Linking
Oct. 26, 2009

Topics
m Static linking
m Object files
m Static libraries
= Loading
= Dynamic linking of shared libraries

Linker Puzzles

S, .

A Simplistic Program Translation
Scheme

m.c ASCII source file

1

Translator
1 Binary executable object file
p (memory image on disk)

Problems:

- Efficiency: small change requires complete recompilation

* Modularity: hard to share common functions (e.g. printf)
Solution:

- Static linker (or linker)

A Better Scheme Using a Linker

m.cC

1

a.c

1

Translators

Translators

1

m.o

1

1 Separately compiled
a 1 ° relocatable object files

Linker (Id)

1

p

Executable object file (contains code
and data for all functions defined in m. c
anda.c)

Translating the Example Program

Compiler driver coordinates all steps in the translation
and linking process.

m Typically included with each compilation system (e.g., gcc)

= Invokes preprocessor (cpp), compiler (ccl), assembler (as),
and linker (1d).

m Passes command line arguments to appropriate phases

Example: create executable p fromm.c and a.c:

bass> gcc -02 -v -o p m.c a.c

cpp [args] m.c /tmp/cca07630.1i

ccl /tmp/cca07630.i m.c -02 [args] -o /tmp/cca07630.s
as [args] -o /tmp/ccal076301l.0 /tmp/ccal07630.s
<similar process for a.c>

l1d -o p [system obj files] /tmp/ccal076301.0 /tmp/cca076302.0
bass>

—5—

What Does a Linker Do?

Merges object files

m Merges multiple relocatable (.o) object files into a single executable
object file that can loaded and executed by the loader.

Resolves external references

m As part of the merging process, resolves external references.
® External reference: reference to a symbol defined in another object file.

Relocates symbols

m Relocates symbols from their relative locations in the . o files to
new absolute positions in the executable.

m Updates all references to these symbols to reflect their new

positions.
® References can be in either code or data
» code: a() ; /* reference to symbol a */

» data: int *xp=&x; /* reference to symbol x */

Why Linkers?

Modularity

m Program can be written as a collection of smaller source
files, rather than one monolithic mass.

m Can build libraries of common functions (more on this later)
® e.g., Math library, standard C library

Efficiency

m Time:
® Change one source file, compile, and then relink.
® No need to recompile other source files.

m Space:
® Libraries of common functions can be aggregated into a single
file...
® Yet executable files and running memory images contain only
code for the functions they actually use.

Executable and Linkable Format
(ELF)

Standard binary format for object files

Derives from AT&T System V Unix
m Later adopted by BSD Unix variants and Linux

One unified format for
m Relocatable object files (. o),
m Executable object files
m Shared object files (.so)

Generic name: ELF binaries

Better support for shared libraries than old a. out formats.

ELF Object File Format

Elf header

= Magic number, type (.0, exec, .s0),
machine, byte ordering, etc.

Program header table

m Page size, virtual addresses memory
segments (sections), segment sizes.

. text section
m Code

.data section
m Initialized (static) data

.bss section
= Uninitialized (static) data
m “Block Started by Symbol”
m “Better Save Space”
m Has section header but occupies no space

ELF header

Program header table
(required for executables)

. text section

.data section

.bss section

.symtab

.rel. txt

.rel.data

.debug

Section header table
(required for relocatables)

ELF Object File Format (cont)

. symtab section
= Symbol table
m Procedure and static variable names
m Section names and locations

.rel. text section
m Relocation info for . text section

m Addresses of instructions that will need to
be modified in the executable

m Instructions for modifying.

.rel .data section
m Relocation info for .data section

m Addresses of pointer data that will need to
be modified in the merged executable

.debug section
= Info for symbolic debugging (gcc -g)

—10 -

ELF header

Program header table
(required for executables)

. text section

.data section

.bss section

.symtab

.rel. text

.rel.data

.debug

Section header table
(required for relocatables)

Example C Program

—11 -

Merging Relocatable Object Files

into an Executable Object File

Relocatable Object Files

—12—

system code

system data

main ()

I
<

int e

a()

int *ep
int x =1

int v

.text
.data

.text
.data

.text

.data

.bss

~
7

Executable Object File

0

headers

system code

main ()

a()

more system code

___system data

int e = 7

int *ep = &e
int x = 15
uninitialized data
.symtab
.debug

\

J\.

