
CMSC 351 - Introduction to Algorithms

Spring 2012

Lecture 3

Instructor: MohammadTaghi Hajiaghayi
Scribe: Rajesh Chitnis

1 Introduction

In this lecture we look at more examples of induction especially in the design
and analysis of algorithms.

2 Examples of Mathematical Induction

2.1 A Simple Inequality

Theorem 1 For all natural numbers n we have 1
2
+ 1

4
+ 1

8
+ . . .+ 1

2n < 1.

Proof: The proof is by induction on n. The theorem is trivially true for
n = 1. We assume the inequality for n and prove for n + 1. By induction
hypothesis we know that the sum of the first n terms is less than 1. However
on adding the 1

2n+1 the sum might exceed 1. The trick is to use induction
in a different order. Look at the last n terms of the summation: we have
1
4
+ 1

8
+ . . . + 1

2n + 1
2n+1 = 1

2

(
1
2
+ 1

4
+ . . . + 1

2n

)
< 1

2
due to the induction

hypothesis. Now we add 1
2

to both sides to obtain the desired result.

2.2 Arithmetic-Geometric Mean Theorem

Theorem 2 If x1, x2, . . . , xn are all positive reals then we have (x1x2 . . . xn)
1
n ≤

x1 + x2 + . . .+ xn

n
.

Proof: The proof is by induction on n. The induction hypothesis is the same
as the statement, however it different to the one that we are doing till now: we
will use the principle of reversed induction.

1



Lecture 3 2 EXAMPLES OF MATHEMATICAL INDUCTION

Principle of Reversed Induction
If a statement P is true for an infinite subset of natural numbers
and if its truth for n implies its truth for n− 1, then P is true for
all natural numbers.

The principle of reverse induction is correct since it holds for an infinite set, for
every natural number k, there is a number m > k in the set and we can use
reverse induction step to go backwards from m to k.

First we show it is correct for an infinite subset (all powers of 2) using
regular induction. For n = 1 it is trivial and for n = 2, we have

√
x1x2 ≤

x1+x2

2
which is correct since (x1 − x2)

2 ≥ 0. Now we assume it is true for

n = 2k and we now prove it for 2n = 2k+1. Let y1 = (x1x2 . . . xn)
1
n and

y2 = (xn+1xn+2 . . . x2n)
1
n . Then we have (x1x2 . . . xn . . . x2n)

1
2n =

√
y1y2 ≤

y1+y2

2
. Now induction hypothesis for n gives y1 ≤ x1+x2+...+xn

n
and y2 ≤

xn+1+xn+2+...+x2n

n
. So we have y1+y2

2
≤ 1

2
(x1+x2+...+xn+...+x2n

n
) which is what

we wanted to prove.
Now we use reverse induction to prove the theorem for all n. We assume the

statement is true for n and prove it for n−1. Let z = x1+x2+...+xn−1

n−1
. We apply

the statement for the n numbers x1, x2, . . . , xn−1, z to get (x1x2 . . . xn−1z)
1
n ≤

x1+x2+...+xn−1+z
n

= (n−1)z+z
n

= z which implies (x1x2 . . . xn−1z) ≤ zn. This

gives (x1x2 . . . xn−1) ≤ zn−1 which gives (x1x2 . . . xn−1)
1

n−1 ≤ z = x1+x2+...+xn−1

n−1

which is what we wanted to show.

2.3 Loop Invariants

Induction is a very good tool for proving the correctness of algorithms. Assume
a program has a loop that is supposed to compute a certain value. We can use
induction on the number of times this loop is executed to prove that the result
is correct. An induction hypothesis which reflects the relationships between the
variables during the loop execution is called a loop invariant.

2.4 Converting a number to its binary representation

Algorithm 1 Convert-To-Binary(n)

Input: A positive integer n.
Output: An array of bits b corresponding to the binary representation of n.

1: t:=n (a new variable to preserve n)
2: k=0;
3: while t > 0 do
4: k = k+ 1
5: b[k] = t mod 2
6: t = b t

2
c

7: end while

2



Lecture 3 3 DESIGN OF ALGORITHMS USING INDUCTION

Theorem 3 When Algorithm 1 terminates it stores the binary representation
of n in the array b.

