Multiple-Implementation Testing for XACML
Implementations

Nuo Li*2

JeeHyun Hwang*

Tao Xie!

1 Department of Computer Science, North Carolina State University, NC 27606, USA
2 School of Computer Science and Engineering, Beihang University, Beijing 100083, China

{nli3, jhwang4}@ncsu.edu

ABSTRACT

Many Web applications enhance their security via access-control
systems. XACML is a standardized policy language, which has
been widely used in access-control systems. In an XACML-based
access-control system, policies, requests, and responses are writ-
ten in XACML. An XACML implementation implements XACML
functionalities to validate XACML requests against XACML poli-
cies. To ensure the quality of an XACML-based access-control
system, we need an effective means to test whether the XACML
implementation correctly implements XACML functionalities. The
test inputs of an XACML implementation are XACML policies and
requests. The test outputs are XACML responses. This paper pro-
poses an approach to detect defects in XACML implementations
via observing the behaviors of different XACML implementations
for the same test inputs. As XACML has been widely used, we
can collect different XACML implementations, and test them with
the same XACML polices and requests to observe whether the dif-
ferent implementations produce different responses. Based on the
analysis of different responses, we can detect defects in different
XACML implementations. We show the feasibility of the proposed
approach with a preliminary study on three XACML implementa-
tions.

Categories and Subject Descriptors

D2.5 [Software Engineering]: Testing and Debugging—Testing
tools; D4.6 [Operating Systems]: Security and Protection—Ac-
cess controls

General Terms
Testing, Security

Keywords

XACML, access control policy, policy decision point, multiple-
implementation testing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

TAV-WEB — Workshop on Testing, Analysis and Verification of Web Soft-
ware, July 21, 2008

Copyright 2008 ACM 978-1-60558-053-1/08/07 ...$5.00.

27

xie@csc.ncsu.edu

1. INTRODUCTION

Access control provides an effective means to enhance the secu-
rity of Web applications. An access-control system ensures that
only authorized principals can access certain resources (such as
data, programs, or services) of a Web application. As a result of
the complexity introduced by hard-coding policies into programs,
an increasing trend is to define policies in a standardized specifica-
tion language such as XACML (eXtensible Access Control Markup
Language) [15]. XACML enables to describe access control poli-
cies, requests, and responses. An XACML implementation is an ac-
cess control policy evaluation engine, which can receive XACML
requests and retrieve XACML policies applicable to the requests.
Existing approaches focus on testing access control policies writ-
ten in XACML [12, 10, 11], but no approach focuses on testing an
XACML implementation.

To test XACML implementations, we need XACML policies and
requests as test inputs. The test outputs are XACML responses.
However, test inputs of XACML implementations are XML files,
which are complex to be automatically generated by traditional
software testing tools. Moreover, without a test oracle, we can-
not automatically determine test results to be passed or failed, and
it is tedious for testers to manually determine test results. Fortu-
nately, XACML is a kind of markup language, i.e., there is an
XML schema to define the format of XACML policies, requests,
and responses, and the XACML specification defines various stan-
dard functionalities, which should be implemented by all XACML
implementations. In other words, the inputs and outputs of all
XACML implementations take the same formats, and for a given
test input, different XACML implementations should produce the
same outputs. Therefore, we can apply multiple-implementation
testing [9, 14, 17] to test XACML implementations. We test dif-
ferent XACML implementations with the same XACML policies
and requests, and observe whether the XACML implementations
produce the same responses. For a pair of policy and request, if
an XACML implementation produces a response different from
the majority of other responses, we determine that this XACML
implementation does not evaluate this request correctly. To get
the test inputs for testing XACML implementations, we can use
XML-generation tools, such as TAXI [8]. XML-generation tools
accept the XACML schema as input and automatically generate
XACML policies and requests. However, the XACML schema de-
fines only the format of XACML policies, requests, and responses.
The XACML policies and requests generated by XML-generation
tools have a low chance to expose whether an XACML implemen-
tation implements certain XACML functionalities correctly, because
the XACML schema does not define XACML functionalities.

