within the fildufbomb , there is a functiorsmoke
having the following C code:

void smoke()

{
entry_check(0); / * Make sure entered this function properly * |
printf("Smoke!: You called smoke()\n");
validate(0);
exit(0);
}

Your task is to geBUFBOMB to execute the code famoke whengetbuf executes its return statement,
rather than returning teest . You can do this by supplying an exploit string that overesithe stored

5

return pointer in the stack frame fgetbuf with the address of the first instruction $moke. Note that
your exploit string may also corrupt other parts of the stsigite, but this will not cause a problem, since
smoke causes the program to exit directly.

Some Advice:

¢ All the information you need to devise your exploit string this level can be determined by exam-
ining a diassembled version BUFBOMB.

e Be careful about byte ordering.

¢ You might want to us&DB to step the program through the last few instructiongetbuf to make
sure it is doing the right thing.

e The placement obuf within the stack frame fogetbuf depends on which version afcc was
used to compildufbomb . You will need to pad the beginning of your exploit string kvihe proper
number of bytes to overwrite the return pointer. The validbese bytes can be arbitrary.

Level 1. Sparkler (20 pts)

Within the filebufbomb there is also a functiofizz having the following C code:

void fizz(int val)

{
entry_check(1); / * Make sure entered this function properly */
if (val == cookie) {
printf("Fizz!: You called fizz(0x%x)\n", val);
validate(1);
} else
printf("Misfire: You called fizz(0x%x)\n", val);
exit(0);
}

Similar to Level 0, your task is to g&#UFBOMB to execute the code fdizz rather than returning to
test . In this case, however, you must make it appedizp as if you have passed your cookie as its
argument. You can do this by encoding your cookie in the gmppriate place within your exploit string.

Some Advice:

¢ Note that the program won't really cdizz —it will simply execute its code. This has important
implications for where on the stack you want to place youikeao

Level 2: Firecracker (30 pts)

A much more sophisticated form of buffer attack involvespying a string that encodes actual machine
instructions. The exploit string then overwrites the retpointer with the starting address of these instruc-
tions. When the calling function (in this cagetbuf) executes itset instruction, the program will start

6

executing the instructions on the stack rather than retgrniiVith this form of attack, you can get the pro-
gram to do almost anything. The code you place on the stackledctheexploitcode. This style of attack
is tricky, though, because you must get machine code ontstétol and set the return pointer to the start of
this code.

Within the filebufbomb there is a functiolbang having the following C code:
int global_value = O;

void bang(int val)

{
entry_check(2); / * Make sure entered this function properly */
if (global_value == cookie) {
printf("Bang!: You set global_value to 0x%x\n", global_va lue);
validate(2);
} else
printf("Misfire: global_value = 0x%x\n", global_value);
exit(0);
}

Similar to Levels 0 and 1, your task is to geiFBOMB to execute the code fdrang rather than returning
totest . Before this, however, you must set global variagplebal value to your team’s cookie. Your
exploit code should seflobal_value , push the address bfang on the stack, and then executeet
instruction to cause a jump to the code lfang .

Some Advice:

e You can useGDB to get the information you need to construct your exploiingtr Set a break-
point within getbuf and run to this breakpoint. Determine parameters such asadteess of
global_value and the location of the buffer.

e Determining the byte encoding of instruction sequencesanghs tedious and prone to errors. You
can let tools do all of the work by writing an assembly codedataining the instructions and data
you want to put on the stack. Assemble this file witbc and disassemble it witbBiDUMP. You
should be able to get the exact byte sequence that you wél &yphe prompt. (A brief example of
how to do this is included at the end of this writeup.)

e Keep in mind that your exploit string depends on your machyoer compiler, and even your team’s
cookie. Do all of your work on a Fish machine, and make sureigoluide the proper team name on
the command line tBUFBOMB.

e Our solution requires 16 bytes of exploit code. Fortunatblgre is sufficient space on the stack, be-
cause we can overwrite the stored valuéwdbp. This stack corruption will not cause any problems,
sincebang causes the program to exit directly.

e Watch your use of address modes when writing assembly codee tatmovl $0x4, %eax
moves thevalue 0x00000004 into register%eax; whereasmovl 0x4, %eax moves the value
at memory locatior0x00000004 into %eax. Since that memory location is usually undefined, the
second instruction will cause a segfault!

e Do not attempt to use eitherjmp or acall instruction to jump to the code fdvang. These
instructions uses PC-relative addressing, which is vecktrto set up correctly. Instead, push an
address on the stack and usetbe instruction.