Proof: The proof is by induction on k, the number of time the loop is executed.
In this case the induction hypothesis is the loop invariant. The Induction Hy-
pothesis is “If m is the integer represented by the binary array b[12 . . . k], then
n = 2kt + m”. Intuitively it says that at step k of the loop, the binary array
represents the k least significant bits of n, and that the value of t, when shifted
by k corresponds to the rest of the bits.

To prove the correctness of the algorithm we need to show

1. The hypothesis is true at the beginning (basis).

2. The truth of the hypothesis at step k implies the truth of the hypothesis
at step k+ 1.

3. When the loop terminates the induction hypothesis implies the correctness
of the algorithm.

The first point is easy to show: k = 0 = m (since the array is empty by
definition) and t = n. Thus n = 20t+ 0. For the third point we note that t = 0
and thus n = 2k0+m = m. Finally for the second point we consider two cases
for the start of the kth loop:

• If t is even, then t mod 2 = 0 and thus there is no change to the array, t
gets divided by 2 and k is incremented, i.e., n = t

2
2k+1 +m = 2kt+m.

• If t is odd, then b[k+1] is set to 1, which contributes 2k to m, t is changed
to t−1

2
and k is incremented. So the expression is t−1

2
2k+1 + m + 2k =

(t− 1)2k +m+ 2k = 2kt+m = n as desired.

Read about the common errors is Section 2.13 of the book [1] to avoid
them.

3 Design of Algorithms using Induction

So far we have seen the use of induction in the proof of theorems and showing
correctness of algorithms. In a sense, the induction idea gives us recursive
algorithms.

3.1 Finding one-to-one mappings

Let f be a function that maps a finite set A = {1, 2, . . . , n} to itself. Assume f
is represented by an array f[12 . . . n] such that f[i] holds the value of f(i) which
is an integer between 1 and n. We call f a one-to-one function if for every
element j, there is at most one element i that is mapped to j. Consider an
example of a function in Figure 1.

3



Lecture 3 3 DESIGN OF ALGORITHMS USING INDUCTION

1 

3 

2 

4 

6 

 7 

5 

1 

7 

6 

5 

4 

3 

2 

Figure 1:

The Problem: Given a finite set A and a mapping f : A → A find a subset
S ⊆ A with maximum number of elements such that

1. The function f maps every element of S to some other element within S
itself.

2. No two elements of S are mapped to the same element, i.e., f is one-to-one
when restricted to S.

Algorithm: If f is originally one-to-one then taking S = A we are done.
If on the other hand f(i) = f(j) for some i 6= j then S cannot contain both i
and j. We can try all subsets S ⊆ A, but the running time is 2nn which is
exponential. We want a more efficient algorithm. For example, in Figure 1 we
have f(2) = 1 = f(3). So S cannot contain both 2 and 3. The choice between
2 and 3 is important: if we eliminate 3, then 1 is eliminated and then 2 is
eliminated. However if we instead eliminate 2 only then we obtain {1, 3} as a
good set.

So reducing the problem to a smaller one is important and non-trivial. We
can use induction hypothesis: We know how to solve the problem for sets with
n − 1 elements. The base case is trivial: if there is only one element in the set

4



Lecture 3 REFERENCES

then it must be mapped to itself. But the induction hypothesis is non-trivial
when we have a choice (e.g. 2 and 3 in Figure 1). The key idea is that the
element i that has no element mapped to it cannot belong to S and thus we
must remove it. This is because i ∈ S and |S| = k implies that the k elements
of S must be mapped to at most k − 1 elements of S and hence f cannot be
one-to-one when restricted to S. So we remove {i} from A and iterate. Note
that the reduced problem is exactly the same (except the size) as the original
problem. We have to be careful though: the only condition we had previously
was that f maps A to itself. This condition is still maintained for the set A\ {i}.
By this algorithm we need to consider only n elements instead of 2n choices for
S. Thus this algorithm is much more efficient.

See Figure 5.3 in the book [1] for the algorithm described above.

References

[1] Udi Manber, Introduction to Algorithms - A Creative Approach

5


	Introduction
	Examples of Mathematical Induction
	A Simple Inequality
	Arithmetic-Geometric Mean Theorem
	Loop Invariants
	Converting a number to its binary representation

	Design of Algorithms using Induction
	Finding one-to-one mappings


