Computer Organization
CMSC 311

William Arbaugh
August 31, 2009

Topics:
m Staff, text, and policies
m Lecture topics and assignments
m Lab rationale

Textbooks

Randal E. Bryant and David R. O’Hallaron,

= “Computer Systems: A Programmer’s Perspective”, Prentice
Hall 2003.

m csapp.cs.cmu.edu

Brian Kernighan and Dennis Ritchie,

m “The C Programming Language, Second Edition”, Prentice
Hall, 1988

Course Components

Lectures
m Higher level concepts

Labs

m The heart of the course

= 1 or 2 weeks

m Provide in-depth understanding of an aspect of systems
= Programming and measurement

Getting Help

Web

m http://www.cs.umd.edu/~waa/UMD/
CMSC_311_Fall_2009_Syllabus.html

http://elms.umd.edu

Copies of assignments, exams, solutions
Clarifications to assignments

Student and News forums for general discussions

Personal help

= My door open means come on in (no appt necessary) but please try
and make an appointment first (unless it is office hours)

m TAs: please mail first.
m Office hours posted in syllabus

Policies: Assignments

Work groups
m You must work alone on all labs

Handins

m Assignments due by midnight on specified due date.
m Electronic handins only for labs (details TBD)

Makeup exams and assignments
m OK in extenuating circumstances, but must make PRIOR
arrangements with Prof. Arbaugh
Appealing grades
= Within 7 days of due date or exam date.
m Assignments: Talk to the lead person on the assignment
m Exams: Talk to Prof. Arbaugh.

Cheating

What is cheating?

m Sharing code: either by copying, retyping, looking at, or
supplying a copy of a file. This includes pulling some thing
from Google!

What is NOT cheating?

m Helping others use systems or tools.
m Helping others with high-level design issues.
m Helping others debug their code.

Penalty for cheating:
m Referral to academic counsel for academic dishonesty.

Policies: Grading

Exams (35%)
m Two in class exams (10% each)

m Final (15%)
m All exams are open book/open notes.

Labs (60%)
m 6 labs (10% each)

Class Participation (5%)
m “Pop” quizzes in class
m Participation in forum

Grading Characteristics

m Lab scores tend to be high
® Serious handicap if you don’t hand a lab in

m Tests typically have a wider range of scores

Policies: Classroom Behavior

Strive to arrive on time

Cell phone use (to include texting and ringing) will
not be tolerated.

- You will be asked to leave the classroom
- 1 will give a pop quiz to the rest of the class (you’ll get a zero)

Facilities

Assignments may use virtual machine
technology or LinuxLab (Discussion)

Class Web Page - EiIms

® Course web page is utilizing ELMS for online
communication

® You'll find:

m Syllabus

= Interactive forums
® News (I post only)
® Discussion (anyone can post)

m Assignments
m Distribution of grades

—-10 -

C

—11 -

lass Topics

Programs and Data

Reverse Engineering

Performance

The Memory Hierarchy

Linking and Exceptional Flow Control
Virtual Memory

Virtualization

I/0, Networking, and Concurrency

Programs and Data

Topics

m Bits operations, arithmetic, assembly language programs,
representation of C control and data structures

m Includes aspects of of architecture and compilers

Assignments
= Lab 1: Manipulating bits
m Lab 2: Defusing a binary bomb

—12—

Data Representation

What does 0x41 mean?

—13-—

Safe Programming and Reverse
Engineering

Topics
m Safe Coding techniques
m Disassembly
= Program tracing
= Buffer and Heap Overflows

Assignments
m Lab 2: Defusing a binary bomb
m Lab 3: Buffer Overflows

—14 —

Performance

Topics

m High level processor models, code optimization (control and
data), measuring time on a computer

m Includes aspects of architecture, compilers, and OS

Assignments
m Lab 4: Optimizing Code Performance

—15—

The Memory Hierarchy

Topics

= Memory technology, memory hierarchy, caches, disks,
locality

m Includes aspects of architecture and OS.