In this paper, we propose an approach to generate test inputs
and determine test results for XACML-implementation testing. We

automatically synthesize XACML policies based on a set of pre-
defined policy templates. Each policy template focuses on a par-
ticular XACML functionality. We next automatically generate re-
quests for each policy. To automatically determine test results, we
apply multiple-implementation testing to test XACML implemen-
tations. As XACML has been widely used [3], we can collect
different XACML implementations, and test them with the same
XACML polices and requests to observe whether the different im-
plementations produce different responses. Based on the analysis
of different responses, we can detect defects in different XACML
implementations.

We conduct a feasibility study using three different XACML im-
plementations (Sun XACML 1.2 [5], XACML.NET 0.7 [4], and
Parthenon XACML 1.1.1 [2]) with 374 pairs of XACML policies
and requests. Each pair of policy and request contains a particu-
lar XACML standard functionality. Among these three XACML
implementations, XACML.NET fails in supporting 34 of the func-
tionalities (since XACML.NET implements a previous version of
the used XACML standard functionalities), and Sun XACML 1.2
fails in supporting 11 of the functionalities.

The rest of this paper is structured as follows. Section 2 ex-
plains the background. Section 3 illustrates our approach through
an example. Section 4 explains our approach in detail. Section 5
presents a feasibility study. Section 6 gives further discussion. Sec-
tion 7 discusses related work, and Section 8 concludes the paper.

2. BACKGROUND

This section introduces the background information on XACML
(the language that describes our test inputs and outputs), XACML
implementations (the systems under test), and multiple-implement-
ation testing (the approach that we use to determine test results).

2.1 XACML

XACML [15] is an XML-based language used to describe poli-
cies, requests, and responses for access control policies. XACML
provides a flexible and mechanism-independent representation of
access rules that vary in granularities, allowing the combination
of different authoritative domains’ policies into one policy set for
making access control decisions in a widely distributed system en-
vironment. XACML is approved by OASIS (Organization for the
Advancement of Structured Information Standards) [6], and used
in a number of commercial products, such as the products of BEA
Systems, IBM, and Sun Microsystems [3].

The five basic elements of XACML policies are PolicySet, Pol-
icy, Rule, Target, and Condition. A policyset is simply a con-
tainer that holds other policies or policysets. A policy is expressed
through a set of rules. With multiple policysets, policies, and rules,
XACML must have a way to reconcile conflicting rules. A col-
lection of combining algorithms serves the function of reconciling
conflicting rules. Each algorithm defines a different way to com-
bine multiple decisions into a single decision. Both policy combin-
ing algorithms and rule combining algorithms are provided. Seven
standard combining algorithms are provided but user-defined com-
bining algorithms are also allowed [5].

To aid in matching requests with appropriate policies or rules,
XACML provides a target, which is basically a set of simplified
conditions for the subject, resource, and action that must be met
for a policy set, policy, or rule to apply to a given request. Once
a policy or policyset is found to apply to a given request, its rules
are evaluated to determine the response. XACML also provides at-
tributes, attribute values, and functions. Attributes are named val-
ues of known types that describe the subject, resource, and action

28

Access control systems

I

Principal

Figure 1: Overview of access-control system

of a given access request. A request is formed with attribute values
that are compared to attribute values in a policy to make the access
decisions.

2.2 XACML Implementation

Figure 1 presents an overview of a typical access-control sys-
tem. A principal sends an access request to a Policy Enforcement
Point (PEP) in an access-control system. The access request from
the principal indicates what resources the principal wants to ac-
cess. The PEP forms a formalized request to describe the princi-
pal’s attributes to other components in the access-control system.
The PEP sends this formalized request to a Policy Decision Point
(PDP). Based on the attributes of the request, PDP selects a policy
from a set of policies, which are pre-stored in the access-control
system. PDP evaluates the request against the selected policy to
generate a response. The response determines whether the princi-
pal is authorized. Finally, PDP returns the response to PEP, and
PEP allows or denies the access of the principal based on the re-
sponse. An XACML implementation consists of mainly a PEP and
a PDP. The requests, policies, and responses, which are evaluated
in an XACML implementation, should be written in XACML.