Level 3: Dynamite (10 bonus pts)

If you have completed the first two levels, you have earnedd@ftg You have mastered the principles
of the runtime stack operation, and you have gained firstieapdrience with buffer overflow attacks. We
consider this a satisfactory mastery of the material. Yewaglcome to stop right now. The remaining 25
pts are bonus points.

Our preceding attacks have all caused the program to jumpet@ade for some other function, which
then causes the program to exit. As a result, it was acceptahise exploit strings that corrupt the stack,
overwriting the saved value of regist#&rebpand the return pointer.

The most sophisticated form of buffer overflow attack caubkesprogram to execute some exploit code
that patches up the stack and makes the program return teigfireab calling function {est in this case).
The calling function is oblivious to the attack. This stykeattack is tricky, though, since you must: 1) get
machine code onto the stack, 2) set the return pointer totéinedf this code, and 3) undo the corruptions
made to the stack state.

Your job for this level is to supply an exploit string that iéhusegetbuf to return your cookie back to
test , rather than the value 1. You can see in the codddst that this will cause the program to go
“Boom!.” Your exploit code should set your cookie as the return @ahestore any corrupted state, push
the correct return location on the stack, and execug ainstruction to really return ttest

Some Advice:

¢ In order to overwrite the return pointer, you must also ovéerthe saved value ébebp. However, it
is important that this value is correctly restored before g&turn totest . You can do this by either
1) making sure that your exploit string contains the corxadtie of the save@oebpin the correct
position, so that it never gets corrupted, or 2) restore thieect value as part of your exploit code.
You'll see that the code faest has some explicit tests to check for a corrupted stack.

e You can usesDB to get the information you need to construct your exploingtr Set a breakpoint
within getbuf and run to this breakpoint. Determine parameters such asathes] return address
and the saved value ébebp.

e Again, let tools such asccandoBibumpP do all of the work of generating a byte encoding of the
instructions.

e Keep in mind that your exploit string depends on your machyoer compiler, and even your team’s
cookie. Do all of your work on a Fish machine, and make sureigolude the proper team name on
the command line te UFBOMB.

Once you complete this level, pause to reflect on what you hagemplished. You caused a program to
execute machine code of your own design. You have done saufiiciently stealthy way that the program
did not realize that anything was amiss.

Level 4. Nitroglycerin (15 bonus pts)

The next level is for those who want to push themselves begpomdbaseline expectations for the course,
and who want to face a challenge in designing buffer overflibacks that arises in real life. This part of the
assignment only counts 10 points, even though it requirag arfmount of work to do, so don’t do it just for
the points.

From one run to another, especially by different users, Xaetestack positions used by a given procedure
will vary. One reason for this variation is that the valuesalbfenvironment variables are placed near the
base of the stack when a program starts executing. Envinohwagiables are stored as strings, requiring
different amounts of storage depending on their values.sTthe stack space allocated for a given user
depends on the settings of his or her environment variatfi#gack positions also differ when running a

program undeGDB, sinceGDB uses stack space for some of its own state.

In the code that callgetbuf , we have incorporated features that stabilize the stadkatdhe position of
getbuf ’s stack frame will be consistent between runs. This madessible for you to write an exploit
string knowing the exact starting addressboff and the exact saved value @febp. If you tried to use
such an exploit on a normal program, you would find that it e@skme times, but it causes segmentation
faults at other times. Hence the name “dynamite’—an exydodeveloped by Alfred Nobel that contains
stabilizing elements to make it less prone to unexpectetbsxms.

For this level, we have gone the opposite direction, makigstack positions even less stable than they
normally are. Hence the name “nitroglycerin”—an explogivat is notoriously unstable.

When you rurBuFBOMB with the command line flag-t ,” it will run in “Nitro” mode. Rather than calling
the functiongetbuf , the program calls a slightly different functigretbufn

int getbufn()

{
char buf[512];
Gets(buf);
return 1;

}

This function is similar tagetbuf , except that it has a buffer of 512 characters. You will ndwasl addi-
tional space to create a reliable exploit. The code thas geflbufn first allocates a random amount of
storage on the stack (using library functiahoca) that ranges between 0 and 127 bytes. Thus, if you
were to sample the value &bebp during two successive executions ggtbufn , you would find they
differ by as much ag-127.