Assignments
m Lab 4: Optimizing Code Performance

—16—

Linking and Exceptional
Control Flow

Topics
m Object files, static and dynamic linking, libraries, loading

m Hardware exceptions, processes, process control, Unix
signals, non-local jumps

m Includes aspects of compilers, OS, and architecture

Assignments
m Lab 5: Writing your own shell with job control

17—

Virtual memory

Topics

= Virtual memory, address translation, dynamic storage
allocation

m Includes aspects of architecture and OS

Assignments
m Lab 5: Writing your own malloc package

—-18-—

Virtualizaiton

Topics
m Processor specific virtualization instructions
= |0 Chipset additions to support virtualization

—19-—

I/0, Networking, and
Concurrency

Topics
m High level and low-level I/0, network programming, Internet
services, Web servers

® concurrency, concurrent server design, threads, I/0
multiplexing with select.

m Includes aspects of networking, OS, and architecture.

Assignments
m Lab 6: Writing your own web proxy program

—920-—

Lab Rationale

Each lab should have a well-defined goal such as
solving a puzzle or winning a contest.

m Defusing a binary bomb.
= Winning a performance contest.

Doing a lab should result in new skills and concepts
m Data Lab: computer arithmetic, digital logic.

= Bomb/buf Labs: assembly language, using a debugger,
understanding the stack

Perf Lab: profiling, measurement, performance debugging.
Shell Lab: understanding Unix process control and signals
Malloc Lab: understanding pointers and nasty memory bugs.
Proxy Lab: Understanding how to write network programs

—21—

Course Theme

m Abstraction is good, but don’t forget reality!

Courses to date emphasize abstraction
m Abstract data types
m Asymptotic analysis

These abstractions have limits

m Especially in the presence of bugs
= Need to understand underlying implementations

Useful outcomes

= Become more effective programmers
® Able to find and eliminate bugs efficiently
® Able to tune program performance

m Prepare for later “systems” classes in CS & ECE

® Compilers, Operating Systems, Networks, Computer
Architecture, Embedded Systems

-2 _

Great Reality #1

Int’s are not Integers, Float’s are not Reals

Examples

m Is x2=07?
® Float’s: Yes!
® Int’s:
» 40000 * 40000 --> 1600000000
» 50000 * 50000 --> ?7?
mils(X+y)+z = x+(y+2)?
e Unsigned & Signed Int’s: Yes!
® Float’s:
» (1€20 +-1€20) + 3.14 --> 3.14
» 120 + (-1e20 + 3.14) --> ?7?

23—

Computer Arithmetic

Does not generate random values

m Arithmetic operations have important mathematical
properties

Cannot assume “usual” properties
m Due to finiteness of representations

m Integer operations satisfy “ring” properties
e Commutativity, associativity, distributivity

m Floating point operations satisfy “ordering” properties
e Monotonicity, values of signs

Observation
m Need to understand which abstractions apply in which
contexts

= Important issues for compiler writers and serious application
programmers

— 24 —

Great Reality #2

You’ve got to know assembly

Chances are, you’ll never write program in assembly
m Compilers are much better & more patient than you are

Understanding assembly key to machine-level
execution model

m Behavior of programs in presence of bugs
e High-level language model breaks down

= Tuning program performance
® Understanding sources of program inefficiency

= Implementing system software
e Compiler has machine code as target
e Operating systems must manage process state

_ 25—

Assembly Code Example

Time Stamp Counter

m Special 64-bit register in Intel-compatible machines
= Incremented every clock cycle

m Read with rdtsc instruction

Application

m Measure time required by procedure
® In units of clock cycles

double t;

start counter() ;

P();

t = get counter();

printf ("P required %f clock cycles\n”, t);

— 26—

Code to Read Counter

m Write small amount of assembly code using GCC’s asm

facility
m Inserts assembly code into machine code generated by
compiler
static unsigned cyc hi = 0;
static unsigned cyc lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/

void access counter (unsigned *hi, unsigned *1lo)

