
CMSC 351 - Introduction to Algorithms

Spring 2012

Lecture 7

Instructor: MohammadTaghi Hajiaghayi
Scribe: Rajesh Chitnis

1 Introduction

In this lecture we give an introduction to Data Structures like arrays, linked
lists, etc.

2 A Brief Introduction to Data Structures

Data structures are the building blocks of computer algorithms. Here we con-
sider abstract data type (ADT), i.e., we do not specify the data types like
integers, reals, characters, etc. It is more convenient and more general to design
algorithms for these operations without specifying the data type of the items.

Modern object-oriented languages such as C++ or Java support a form of
abstract data. When a class is used as a type, it is an abstract type that refers
to hidden representation. An ADT is typically implemented as a class and each
instance of the ADT is an object of that class.

3 Elementary Data Structures

3.1 Elements

It is a generic name for an unspecified data type. An element could be an
integer, a set of integers, a file of text, or another data structure. We use this
term whenever the discussion is independent of the type of data. For example, in
sorting we only care about comparisons between element which can be integers,
names (strings of characters), etc. Usually we assume we can compare elements
for equality (and some times for “less than” relation) and we can copy them.
Each of these operations is counted as one unit of time.

1



Lecture 7 3 ELEMENTARY DATA STRUCTURES

3.2 Arrays

An array is a row of elements of the same type. The size of an array is the
number of elements in that array. The size of the array should be fixed and
allocated in memory in advance. The elements can be bytes, integers, strings or
more generally any elements. Arrays are very efficient and very common data
structures and each element of it can be accessed in constant time. Arrays are
good except they store elements of the same type and their size is fixed. We
represent them as a[12 . . . n] and access element i as a[i] for 1 ≤ i ≤ n. We
can also have a two-dimensional array a[12 . . . n, 12 . . .m] and access a general
element as a[i, j].

3.3 Records

Records are similar to arrays, except that we do not assume all elements are of
the same type. A records thus is a list of elements of different types. However
like arrays the exact combination of types and thus the storage size is known
(since the sizes of all the elements in the records are known). Each element in
a record can be accessed in constant time. It is also possible to compute the lo-
cation of each element in constant time. Let us now see an example of a Record:

begin

• Int 1: integer;

• Ar1: array[1 2 . . . 20] of integers;

• Name1: array[1 2 . . . 20] of characters;

end

Structures in C and classes in C++ (more general) can be used to implement
records.

3.4 Linked Lists

There are many applications in which the number of elements is changing dy-
namically as the algorithm progresses (we can have large arrays to overcome
this, but it is often not a good solution. Also due to consecutive representation
of arrays doing some operations like insertion and deletion in the middle of an
array is very inefficient). Linked lists are the simplest form of dynamic data
structures. Here each element is represented separately and all elements are
connected through the use of pointers. A pointer is simply a variable that
holds as its value the address of another element. It exists in C, C++ but not
explicitly in Java (although it can be simulated).

A linked list is a list of pairs, say in a record, each containing an element
and a pointer, such that each pointer contains the address of the next pair. It is

2



Lecture 7 3 ELEMENTARY DATA STRUCTURES

not possible to access each element directly in a linked list, instead one needs to
scan it by following the addresses in the pointer. This is called as a linear scan.
The end of the list will be denoted by nil or null, a pointer which points to
nowhere. An example is given in Figure 1.

Drawbacks of Linked Lists

1. Requires more space: one additional pointer per element (not a huge
problem though).

2. Need a linear scan to find say the 30th element.

Advantages of Linked Lists

1. With only 2 operations we can insert an element in the middle.

2. With only 1 change we can delete an element.

Nil or Null 

Figure 1: Example of a linked list

3.5 Stacks

Stacks are dynamic data structures in which we delete (pop) an element which
was most recently inserted (push). A stack implements a last-in-first-out (LIFO)
policy. We have also an operation top which gives the element at the top of the
stack. We can implement it with both arrays (if we know the maximum size) or
linked lists. We now show how to implement the Push, Top and Pop functions
using arrays. As an exercise, you can implement them with linked lists. Each
of Push, Pop and Top operations takes O(1) time.

Algorithm 1 Pop(s)

1: if t=0 then
2: return error “stack underflow”
3: else
4: t← t− 1
5: return s[t+ 1]
6: end if

3



Lecture 7 REFERENCES

Algorithm 2 Push(s, x)

1: t← t+ 1
2: s[t]← x

Algorithm 3 Top(s)

1: if t=0 then
2: return error “stack underflow”
3: else
4: return s[t]
5: end if

3.6 Queues

A queue is a dynamic data structure in which the element deleted (dequeue) is
always the one that has been inserted (enqueue) for the longest time. A queue
implements a first-in-first-out (FIFO) policy like in the registrar’s office. The
queue has a head and a tail. We insert at the tail and delete from the head.
It can be implemented by array or linked lists (like stacks). We now show how
to implement the Enqueue and Dequeue functions using arrays as if the queue
is circular. As an exercise, you can implement them with linked lists. Each of
Enqueue and Dequeue operations takes O(1) time.

Algorithm 4 Enqueue(Q, x)

1: Q[tail]← x
2: if tail = lengthQueue then
3: tail ← 1
4: else
5: tail ← tail +1
6: end if

References

[1] Udi Manber, Introduction to Algorithms - A Creative Approach

4



Lecture 7 REFERENCES

5 

2 

3 

4 

1 

Top 

Figure 2: Example of a stack

Algorithm 5 Dequeue(Q, x)

1: x← Q[head]
2: if head = lengthQueue then
3: head ← 1
4: else
5: head ← head +1
6: end if
7: return x

Tail Head 

Figure 3: Example of a queue

5


	Introduction
	A Brief Introduction to Data Structures
	Elementary Data Structures
	Elements
	Arrays
	Records
	Linked Lists
	Stacks
	Queues