2.3 Multiple-Implementation Testing

Chen and Avizienis [9] introduced N-version programming. Based
on the practice of N-version programming, project managers may
ask more than one team to develop the same program independently
to improve the reliability of software operation. Using N-version
programming, testers test different versions of the same program,
which are developed by different teams, with the same test inputs
and vote each program based on whether the outputs are the same
as the majority outputs of these programs. In this way, testers can
detect defects in different versions. McKeeman [14] proposed dif-
ferential testing for testing several implementations of the same
functionality. Specifically, his differential testing focuses on testing
different implementations of C compilers. Tsai et al. [17] applied
a group testing technique on Web service testing. Their approach
tests different Web services, which have the same specification, the
same business logic, and the same input and internal states. They
test such Web services with the same test inputs and rank the Web
services under test based on whether they produce the same or close
outputs as the majority Web services under test.

All of the preceding approaches test multiple implementations
of the same program with the same test inputs, and then observe
whether some implementations produce outputs that are different
from the other implementations. In our approach, we use multiple-
implementation testing to refer to such an approach. Without re-
quiring test oracles, multiple-implementation testing provides us a
means to alleviate the burden of manually determining test results.

1<Policy PolicyId="test" RuleCombiningAlgId="deny-overrides">

2 <Target>

3 <Subjects> <AnySubject/> </Subjects>
<Resources><AnyResource/> </Resources>
<Actions> <AnyAction/> </Actions>

</Target>

<Rule RuleId="1" Effect="Permit">

<Target>

9 <Condition FunctionId="double-is-in">

10 <AttributeValue>5.55</AttributevValue>

11 </Condition>

12 </Target>

13 </Rule>

l4</policy>

W 3O Ul

Figure 2: An example XACML policy

1<Request>

<Subject>

<AttributeValue>Julius Hibbert</AttributeValue>
<AttributeValue>5.5</AttributeValue>
<AttributeValue>5.55</AttributevValue>

</Subject>

<Resource>
<AttributeValue>BartSimpson</AttributeValue>
9 </Resource>

10 <Action>

11 <AttributeValue>read</AttributeValue>

12 </Action>

13</Request>

W IO U W N

Figure 3: An example XACML request

3. EXAMPLE

This section describes our approach through an illustrative ex-
ample. Consider that we develop an XACML PDP that implements
double-is-in function and we want to test whether the PDP cor-
rectly implements this function.

Figures 2 illustrates an example XACML policy involving the
double-is-in function. This example is adapted from the XACML
conformance test suite [1] that is used to test whether an XACML
PDP is correctly implemented with regards to an XACML spec-
ification. In Figure 2, the policy uses the deny-overrides al-
gorithm, which determines to return Deny if any rule evaluation
results in Deny or no rule is applicable. As the policy does not
specify any restriction on its target elements by allowing any sub-
ject, resource, and action (Lines 3-5 in Figure 2), the policy is ap-
plicable to any request. There is only one rule in the policy. Lines
7-13 in Figure 2 define the (permit) rule, whose meaning is that
any subject can do any action on any resource under the condition
that a request includes an attribute (double) value 5.55 (shown as
Attributevalue). The XACML standard double-is-in func-
tion is used to specify the condition.

Figure 3 shows a request with one subject (Julius Hibbert
with attribute values 5.5 and 5.55), one resource (BartSimpson),
and one action (read).

To test whether our XACML PDP implements the XACML double
-is-in function correctly, we use the preceding policy-request
pair as test inputs. As one of the Attributevalue of the request
is 5.55, which is the same as the AttributevValue of the rule in
the policy, the expected response is Permit. Figure 4 presents the
corresponding XACML response.

1<Response>

2 <Result>

3 <Decision>Permit</Decision>
4 </Result>

5</Response>

Figure 4: An example XACML response

29

Policy
Synthesizer
) {policy, request} Test responses | Response
policies
Executor Analyzer
Request
Generator

XACML
Implementations
under Test

-

Figure 5: Overview of multiple-implementation testing for
XACML implementations

However, usually when we test an XACML PDP with automati-
cally generated test inputs, we have no test oracle and testers need
to manually verify the XACML responses. As XACML has hun-
dreds of functionalities and we need several test inputs for testing
each functionality to cover different combinations of algorithms,
targets, valid or invalid requests, etc., the manual verification of
test results is tedious and cumbersome.

To automatically determine the test results, we collect different
XACML implementations and invoke their PDP APIs and our PDP
API with the preceding policy-request pair. We next automatically
extract the value of the decision in each response, and compare
these decision values. We use the majority decision values as the
expected decision. If the decision value of our XACML PDP is
different from the majority decision, we determine that our PDP
does not implement the double-is-in function correctly.