In addition, when run in Nitro modeBUFBOMB requires you to supply your string 5 times, and it will
executegetbufn 5 times, each with a different stack offset. Your exploitrgirmust make it return your
cookie each of these times.

Your task is identical to the task for the Dynamite level. ®@again, your job for this level is to supply an
exploit string that will causgetbufn to return your cookie back to test, rather than the value L1 ¢4n
see in the code for test that this will cause the program tokg®BOOM! Your exploit code should set
your cookie as the return value, restore any corrupted, gtateh the correct return location on the stack,
and execute get instruction to really return ttestn

9

Some Advice:

e You can use the prograseENDSTRINGto send multiple copies of your exploit string. If you have a
single copy in the fileexploit.txt , then you can use the following command:

unix> cat exploit.txt | ./sendstring -n 5| ./bufbonb -n -t bovik

You must use the same string for all 5 executiongetbufn . Otherwise it will fail the testing code
used by our grading server.

e The trick is to make use of theop instruction. It is encoded with a single byte (ca@90). You
can place a long sequence of these at the beginning of yoloiegpde so that your code will work
correctly if the initial jump lands anywhere within the seqae.

¢ You will need to restore the saved value%gbpin a way that is insensitive to variations in stack
positions.

L ogistical Notes

Hand in occurs automatically whenever you correctly solleval. The program sends email to our grading
server containing your team name (be sure to setthé tommand line flag properly) and your exploit

string to the grading server. You will be informed of thisgyrFsomB. Upon receiving the email, the server
will validate your string and update the lab web page. Yows&hcoheck this page a few minutes after your
submission to make sure your string has been validated oflfrgally solved the level, your strirghould

be valid.]

Note that each level is graded individually. You do not neeedd them in the specified order, but you will
get credit only for the levels for which the server receiveslid message.

Have fun!

Generating Byte Codes

UsingGccas an assembler amJDUMPas a disassembler makes it convenient to generate the tgs co
for instruction sequences. For example, suppose we writke @fample.s containing the following
assembly code:

Example of hand-generated assembly code

pushl $0x89abcdef # Push value onto stack

addl $17,%eax # Add 17 to %eax

.align 4 # Following will be aligned on multiple of 4
dong Oxfedcba98 # A 4-byte constant

Jong 0x00000000 # Padding

10

The code can contain a mixture of instructions and data. Wingtto the right of a#’ character is a
comment. We have added an extra word of all Os to work arouhdrac®ming inoBJDUMPto be described
shortly.

We can now assemble and disassemble this file:

unix> gcc -c exanple.s
unix> obj dunp -d exanple.o > exanple.d

The generated filexample.d contains the following lines

0: 68 ef cd ab 89 push $0x89abcdef

5. 83 cO0 11 add $0x11,%eax

8: 98 cwitl Obj dunp tries to interpret
9: ba dc fe 00 00 mov $0xfedc,%edx these as instructions

Each line shows a single instruction. The number on thenelitates the starting address (starting with 0),
while the hex digits after the ° character indicate the byte codes for the instruction. sTkee can see that
the instructiorpushl $0x89ABCDEF has hex-formatted byte co@® ef cd ab 89

Starting at address 8, the disassembler gets confuseigsltdrinterpret the bytes in the fégxample.o as
instructions, but these bytes actually correspond to ddaée, however, that if we read off the 4 bytes start-
ing at address 8 we ge®8 ba dc fe . This is a byte-reversed version of the data wox&EDCBA98
This byte reversal represents the proper way to supply theskas a string, since a little endian machine
lists the least significant byte first. Note also that it ongngrated two of the four bytes at the end with
value00. Had we not added this paddingsJDUMP gets even more confused and does not emit all of the
bytes we want.

Finally, we can read off the byte sequence for our code (omithe final 0's) as:

68 ef cd ab 89 83 cO 11 98 ba dc fe

You can also use MOSDEF as described in class. Personalty] MDSDEF much easier to use. It does,
however, require you to install Python if you haven't alrgad

AutoGrade Status

An email is sent every time you successfully complete a phdiseyour overflow details. These details are
automatically checked on our server, and the results oessaar failure are automatically recorded. You can
view the status of your work &ttp://www.cs.umd.edu/"waa/311-FO9/www/bufbombstatu s.html
Your group will be listed by your "cookie” value for privacyposes. If for some reason, your code did not
pass our tests. You'll receive a report to help you debug.aktertake up to 10 minutes before your status is
updated.

11

