
CMSC 351 - Introduction to Algorithms

Spring 2012

Lecture 8

Instructor: MohammadTaghi Hajiaghayi
Scribe: Rajesh Chitnis

1 Introduction

In this lecture we will look at Binary Search and some applications.

2 Algorithms involving sequences and sets

Usually the input for our algorithms is a finite set or a sequence. The differences
between sets and sequences are as follows:

1. In sequences the order of the elements is important whereas in sets the
order is not important.

2. In sets we assume an element does not appear more than once (not in
multisets though) but there is no such assumption for sequences.

The input is always a sequence (though if the order is not important then
we call it a set). In this chapter the input is an array of known size n. Also
the elements of the array are of the same type and can be compared with each
other.

We will now look at Binary Search and Sorting which are very important
and universally applicable algorithms.

3 Binary Search

Basic Idea: Cut the search space in half (or approximately so) by asking only
one question.

The Problem: Let x1, x2, . . . , xn be a sequence of real numbers such that
x1 ≤ x2 ≤ . . . xn. Given a real number z, we want to find whether z appears in
the sequence and if it does, then find an index i such that xi = z.

1



Lecture 8 4 BINARY SEARCH IN A CYCLIC SEQUENCE

Approach: Say there is only one index i such that xi = z. In general, it
might not be the case and we want to find all or the smallest and largest such
index. We compare z with xdn

2
e. If z < xdn

2
e then z is clearly in the first half

of the sequence. Otherwise z is in the second half of the sequence. Finding z in
either half is a problem of size n

2
, which can be solved by induction. We handle

the base case of n = 1 by directly comparing z to the element.

Algorithm 1 BinarySearch(z, L, R, x)

Input: An array x and integers z, L, R
Output: An index i such that x[i] = z or −1 otherwise.

1: if L = R then
2: if x[L] = z then
3: Find = L;
4: else
5: Find = -1;
6: end if
7: else
8: M := dL+R

2
e;

9: if z = x[M] then
10: Find = M;
11: else
12: if z < x[M] then
13: Find = BinarySearch(z, L,M− 1, x);
14: else
15: Find = BinarySearch(z,M, R, x);
16: end if
17: end if
18: end if

return Find;

Time Complexity: Since each time a comparison is made, the range is cut
by one half. So the number of comparisons is O(logn). For small values of n,
binary search might not be as efficient as linear search.

4 Binary Search in a Cyclic Sequence

Definition: A sequence x1, x2, . . . , xn is said to be cyclically sorted if the
smallest number in the sequence is xi for some unknown i and the sequence
xi, xi+1, . . . , xn, x1, . . . , xi−1 is sorted in increasing order, i.e., xi ≤ xi+1 ≤
. . . ≤ xn ≤ x1 ≤ x2 ≤ . . . ≤ xi−1.

The Problem: Given a cyclically sorted list, find the position of the mini-
mal element in the list.

Approach: We use the idea of eliminating half of the sequence by just one
comparison. Take any two numbers xk and xm, such that k < m. If xk < xm,

2



Lecture 8 6 BINARY SEARCH IN SEQUENCES OF UNKNOWN SIZE

then i cannot be in the range k < i ≤ m since that would imply xk ≥ xm,
a contradiction. On the other hand if xk > xm then i must be in the range
k < i ≤ m, since the order is switched somewhere in that range. Thus with one
comparison we can eliminate half the elements and we can find i in O(logn)
comparisons.

Algorithm 2 CyclicFind(L, R, x)

1: if L = R then
2: return L;
3: else
4: M := bL+R

2
c;

5: if x[M] < x[R] then
6: CyclicFind(L,M, x);
7: else
8: CyclicFind(M+ 1, R, x);
9: end if

10: end if

5 Binary Search for a special (fixed) index

The Problem: Given a sorted sequence of distinct integers a1, a2, . . . , an

determine if there is an index i such that ai = i.
Approach: Again we cannot use binary search here, but the principle can

be applied. If adn
2
e is exactly dn

2
e then we are done; otherwise if it is less than

dn
2
e then adn

2
e−1 is less than dn

2
e− 1 and so on since all numbers are distinct.

Thus no number in the first half of the sequence can satisfy the property and we
can concentrate only on the second half. A similar idea holds if adn

2
e is greater

than dn
2
e. The algorithm is given in the book [1].