4. APPROACH

Figure 5 shows a high-level overview of the components in our
approach. Our approach consists of four components. First, the
policy synthesizer synthesizes policies based on predefined policy
templates. Each policy template focuses on a particular XACML
functionality, such as the XACML double-is-in function ex-
plained in Section 3. Second, the request generator generates re-
quests for each policy synthesized by the policy synthesizer. Third,
the test executor invokes different XACML implementations with
the same policy-request pairs. Fourth, the response analyzer detects
the XACML implementations that generate different responses from
the majority responses and identifies that these implementations do
not implement certain XACML functionalities correctly.

4.1 Policy Synthesizer

To test an XACML implementation, we need XACML policies
and requests that include different XACML functionalities to check
whether the XACML implementation can generate correct responses.
However, it is difficult to get a large number of real-life XACML
policies as access control policies are often deemed confidential.
Furthermore, if we generate XACML policies based on the XACML
schema randomly, the effectiveness of testing can be low, because
randomly generated XACML policies have a low possibility to cover
different XACML functionalities.

To improve the effectiveness of testing and facilitate the test-
result determination, we predefine XACML-policy templates, each
of which focuses on one XACML functionality, and develop a pol-
icy synthesizer to automatically synthesize XACML policies based
on the predefined XACML-policy templates. The XACML spec-
ification [15] provides the category of different XACML standard
functionalities and we define an XACML-policy template as a cus-
tomized and simplified XACML schema. For example, consider

the double-is-in function shown in Figure 2. We define an
XACML-policy template including targets and rules, and explic-
itly define that the FunctionId of a condition for the target of
a rule is double-is-in. For the other attributes, we predefine
their candidate values. For example, a RuleCombiningAlgId has
four candidate values: deny-overrides, permit-overrides,
first-applicable,and only-one-applicable. When the pol-
icy synthesizer synthesizes policies, it synthesizes four policies,
each of which selects a different candidate value for the RuleComb-
iningAlgId. In addition, the policy synthesizer composes differ-
ent XACML-policy templates to construct policies that cover com-
binations of different XACML functionalities.

4.2 Request Generator

The request generator [13] randomly generates requests for a
given policy. The request generator analyzes the policy under test
and generates requests on demand by randomly selecting requests
from the set of all combinations of attribute id-value pairs found
in the policy. A particular request is represented as a vector of
bits. The length of this vector is equal to the number of different
attribute values found in the policyset targets, policy targets, rule
targets, and rule conditions of the policy under test. Each attribute
value appears in the request if its corresponding bit in the vector is
1; otherwise, the value is not present. Each request is generated by
setting each bit in the vector to 0 or 1 with a probability of 0.5. The
number of randomly generated requests can be configured by the
user and the configured number can be considerably smaller than
the total number of combinations.

To help achieve adequate coverage with a small set of random
requests, we modify the random test generation algorithm to ensure
that each bit was set to 0 and 1 at least once. In particular, we
explicitly set the i" bit to 1 for the first n generated requests where
i = 1,2,...n. Similarly, for the next n requests, we explicitly set
the (i — n)"" bit to 0. This improved algorithm guarantees that
each attribute value is present and absent at least once as long as
the number of randomly generated requests is greater than 2n.

For this component, we reuse the tool developed in our previous
work [13] for generating XACML requests based on policies.

4.3 Test Executor

We collect different XACML implementations and the test ex-
ecutor invokes all implementations with each policy and request
pair. XACML implementations provide APIs for developers to
build and customize PDPs, PEPs, or other related components in
an access-control system. The test executor accepts the policies
and requests generated by the policy synthesizer and the request
generator, and invokes a particular API of the different XACML
implementations with each policy-request pair. The test executor
next collects the generated XACML responses. Moreover, the test
executor records what XACML response each system under test
produces for a certain policy-request pair.

4.4 Response Analyzer

The response analyzer analyzes the responses collected by the
test executor and computes the most common response for each
policy-request pair. Each XACML response contains a Decision
node (shown in Figure 4), whose value implies the result of evalu-
ating a request against a policy. There are four possible values for a
decision node: Permit, Deny, Indeterminate, and NotApplic—
able. The permit decision node describes that a requested access
is permitted. The Deny decision node describes that a requested ac-
cess is denied. The Indeterminate decision node describes that
a PDP is unable to evaluate the requested access. Reasons for such

30

inability include missing attributes, network errors while retrieving
policies, division by zero during policy evaluation, syntax errors
in the decision request or in the policy, etc. The NotApplicable
decision node describes that a PDP does not have any policy that
applies to a request.

