
CMSC 351 - Introduction to Algorithms

Spring 2012

Lecture 24

Instructor: MohammadTaghi Hajiaghayi
Scribe: Rajesh Chitnis

1 Introduction

In this lecture we give a brief introduction to Parallel Algorithms.

2 Parallel Algorithms

We want to compare Parallel Algorithms versus traditional Sequential (or serial)
Algorithms. There are numerous types of parallel computers in operation and
no longer can we adopt one “generic” model of computation and hope that it
adopts to all parallel computers. In this short lecture we cannot cover most of
parallel computing. We just give some examples. You can take other classes
which will give more material on this topic.

As we have seen in non-deterministic computers having an unlimited num-
ber of machines can help us. Often the more processors we use, upto a cer-
tain limit, the faster the algorithm becomes. However since in real-world, the
number of computers (processors) is limited, it is important to use the proces-
sors efficiently. Another important issue is communication among the proces-
sors. Generally, it takes longer to exchange data between the processors than it
does to perform simple operations on the data. Does it automatically mean that
the algorithm must minimize communications and arrange it in an effective way.
For some computer systems, the answer is yes, but if processors can exchange
data at a sufficiently high rate, the constraint on communication can become
far less severe. Yet another important issue is synchronization, which can
be a major problem for parallel algorithms that run on independent computers
loosely connected by some communication network. The objective of this brief
discussion is not to be self-contained, but rather justify the need for taking other
classes if you wish to learn more on this topic.

1

Lecture 24 4 MAXIMUM-FINDING ALGORITHM IN PARALLEL

2.1 Speed-Up

We denote the running time of an algorithm by T(n, p) where n is the input

size and p is the number of processors used. The ratio S(p) = T(n,1)
T(n,p) is called

the speed-up of the algorithm. If S(p)=p, then we call it a perfect speed-up.
The value of T(n, 1) is the best known sequential algorithm.

One can fix p and the minimize T(n, p). However if p changes, we must
have a new algorithm. It is more desirable to find an algorithm that works for
any value of p. In general, we can modify an algorithm with T(n, p) = X to an
algorithm with T(n, p

k
) = kX by replacing each step of the original algorithm

with k steps in which one processor simulates the execution of one step of the
k processors. Generalizing this to case where k does not divide p is deferred to
other classes.

3 Various Models of Parallel Computation and
Communication

3.1 Shared-Memory Model

We assume that there is a random-access shared memory such that any processor
can access any variable with unit cost. The assumption of unit cost regardless
of the number of processors of the size of the memory is unrealistic but can
become a good approximation if the rate at which processors can exchange data
is high enough. Issue with concurrent access to shared data is a big topic in
other courses, offering a diversity of problem definitions and solutions, including:
allowing it in an abstract model, using programmer specified locking and or
system handling. .

3.2 Interconnection Network

It can be represented by a graph such that the vertices correspond to the proces-
sors and two vertices are connected if the corresponding processors have a direct
link between them. Each processor has a quick-access local memory, but the
communication is done through messages (though maybe by traversing several
links to arrive at their destination).

A subtype of parallel algorithms which is in use in our modern world and
over the internet is a distributed algorithm which often uses interconnection net-
works. One of the major challenged in developing and implementing distributed
algorithms is successfully coordinating the behavior of the independent parts of
the algorithm in the face of processor failures and unreliable communication links.

4 Maximum-Finding Algorithm in Parallel

The problem is to find the maximum among n distinct numbers, given in an
array. As we have seen T(n, 1) = n − 1. An efficient way to run a parallel

2

Lecture 24 REFERENCES

algorithm is to use a binary tree. The processors are divided into pairs for the
first round (with possibly one processor sitting out, in case of an odd number of
players), all the winners are again divided into pairs and so on until the finals.
The total number of rounds is dlog2 ne and the number of processors is bn

2
c.

Thus T(n, bn
2
c) = dlog2 ne and S(bn

2
c) = O(n

dlog2 ne) which is very good. Note

that we used the shared-memory model here.

5 A Generalization: The Parallel-Prefix Prob-
lem

Let · be an arbitrary associative binary operation, namely it satisfies x · (y ·z) =
(x · y) · z, which we simply call product. For example · can represent addition,
multiplication or maximum of two numbers.

The Problem: Given a sequence of real numbers x1, x2, . . . , xn, compute
the product x1 · x2 · . . . · xk for all 1 ≤ k ≤ n.

We denote by PR(i, j) the product xi · xi+1 · . . . · xj. The goal is to compute
PR(1, k) for all 1 ≤ k ≤ n. The sequential version of the problem can be solved
trivially by simply computing the prefixes in order. The parallel case is harder
and needs divide-and-conquer. We assume n is a power of 2.

Induction Hypothesis
We know how to solve the problem for n

2
elements.

The basis for one element is trivial. The algorithm proceeds by dividing the
input in half, and solving each half by induction. Thus we obtain the value of
PR(1, k) and PR(n

2
) + 1, n

2
+ k for all 1 ≤ k ≤ n

2
. The values of PR(1,m) for

1 ≤ m ≤ n
2

can be used directly. The values PR(1,m) for n
2

< m ≤ n can
be attained by computing PR(1, n

2
) · PR(n

2
+ 1,m). Both terms are known by

induction. Note that we use the associativity of the · operation. This step can
be done in one step if we have n processors. Thus overall we have T(n,n) =
O(logn) and S(n) = O(n

logn
) which is very good.

References

[1] Udi Manber, Introduction to Algorithms - A Creative Approach

3

	Introduction
	Parallel Algorithms
	Speed-Up

	Various Models of Parallel Computation and Communication
	Shared-Memory Model
	Interconnection Network

	Maximum-Finding Algorithm in Parallel
	A Generalization: The Parallel-Prefix Problem