> . text
> .data
.bss

Relocating Symbols and Resolving
External References

m Symbols are lexical entities that name functions and variables.
m Each symbol has a value (typically a memory address).

m Code consists of symbol definitions and references.

m References can be either /ocal or external.

m.cC a.c
int e=7; extern int e;
Def of Iocal//
symbol e int main() { Ref to
int r = a(); ~ external
exit (0); symbol e
Defs of
Ref to external / symbol | zgturn *eptxty; ' local
symbol exit Ref to external €SP } I | symbols
(defined in symbol a Def of | xand y
libc. so) local Refs of local

~13- symbol a symbols ep, x,y

m. o Relocation Info

m.cC

int e=7;

int main() {
int r = a();
exit (0) ;

source: objdump
—14 —

Disassembly of section . text:

00000000 <main>: 00000000 <main>:

0: 55
1: 89 e5

3: e8 fc ff ff ff

8: 6a 00

a: e8 fc ff ff ff

pushl %$ebp
movl %esp, $ebp
call 4 <main+0x4>

4: R 386 PC32 a

pushl $0x0
call b <main+0xb>

b: R 386 PC32 exit

nop

Disassembly of section

00000000 <e>:
0: 07 00 00 0O

.data:

a .o Relocation Info (. text)

a.cC

extern int e;

int *ep=é&e;
int x=15;
int y;

int a() {
return *ep+x+y;

—15—

Disassembly of section

00000000 <a>:

0:

1:
6:

10:
12:
17:

18:
19:

55
8b
00

al

89
03
89
03
00

5d
c3

15 00 00 0O

00 00 00 OO

eb5
02
ec
05 00 00 0O

.text:

pushl %$ebp
movl 0x0, %edx

3: R 386 32 ep

movl 0x0, %eax

8: R 386 32 x

movl %esp, sebp
addl $edx) , $eax
movl %ebp, sesp
addl 0x0, %eax

14: R 386 32 y

popl %ebp
ret

a .o Relocation Info (.data)

a.c

—16 —

Disassembly of section .data:

00000000 <ep>:
0: 00 00 00 0O

0: R 386 32

00000004 <x>:
4: 0Of 00 00 0O

Executable After Relocation and
External Reference Resolution (.text)

08048530 <main>:

8048530: 55 pushl %$ebp

8048531: 89 e5 movl %esp, %sebp

8048533: e8 08 00 00 00 call 8048540 <a>

8048538: 6a 00 pushl $0x0

804853a: e8 35 ff f£ff ff call 8048474 < init+0x94>
804853f: 90 nop

08048540 <a>:

8048540: 55 pushl %ebp

8048541 8b 15 1c a0 04 movl 0x804a0lc, $edx
8048546: 08

8048547 al 20 a0 04 08 movl 0x804a020, $eax
804854c: 89 e5 movl %esp, sebp
804854e: 03 02 addl (%edx) , seax
8048550 89 ec movl %ebp, $sesp
8048552 03 05 d0 a3 04 addl 0x804a3d0, $eax
8048557 08

8048558 5d popl %ebp

4174 8048559: c3 ret

Executable After Relocation and
External Reference Resolution(.data)

m.c
s GEI Disassembly of section .data:
int main() { 08042018 <e>:
int r = a(); 804a018: 07 00 00 00
exit (0) ;
} 0804a0lc <ep>:
804a0lc: 18 a0 04 08
a.c
804a020: 0Of 00 00 0O

int *ep=é&e;
int x=15;
int y;

int a() {
return *ep+x+y;

}
—18 —

Strong and Weak Symbols

Program symbols are either strong or weak
m strong: procedures and initialized globals
m weak: uninitialized globals

pl.c p2.c

strong int foo=5; int foo weak

strong pl() { p2 () «+—— strong
} }

—-19 —

Linker’s Symbol Rules

Rule 1. A strong symbol can only appear once.

Rule 2. A weak symbol can be overridden by a strong
symbol of the same name.

m references to the weak symbol resolve to the strong symbol.

Rule 3. If there are multiple weak symbols, the linker
can pick an arbitrary one.

—920 -

Linker Puzzles

int x; . .

: Link time error: two strong symbols (p1
p1() {} P10 {} gsy (p1)
int x; int x; References to x will refer to the same
pl() {} p2() {} uninitialized int. Is this what you really want?
int x; double x; Writes to x in p2 might overwrite y!
int y; p2() {} Evil!
pl() {}
int x=7; double x; Writes to x in p2 will overwrite y!
int y=5; | p2() {} Nasty!
pl() {}
int x=7; int x; References to x will refer to the same initialized
pl() {} p2() {} variable.

Nightmare scenario: two identical weak structs, compiled by different compilers

with different alignment rules.
—21 —

Packaging Commonly Used
Functions

How to package functions commonly used by programmers?
= Math, I/0, memory management, string manipulation, etc.