6 Binary Search in Sequences of Unknown Size

Sometimes we use a procedure like binary search to double the search rather
than halve it. Consider a regular search problem with known size. We cannot
halve the search range, since we do not know the boundaries. Instead we search
for an element xi ≥ z. If we can find xi, we can do binary search from 1 to
i. First we compare z and x1. If z ≤ x1, then z = x1. Now by induction we
know z ≥ xi for j ≥ i ≥ 1. If we now compare z to x2j, then we double the
search space with one comparison. If z ≤ x2j, then we know xj ≤ z ≤ x2j and
we can find z with O(log j) additional comparisons. Overall if i is the smallest
index such that xi ≥ z, then it takes O(log i) comparisons to find an xj such
that z ≤ xj and another O(log i) comparisons to find i. The same algorithm
can also be used when the size of the sequence is known but we suspect that

3



Lecture 8 REFERENCES

i is very small. This gives an improvement since we have O(log i) instead of
O(logn). However since it is actually 2 log i, this gives an improvement only if
2 log i ≤ logn ⇒ i ≤

√
n or i = O(

√
n).

7 Interpolation Search

Interpolation search is a combination of binary search and linear search. It is an
algorithm for searching for a given key value in an indexed array that has been
sorted by the values of the key [2]. Interpolation search basically describes how
we would search through a telephone book for a particular name, the key value
by which the book’s entries are ordered. In each search step it calculates where
in the remaining search space the sought item might be, based on the key values
at the bounds of the search space and the value of the sought key, usually via a
linear interpolation. The key value actually found at this estimated position is
then compared to the key value being sought. If it is not equal, then depending
on the comparison, the remaining search space is reduced to the part before or
after the estimated position.

Binary search always chooses the middle of the remaining search space
whereas linear search uses equality only as it compares elements one-by-one.
Interpolation search tries to combine the good points of the above search algo-
rithms. Let us consider an example: Suppose we want to open page 200 from
what looks like a 800 page book. We will try to open a page which seems around
one-fourth of the size of the book. If we hit 200 exactly, then that will be per-
fect. Suppose we open page 250. Then the entire search space is now restricted
to 250 pages and we know that we need to go back by one-fifth of the search
space (250−200

250
= 1

5
). We can continue this process till we get get close to 200

and then perform a simple linear search by turning the pages one at a time.
We now give a formal description of Interpolation Search in Algorithm 3:

The performance of Interpolation Search depends not only on the size of the
sequence, but also on the input. See Example 6.4 from the book [1] for examples
where even interpolation search checks every number in the sequence. However,
interpolation search is very efficient for inputs which are uniformly distributed,
e.g., pages of a book. It can be shown that the average number of comparisons
performed by interpolation search, where the average is taken over all sequences,
is O(log logn).

See more on Interpolation search and other applications of binary search in
the book [1].

References

[1] Udi Manber, Introduction to Algorithms - A Creative Approach

[2] Wikipedia article on Interpolation Search

4

http://en.wikipedia.org/wiki/Interpolation_search


Lecture 8 REFERENCES

Algorithm 3 InterpolationSearch(X,n, z)

Input: A sorted array X in the range 1 to n, and a search key z.
Output: Position (an index i such that X[i] = z, or 0 if no such index exists)

1: begin
2: if z < X[1] or z > X[n] then
3: Position:=0 (unsuccessful search)
4: else
5: Position:= Int-Find(z,1,n)
6: end if
7: end

8: function Int-Find(z,Left,Right):integer:
9: begin

10: if X[left]= z then
11: Int-Find = Left
12: else
13: if Left=Right or X[Left]=X[Right] then
14: Int-Find = 0
15: else

16: NextGuess:=Left+
(z− X[Left])(Right− Left)

X[Right] − X[Left]
17: If z < X[NextGuess], Then Int-Find = Int-Find(z,Left,NextGuess-1)

Else, Int-Find = Int-Find(z,NextGuess,Right)
18: end if
19: end if
20: end

5


	Introduction
	Algorithms involving sequences and sets
	Binary Search
	Binary Search in a Cyclic Sequence
	Binary Search for a special (fixed) index
	Binary Search in Sequences of Unknown Size
	Interpolation Search