{

asm("rdtsc, movl %$%edx, %0, movl $%$%eax, 31"
Ne=p" (*hl) , Ne=p" (*10)

"Sedx", "%eax") ;

— 27 —

Code to Read Counter

/* Record the current value of the cycle counter. */
void start counter()
{

access_counter (&cyc hi, &cyc lo);

}

/* Number of cycles since the last call to start counter. */
double get counter()
{
unsigned ncyc _hi, ncyc lo;
unsigned hi, lo, borrow;
/* Get cycle counter */
access_counter (&ncyc hi, &ncyc 1lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc 1lo;
borrow = lo > ncyc lo;
hi = ncyc hi - cyc hi - borrow;
return (double) hi * (1 << 30) * 4 + lo;

— 28—

Great Reality #3

Memory Matters

Memory is not unbounded
= It must be allocated and managed
m Many applications are memory dominated

Memory referencing bugs especially pernicious
m Effects are distant in both time and space

Memory performance is not uniform

m Cache and virtual memory effects can greatly affect program
performance

m Adapting program to characteristics of a memory system
can lead to major speed improvements

—929_—

Memory Referencing Bug Example

main ()

{
long int a[2];
double d = 3.14;
a[2] = 1073741824;
printf("d = %.15g\n", d);
exit (0) ;

Alpha MIPS Linux
-g 5.30498947741318e-315 3.1399998664856 3.14
-0 3.14 3.14 3.14

(Linux version gives correct result, but
implementing as separate function gives

segmentation fault.)
—30 -

Memory Referencing Errors

C and C++ do not provide any memory protection
m Out of bounds array references
m Invalid pointer values
m Abuses of malloc/free

Can lead to nasty bugs

m Whether or not bug has any effect depends on system and
compiler

m Action at a distance
e Corrupted object logically unrelated to one being accessed
e Effect of bug may be first observed long after it is generated

How can | deal with this?
m Program in Java, Lisp, Python, or ML
m Understand what possible interactions may occur
m Use or develop tools to detect referencing errors

—-31-—

Memory Performance Example

Implementations of Matrix Multiplication

m Multiple ways to nest loops

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k][j];
c[i]l[j] = sum;

}

—_32_

/* jik */
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k][j];
c[i] [J] = sum

}

Matmult Performance (Alpha 21164)

Too big for L1 Cache Too big for L2 Cache

—o— ijk
ikj
—A— i
jk
—%— kij
—o— kji

PEREEFPPREELFLERS L EELE S

matrix size (n)

— 33 -

Great Reality #4

There’s more to performance than asymptotic
complexity

Constant factors matter too!

m Easily see 10:1 performance range depending on how code
written

m Must optimize at multiple levels: algorithm, data
representations, procedures, and loops
Must understand system to optimize performance
= How programs compiled and executed

= How to measure program performance and identify
bottlenecks

= How to improve performance without destroying code
modularity and generality

34—

Great Reality #5

Computers do more than execute programs

They need to get data in and out
m /O system critical to program reliability and performance

They communicate with each other over networks

m Many system-level issues arise in presence of network
® Concurrent operations by autonomous processes
® Coping with unreliable media
® Cross platform compatibility
® Complex performance issues

— 35—

Course Perspective

Most Systems Courses are Builder-Centric

m Computer Architecture
® Design pipelined processor in Verilog

m Operating Systems
e Implement large portions of operating system

m Compilers
® Write compiler for simple language

= Networking
® Implement and simulate network protocols

m Security

— 36—

Course Perspective (Cont.)

This Course is Programmer-Centric

m Purpose is to show how by knowing more about the
underlying system, one can be more effective as a
programmer

= Enable you to

® Write programs that are more reliable and efficient
® Incorporate features that require hooks into OS
» E.g., concurrency, signal handlers

= Not just a course for dedicated hackers

m Cover material in this course that you won’t see elsewhere,
but is needed to be successful and save time in future
system classes

—_37—