The response analyzer extracts the decision values in the XACML
responses generated by different XACML implementations for the
same policy-request pairs and compares the decision values. The
response analyzer treats the most common value as the expected
value. If an XACML implementation produces a response with the
same decision value as the expected value, the test result for that
XACML implementation is “passed”. If an XACML implementa-
tion produces a response with a different decision value with the
expected value, the test result for that XACML implementation is
“failed”. (In the case that the response analyzer cannot determine
the most common value, for example, when three XACML im-
plementations produce three different responses, the response an-
alyzer reports “uncertain” as the test results for each XACML im-
plementation.) In addition, as the test executor records the mapping
among XACML implementations, XACML responses, and policy-
request pairs, when the response analyzer detects a failed test result,
the response analyzer can detect which policy-request pair induces
an XACML implementation to produce an incorrect XACML re-
sponse. As each policy focuses on a particular XACML function-
ality, the response analyzer reports which XACML functionality is
not correctly implemented by the XACML implementation.

S. FEASIBILITY STUDY

We conduct a feasibility study on three XACML implementa-
tions: Sun XACML 1.2 [5], XACML.NET 0.7 [4], and Parthenon
XACML 1.1.1 [2]. This study shows the preliminary results of
our approach. The objective of this feasibility study is to show
that, without expected responses, we can use policy-request pairs
to detect which XACML implementations fail in supporting which
XACML functionalities. As the policy synthesizer is still under de-
velopment, this feasibility study uses the policy-request pairs pro-
vided in an XACML conformance test suite [1]. The test cases in
the conformance test suite have been classified into different cate-
gories based on which XACML functionality is included by each
test case. Although the conformance test suite contains policy-
request pairs and expected responses, in the feasibility study, we
use only the policy-request pairs but discard the expected responses.
Our future work plans to conduct a full evaluation of our approach,
including the policy synthesizer, request generator, test executor,
and response analyzer.

5.1 Instrumentation

In the XACML conformance test suite, the test cases, i.e., XACML
policies, XACML requests, and XACML responses, are divided
into those that exercise mandatory-to-implement functionalities and
those that exercise optional functionalities. Furthermore, the test
cases for mandatory-to-implement functionalities are classified into
five types, i.e., attribute references, target matching, function eval-
uation, combining algorithms, and schema components, based on
the XACML functionalities included in the policies.

In our test executor, we invoke the PDP APIs of these three
XACML implementations with each policy-request pair. Sun XAC-
ML 1.2 provides sample code, a class named SimplePDP, to demon-
strate how to construct an actual PDP object and evaluate requests
against given policies. XACML.NET 0.7 and Parthenon XACML
1.1.1 provide command-line drivers to invoke their PDPs. There-
fore, our test driver invokes the SimplePDP of Sun XACML 1.2
and the command-line drivers of XACML.NET and Parthenon XA-

CML with each policy-request pair as their parameters.

We set a threshold of 0.5 for the response analyzer, i.e., the re-
sponse analyzer sets a decision value (D) as the expected value, if
two of the XACML implementations produce the same decision
value D. Otherwise, the response analyzer determines the test result
as uncertain.

5.2 Results

The XACML conformance test suite provides 374 policy-request
pairs. As some of the policy-request pairs include invalid syntax
or some functionalities that are not implemented by the XACML
implementations under test, the XACML implementations do not
produce responses for some policy-request pairs. In such cases,
some of the XACML implementations throw out exceptions, and
some of the XACML implementations stop running without any
output. If an XACML implementation does not produce a response
for a policy-request pair, the response analyzer records the deci-
sion value as N/A. For the 374 policy-request pairs, Sun XACML
1.2 produces 1 N/a responses, XACML.NET produces 35 N/A re-
sponses, and Parthenon XACML produces 2 N/A responses. For
each PDP, the decision value in its response has five candidate val-
ues: Permit, Deny, NotApplicable, Indeterminate, and N/A.
The detailed experimental data is listed in our project webpage!.