Awkward, given the linker framework so far:

m Option 1: Put all functions in a single source file

® Programmers link big object file into their programs
® Space and time inefficient

m Option 2: Put each function in a separate source file

® Programmers explicitly link appropriate binaries into their programs
® More efficient, but burdensome on the programmer

Solution: static libraries (.a archive files)

m Concatenate related relocatable object files into a single file with an
index (called an archive).

m Enhance linker so that it tries to resolve unresolved external
references by looking for the symbols in one or more archives.

m |f an archive member file resolves reference, link into executable.

—20 _

Static Libraries (archives)

pll. C p21. c
Translator Translator
1 1 static library (archive) of
pl.o p2.0 libc.a relocatable object files
~— 1 — concatenated into one file.
Linker (Id)

1 executable object file (only contains code
P and data for 1ibc functions that are called
frompl.candp2.c)

Further improves modularity and efficiency by packaging
commonly used functions [e.g., C standard library (1ibc),
math library (1ibm)]

Linker selectively only the .o files in the archive that are

o3 actually needed by the program.

Creating Static Libraries

atoi.c printf.c random.c
Translator Translator Translator
atoi.o printf.o random. o

l

Archiver (ar)

l

libc.a C standard library

ar rs libc.a \

Archiver allows incremental updates:
- Recompile function that changes and replace .o file in
archive.

— 24 —

atoi.o printf.o ..

random.o

Commonly Used Libraries

libc.a (the C standard library)

m 8 MB archive of 900 object files.

= /O, memory allocation, signal handling, string handling, data and
time, random numbers, integer math

libm.a (the C math library)

= 1 MB archive of 226 object files.

m floating point math (sin, cos, tan, log, exp, sqrt, ...)

%$ ar -t /usr/lib/libc.a | sort
fork.o

fprintf.o

fpu control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o

%$ ar -t /usr/lib/libm.a | sort

e _acos.o
e _acosf.o
e _acosh.o
e acoshf.o
e acoshl.o
e acosl.o
e asin.o

e asinf.o
e asinl.o

Using Static Libraries

Linker’s algorithm for resolving external references:
m Scan .o files and .a files in the command line order.

= During the scan, keep a list of the current unresolved
references.

m As each new .o or .a file obj is encountered, try to resolve

each unresolved reference in the list against the symbols in
ob,.

= If any entries in the unresolved list at end of scan, then error.
Problem:

= Command line order matters!
= Moral: put libraries at the end of the command line.

bass> gcc -L. libtest.o -lmine
bass> gcc -L. -lmine libtest.o
libtest.o: In function main':

libtest.o(.text+0x4) : undefined reference to "libfun'

— 26—

Loading Executable Binaries

Executable object file for
example program p

ELF header

Program header table
(required for executables)

Process image

.text section

init and shared lib
segments

.data section

.bss section

.symtab

. text segment
(r/0)

rel.text

.rel.data

.debug

.data segment
(initialized r/w)

Section header table
(required for relocatables)

27—

.bss segment
(uninitialized r/w)

Virtual addr

0x080483e0

0x08048494

0x0804a010

0x0804a3b0

Shared Libraries

Static libraries have the following disadvantages:
m Potential for duplicating lots of common code in the executable
files on a filesystem.
® e.g., every C program needs the standard C library

m Potential for duplicating lots of code in the virtual memory space of
many processes.

= Minor bug fixes of system libraries require each application to
explicitly relink

Solution:

m Shared libraries (dynamic link libraries, DLLs) whose members are

dynamically loaded into memory and linked into an application at
run-time.

e Dynamic linking can occur when executable is first loaded and run.

» Common case for Linux, handled automatically by 1d-1inux. so.
e Dynamic linking can also occur after program has begun.

» In Linux, this is done explicitly by user with dlopen () .

» Basis for High-Performance Web Servers.
e Shared library routines can be shared by multiple processes.

—28—

Dynamically Linked Shared Libraries

m 1 C a lC':
Translators Translators
(ccl, as) (cc1,as)
m. \ a l0
Linker (Id)
Partially linked executable p i libc.so Shared library of dynamically
(on disk) 1 / relocatable object files
Loade(ll'G[-)lsi(:3:‘;;‘ Ll libc. so functions called by m. c
i and a. c are loaded, linked, and
(potentially) shared among
Fully linked executable processes.

p’ (in memory) p’
— 29 —

The Complete Picture

—-30 -

m.cC

a.cC

l l
Translator Translator
1 1

m.o

\ alo

libwhatever.a

Static Linker (Id)

v
|

libec.so 1libm.so

Loader/Dynamic Linker
(Id-linux.so)

1

PI

