
CMSC 351 - Introduction to Algorithms

Spring 2012

Lecture 22

Instructor: MohammadTaghi Hajiaghayi
Scribe: Rajesh Chitnis

1 Introduction

In this lecture we will look at Reductions and NP-completeness.

2 Polynomial Reductions:

Consider two decision problems A and B. We say A is polynomially reducible
to B if there exists a polynomial time algorithm that converts each input a to
A and another input b to B such that the answer to input a for problem A is
YES if and only if the answer to input b for problem B is YES. Here we assume
the size of b is also polynomial in the size of a. For example, the reductions
from undirected graphs to directed ones for shortest paths.

Theorem 1 If A is polynomially reducible to B and there is a poly time algo-
rithm for B, then there is a poly time algorithm for A as well.

Proof: First reduce the input of A to B and then solve it.

Theorem 2 If A is polynomially reducible to B and B is polynomially reducible
to C, then A is polynomially reducible to C (transitivity).

Proof: Just compose the two poly time algorithms in the reductions.

3 Two Important Complexity Classes

Now we define two classes, which not only contain numerous important problems
(all equivalent to one another) that are not known to be in P, but also contain
the hardest problems in NP.

1



Lecture 22 4 SATISFIABILITY (SAT)

P 

NP-complete 

NP 

NP-hard 

Figure 1: If P 6= NP

Definition 1 A problem X is called NP-hard if every problem in NP is poly-
nomially reducible to X.

Definition 2 A problem X is called NP-complete if X ∈ NP and X is NP-
hard.

Note that the definition of NP-hardness implies that of any NP-hard problem
is ever proved to belong to P, then that proof would imply that P = NP (by
Theorem 1) and you win the 1 million prize. Cook in 1971 showed that there
is at least one NP-complete problem called Satisfiability (SAT). Now our job is
much easier. Why?

Theorem 3 X is NP-complete if X ∈ NP and for some problem Y that is NP-
complete, Y is polynomially reducible to X.

Proof: By definition of NP-completeness we know that every problem in NP
is polynomially reducible to Y. But since Y is polynomially reducible to X and
reducibility is transitive (Theorem 2), every problem is polynomially reducible
to X as well.

4 Satisfiability (SAT)

Let S be a Boolean expression in Conjunctive Normal Form (CNF). That is, S is
a AND (product) of several ORs (sum), e.g., S = (x+y+z)(x+y+z)(x+y+z).
Each variable is either 0 (false) or 1 (true). One can show that any Boolean
expression can be transformed into CNF.

Definition 3 A Boolean expression is said to be satisfiable if there exists an
assignment of 0s and 1s to its variables such that the value of the expression is
1.

2



Lecture 22 5 3-SAT IS NP-COMPLETE

The SAT problem is to determine whether a given expression is satisfiable
(without necessarily finding a satisfying assignment). For example for the S
above, x = 1, y = 1 and z = 0 makes the expression 1. We call an assignment of
0s and 1s to the variables of a Boolean expression a truth assignment. Note
that using a backtracking algorithm, we can solve SAT in O(2nn) time.

4.1 Cook’s Theorem

Theorem 4 SAT is NP-complete.

Note that SAT ∈ NP is easy to see. The proof of Cook’s theorem however
is complicated and uses modeling of a non-deterministic computer with SAT.
Note that a few other problems such as graph coloring and bin packing that
you have seen so far are NP-complete as well (that is the reason why we design
approximation algorithms for these problems). Now let us see more examples.

5 3-SAT is NP-complete

3-SAT Problem:
Given a Boolean expression in CNF such that each clause contains exactly
three variables, determine whether it is satisfiable.

The problem might seem easier than SAT since there is an additional re-
quirement of exactly three variables per clause. Now we see a proof that 3-SAT
is NP-complete.

Theorem 5 3-SAT is NP-complete

Proof: First the problem is clearly in NP since given a certificate of a truth
assignment we can verify it easily in poly time.

Let C = (x1+ x2+ . . .+ xk) be an arbitrary clause of the input to SAT with
k variables. We write each variable in its “positive” form (i.e. we do not use
xi) only for convenience of the problem. The following four cases need to be
considered:

• If k = 3, we are done.

• If k = 2 and C = x1 + x2, then we replace it with C ′ = (x1 + x2 + z)(x1 +
x2 + z).

• If k = 1 and C = x1 then C ′ = (x1+y+z)(x1+y+z)(x1+y+z)(x1+y+z)
where both y and z are new variables. Note that C is satisfiable if and
only if C’ is satisfiable.

• If k ≥ 4 then we replace C = (x1+x2+. . .+xk) by C ′ = C1C3C4 . . . Ck−2Ck

where C1 = (x1 + x2 + y1) and Ck = (yk−3 + xk−1 + xk). For every
3 ≤ i ≤ k−2, we set Ci = (yi−2+xi+yi−1). Now if C is satisfiable, then

3



Lecture 22 REFERENCES

one of the x ′
is is set to 1. Then we can set the values of the y ′

js accordingly
so that all clauses in C ′ evaluate to 1 as well. If x1 = 1 or x2 = 1, then
set all y-variables to 0. If xk−1 = 1 or xk = 1 then set all y-variables to
1. If xi = 1 for some 3 ≤ i ≤ k − 2, then set y1, y2, . . . , yi−2 to 1 and all
other y-variables to 0.

References

[1] Udi Manber, Introduction to Algorithms - A Creative Approach

4