The response analyzer compared the decision values generated
by the three XACML implementations for each policy-request pair,
and found that 47 policy-request pairs produce inconsistent deci-
sions. Based on the analysis of inconsistent decisions, the response
analyzer determines that 34 test results of XACML.NET are failed,
i.e., XACML.NET does not correctly deal with 34 XACML func-
tionalities involved in the conformance test suite, and 11 test results
of Sun XACML 1.2 are failed. In addition, there are 2 test results
that are uncertain, i.e., the three XACML implementations produce
three different responses.

Table 1 presents the category of the failed tests for each XACML
implementation. In Table 1, Column 1 lists the six categories of
functionalities involved in the conformance test suite. The first five
categories belong to the mandatory-to-implement XACML func-
tionalities, and the last one is not mandatory-to-implement, but is
normative when implemented. The “attributes references” category
represents those tests that exercise referencing of attribute values
in a request by a policy. The “target matching” category stands
for those tests that exercise various forms of target matching. The
“function evaluation” category represents those tests that exercise
each of the mandatory-to-implement functionalities. The “combin-
ing algorithms” category represents those tests that exercise each of
the mandatory combining algorithms. The “schema components”
category represents the tests for certain elements of the schema not
exercised by the preceding categories of test cases. Columns 2-4
of Table 1 list that, for each category of functionalities, the num-
ber of failed tests of each XACML implementation. For example,
Sun XACML 1.2 does not correctly evaluate 2 policy-request pairs
that contain attributes references, 3 policy-request pairs that con-
tain function evaluation, and 6 policy-request pairs that contain op-
tional functionalities. The “2(u)” in Table 1 represents that there
are two uncertain test results for the policy-request pairs that con-
tain schema components.

We observe that XACML.NET fails in producing responses for
35 policy-request pairs, which are much more than the other two
XACML implementations (Sun XACML 1.2 produces 1 N/A deci-
sions and Parthenon XACML produces 2 N/a decisions). This re-
sult is mainly because XACML.NET conforms to XACML 1.0, but

"http://ase.csc.ncsu.edu/projects/
multixacmltest/

31

Functionality category | Sun XACML | Parthenon
XACML | .NET
1.2
Attributes references 2 4 0
Target matching 0 8 0
Function evaluation 3 2 0
Combining algorithms | 0 11 0
Schema components 2(u) 2(u) 2(u)
Optional functionalities | 6 8 0

Table 1: Category of the failed tests for each XACML imple-
mentations

the conformance test suite used in this study conforms to XACML
1.1. The 35 n/A decisions cover all of the six categories of XACML
functionalities listed in Table 1. Therefore, we determine that,
among the three XACML implementations under test, XACML.NET
supports a smaller set of XACML functionalities than the other two
XACML implementations.

Excluding the inconsistent decisions that are induced by the N/a
results generated by XACML.NET and the uncertain results, Ta-
ble 2 lists the details of the other inconsistent decisions. In Ta-
ble 2, each row contains inconsistent decisions produced by the
three XACML implementations for a particular policy-request pair.
Column 1 lists the categories of functionalities included in the policy-
request pairs. Columns 2-4 list the decision value of each XACML
implementation.

To ensure the security of a system, if the response from a PDP
is NotApplicable or Indeterminate, the request is usually de-
nied. In other words, all of Deny, NotApplicable, and Indeter—
minate can be treated as opposite decisions of Permit. In this
way, we detect that XACML.NET produces an opposite decision
of Sun XACML 1.2 and Parthenon for a mandatory-to-implement
functionality, whose category is “function evaluation”, and Sun
XACML 1.2 produces opposite decisions of XACML.NET and Par-
thenon for five optional functionalities.

If the decision of an XACML implementation is N/A, the test
result is considered as failed with the following reason. When an
XACML PDP cannot evaluate a request, the XACML PDP should
produce NotApplicable or Indeterminate decisions instead of
producing no decision. Therefore, an N/A decision reflects that the
XACML PDP fails. Based on such an analysis, in Table 2, Sun
XACML 1.2 fails for an attribute-references functionality.

