
CMSC 351 - Introduction to Algorithms

Spring 2012

Lecture 6

Instructor: MohammadTaghi Hajiaghayi
Scribe: Rajesh Chitnis

1 Introduction

In this lecture we look at Divide-and-Conquer Recurrence Relations and the
Akra-Bazzi or Master Theorem.

2 Divide-and-Conquer Recurrence Relations

In divide-and-conquer algorithms (like Mergesort), the problem is divided into
smaller subproblems, each subproblem is solved recursively and a combined
algorithm is used to obtain the final solution from the solutions of the subprob-
lems. Assume there are a subproblems, each of size 1

b
of the original problem

and the algorithm to combine the subproblems takes polynomial time given by
cnk for some constants a, b, c & k. Then we have

T(n) = aT(
n

b
) + cnk (1)

By an expanding method very similar to the one in the last lecture for
an = 2abn

2
c + n, we can prove the following theorem: (it is a good exercise to

prove it for yourself or see the proof in the book [1]).

Theorem 1 If T(n) = aT(n
b
) + cnk for integers a ≥ 1, b ≥ 2 and positive

constants c and k, then

T(n) =

 O(nlogb a) if a > bk

O(nk logn) if a = bk

O(nk) if a < bk

This formula is very useful in many divide-and-conquer algorithms and you
should memorize it in this course.

A more general theorem which consider a general function f(n) instead of
cnk in Equation 1 and obtains θ instead of O, is called the Master Theorem.

1

Lecture 6 3 RECURRENCE RELATIONS WITH FULL HISTORY

See the Wikipedia article on the Master Theorem. Again there are three cases
to consider conditioned on the function f(n).

An even more general theorem which gives one formula instead of the three
cases above is called Akra-Bazzi theorem. In our class we always approximate
f(n) with appropriate cnk and use Theorem 1 instead and we obtain θ usually
(and not just O).

3 Recurrence Relations With Full History

A full history recurrence relation is one that depends on all the previous
functions. We use the method of elimination of history, in which we will try to
write the recurrence in such a way that most of the terms will be cancelled (we
used such an approach before while computing sums).

3.1 A recurrence in simplest form

A simplest form for a recurrence relation is

T(n) = c+

n−1∑
i=1

T(i)

. Then T(n+ 1) − T(n) = T(n) ⇒ T(n+ 1) = 2T(n) ⇒ T(n+ 1) = 2nT(1). But
say if T(1) = 1 and c = 5 then T(2) = 6 6= 2T(1). The base case is T(2)− T(1) =
c 6= T(1). Thus T(2) = T(1) + c (by definition) and T(n+ 1) = 2T(n) for n > 2.
Hence T(n + 1) = (T(1) + c)2n−1. Note that c did not appear in the formula
which was strange. Always try for more base cases to avoid such situations.

3.2 A More Involved Example

Now let use see a more complicated example which we will use later in the
analysis of Quicksort. Base case is T(1) = 0 and the general term for n ≥ 2 is
given by:

T(n) = (n− 1) +
2

n

n−1∑
i=1

T(i) (2)

Multiplying both sides by n gives

nT(n) = n(n− 1) + 2

n−1∑
i=1

T(i) (3)

Shifting the index ahead by 1 gives

(n+ 1)T(n+ 1) = n(n+ 1) + 2

n∑
i=1

T(i) (4)

2

http://en.wikipedia.org/wiki/Master_theorem

Lecture 6 REFERENCES

Subtracting Equation 3 from Equation 4 gives (n + 1)T(n + 1) − nT(n) =
2n+2T(n) which implies T(n+1) = 2n

n+1
+ n+2

n+1
T(n) ≤ 2+ n+2

n+1
T(n). Expanding

we have

T(n) ≤ 2+ n+ 1

n
T(n− 1)

≤ 2+ n+ 1

n

(
2+

n

n− 1

(
2+

n− 1

n− 2

(
. . .
4

3

)))
= 2

(
1+

n+ 1

n
+
n+ 1

n

n

n− 1
+
n+ 1

n

n

n− 1

n− 1

n− 2
+ . . .+

n+ 1

n

n

n− 1

n− 1

n− 2
. . .
4

3

)
= 2

(
1+

n+ 1

n
+
n+ 1

n− 1
+
n+ 1

n− 2
+
n+ 1

3

)
= 2(n+ 1)

(1

n+ 1
+
1

n
+

1

n− 1
+ . . .+

1

3

)
= 2(n+ 1)

(
H(n+ 1) −

3

2

)
where H(n) = 1 + 1

2
+ 1

3
+ . . . + 1

n
is called as the Harmonic Series. It is easy

to see that (say by integration) that H(n) = lnn+ 0.577+O(1
n
). Thus T(n) is

O(n lnn).

References

[1] Udi Manber, Introduction to Algorithms - A Creative Approach

3

	Introduction
	Divide-and-Conquer Recurrence Relations
	Recurrence Relations With Full History
	A recurrence in simplest form
	A More Involved Example