6. DISCUSSION

The feasibility study uses policy-request pairs in a conformance
test suite to show that, without expected responses, we can detect
which XACML implementations fail in supporting which XACML
functionalities. Therefore, although XACML.NET implements a
different version of the XACML specification from which spec-
ification version Sun XACML 1.2 and Parthenon XACML 1.1.1
implement, we include XACML.NET as a subject in the feasibil-
ity study. Based on the test result, we can determine that, among the
XACML functionalities used in the conformance test suite, XACML-
.NET implements fewer functionalities than Sun XACML 1.2 and
Parthenon XACML 1.1.1.

In the future, when we implement our policy synthesizer, we
shall evaluate our approach through testing different XACML im-
plementations with the policies generated by our policy synthe-
sizer. The conformance test suite covers most XACML function-
alities, but each policy in the conformance test suite focuses on

Cate- | Sun XACML | XACML .NET Parthenon

gory 1.2

Attr- NotApplicable| Indeterminate| Indeterminate

ibute

refe-

rences
N/A Indeterminate| Indeterminate

Func- | NotApplicable| Indeterminate| Indeterminate

tion

eval-

uation
NotApplicable| Indeterminate| Indeterminate
NotApplicable| Indeterminate| Indeterminate
Permit NotApplicable| Permit

Opti- | Indeterminate| Permit Permit

onal

func-

tiona-

lities
Indeterminate| Deny Deny
NotApplicable| Permit Permit
NotApplicable| Permit Permit
NotApplicable| Permit Permit
NotApplicable| Permit Permit

Table 2: Details of inconsistent decisions

one XACML functionality. Our policy synthesizer composes dif-
ferent XACML-policy templates to construct policies. The policies
that composes different XACML functionalities may detect defects
that cannot be detected by a simple policy. However, the combina-
tion of XACML functionalities increases the number of test cases
and the difficulty of debugging. To alleviate the efforts of debug-
ging, we may compare two similar policy-request pairs that make
an XACML implementation produce different responses. We then
analyze the difference between the two policy-request pairs. In this
way, when debugging, we can focus on the different parts in the
policy-request pairs.

Our approach is based on a set of predefined policy templates
that help the response analyzer automatically determine which XAC-
ML implementation fails in dealing with which XACML function-
alities. However, predefining policy templates requires manual ef-
forts. A possible solution to avoid such manual efforts is that we au-
tomatically generate XACML policies based on the XACML schema
and then we use the existing classified policies, whose initial set
shall be the conformance test suite used in Section 5, to automati-
cally classify the newly generated policies into an existing category.

7. RELATED WORK

Existing work on XACML testing focuses on testing XACML
policies [10, 12]. Our work focuses on testing XACML imple-
mentations and uses XACML policies and requests as test inputs.
As the inputs of an XACML implementation are XML files, an
XACML implementation is a kind of XML-input application. We
classify testing of XML-input applications into three groups: specifi-
cation-based testing, mutation-based testing, and multiple-impleme-
ntation testing.

Specification-based testing of XML-input applications generates
test inputs based on the definition of acceptable inputs such as
XML schema of an application. Bertolino et al. [8] implement a
tool, called TAXI, for XML-based testing. Given an XML Schema,
TAXI automatically generates XML instances. TAXI implements

32

the XML-based partition testing approach and provides a set of
weighted test strategies to guide the systematic derivation of in-
stances. Bai and Dong [7] propose an approach of WSDL-based
test-case generation for Web-service testing. They parse and trans-
form a WSDL file into a structured DOM tree, and then generate
test cases from two aspects: test data and test operations. Test data
is generated by analyzing the message data types according to stan-
dard XML schema syntax. Test operations are generated based on
an operation-dependency analysis. However, enumerating all pos-
sible inputs based on an XML schema provides exhaustive testing
but is infeasible in practice. In addition, without test oracles, it is
tedious to check all the test results manually.

Mutation-based testing of XML-input applications generates test
inputs based on the definition of acceptable inputs for an applica-
tion under test, and mutates the definition to generate invalid in-
puts to test the robustness of the application under test. Offutt and
Xu [16] present an approach to test Web services based on data per-
turbation, i.e., modifying XML messages based on rules defined on
the message grammars. They implement two types of data pertur-
bation: data value perturbation and interaction perturbation. The
data value perturbation generates test inputs of invalid data types.
The interaction perturbation generates invalid sequences of mes-
sages among multiple Web services. Our approach complements
mutation-based testing: we can use mutation-based testing to gen-
erate invalid policies or requests, and use multiple-implementation
testing to automatically determine test results to be passed or failed.

Multiple-implementation testing has been used by Tsai et al. [17]
on Web-service testing. To save testing time, they initially test a
subset of Web service implementations randomly selected from the
set of all Web service implementations to be tested. They test the
subset of Web service implementations by the same test cases, de-
tect defective Web service implementations based on their differ-
ent outputs, and determine expected outputs. They next rank the
test cases according to their defect-detection capacities and test all
Web service implementations to be tested by the test cases with
high defect-detection capacities. Different from their approach, we
focus on testing XACML implementations and generate test inputs
based on a set of predefined XACML policy templates. As each
template includes a particular XACML functionality, when we de-
tect different outputs, we can determine which XACML function-
ality is not implemented by an XACML implementation correctly.

8. CONCLUSION

We have proposed an approach to test XACML implementations
and automatically determine the test results. We first synthesize
XACML policies based on a set of predefined policy templates,
each of which focuses on a particular XACML functionality. We
next generate requests for each policy. To automatically deter-
mine expected responses, we test different XACML implementa-
tions with the same polices and requests to observe whether the dif-
ferent XACML implementations produce different responses. Based
on the analysis of different responses, we detect the XACML im-
plementations that do not implement certain XACML functionali-
ties correctly.

We conducted a feasibility study using three different XACML
implementations. We use 374 pairs of XACML policies and re-
quests to test the three XACML implementations. Each pair of pol-
icy and request contains a particular XACML standard function-
ality. Among the three XACML implementations, we detect that
XACML.NET fails in supporting 34 of those functionalities (since
XACML.NET implements a previous version of the used XACML
standard functionalities), and Sun XACML 1.2 fails in supporting
11 of those functionalities.

Acknowledgment
This work is supported in part by NSF grant CNS-0716579.

9.
(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

REFERENCES

XACML 1.1 Committee Specification Conformance Tests,
2002. http:
//www.oasis-open.org/committees/xacml/
ConformanceTests/ConformanceTests.html.
Parthenon Policy Tester, 2005. http:
//www.parthcomp.com/xacml_toolkit.html.
XACML 2.0 Approved as OASIS Standard, 2005.
http://xml.coverpages.org/
XACMLv20-Standard.html.

XACML.NET, 2005.
http://mvpos.sourceforge.net/.

Sun’s XACML Implementation, 2006.
http://sunxacml.sourceforge.net/.
Organization for the Advancement of Structured Information
Standards, 2008.
http://www.oasis-open.org/home/index.php.
X. Bai, W. Dong, W.-T. Tsai, and Y. Chen. WSDL-based
automatic test case generation for Web services testing. In
Proc. SOSE, pages 215-220, 2005.

A. Bertolino, J. Gao, E. Marchetti, and A. Polini. TAXI-a
tool for XML-based testing. In Proc. ICSE COMPANION,
pages 53-54, 2007.

33

(9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

L. Chen and A. Avizienis. N-version programming: A
fault-tolerance approach to reliability of software operation.
In Proc. FTCS, pages 3-9, 1978.

V. C. Hu, E. Martin, J. Hwang, and T. Xie. Conformance
checking of access control policies specified in XACML. In
Proc. IWSSE, pages 275-280, July 2007.

E. Martin and T. Xie. Automated test generation for access
control policies via change-impact analysis. In Proc. SESS,
pages 5-11, 2007.

E. Martin and T. Xie. A fault model and mutation testing of
access control policies. In Proc. WWW, pages 667-676,
2007.

E. Martin, T. Xie, and T. Yu. Defining and measuring policy
coverage in testing access control policies. In Proc. ICICS,
pages 139-158, 2006.

W. M. McKeeman. Differential testing for software. Digital
Technical Journal, 10(1):100-107, 1998.

OASIS. eXtensible Access Control Markup Language
(XACML). http:
//docs.oasis—open.org/xacml/2.0/access_
control-xacml-2.0-core-spec-os.pdf.

J. Offutt and W. Xu. Generating test cases for Web services
using data perturbation. SIGSOFT Softw. Eng. Notes,
29(5):1-10, 2004.

W.-T. Tsai, Y. Chen, R. Paul, H. Huang, X. Zhou, and

X. Wei. Adaptive testing, oracle generation, and test case
ranking for Web services. In Proc. COMPSAC, pages
101-106, 2005.

