
CMSC 351 - Introduction to Algorithms

Spring 2012

Lecture 21

Instructor: MohammadTaghi Hajiaghayi
Scribe: Rajesh Chitnis

1 Introduction

In this lecture we will look at Minimum Spanning Trees and the concept of NP.

2 Prim’s algorithm for Minimum-Cost Spanning
Tree (MST)

Say there is a set of computers in a office or a set of sites for VPN or a set
of cities that we want to connect to each other. We can model all these with
an undirected graph whose edges represent connections and the weights are
the lengths. We want to find a connected subgraph with min sum of edge
lengths. Note that the subgraph should be a tree. More formally, the problem
is as follows: Given an undirected connected weighted graph G = (V, E), find a
spanning tree that connects every vertex with minimum cost. We now give an
algorithm due to Prim for thus problem. Note that this is a greedy algorithm.

Algorithm 1 Prim(G,v)

1: vnew = {w} and Enew = {} where w is any arbitrary vertex;
2: while vnew 6= v do
3: Find an edge (u,v) where u ∈ vnew and v ∈ V \ vnew with min weight

(break ties arbitrarily).
4: vnew = vnew + {v};
5: Enew = Enew + {(u, v)};

Time Complexity and Implementation: The implementation is very
similar (almost identical) to Djikstra (using heap). At each stage we can keep
SE[v] (instead of SP[v] in Djikstra) which keeps the min edge connectivity vnew

1

Lecture 21 3 NP-COMPLETENESS

to this vertex v and we update it each time that we add a new vertex to vnew.

Identical to Djikstra, the running time is O
(
(|V |+ |E|) log |V |

)
.

Proof of Correctness: This can be shown using induction.

Induction Hypothesis
There is always a best solution (optimum) that has the first k edges that
we add to Enew

Proof: The base is trivial since there is no edge. Note that vnew plays the
same role of vk in Djikstra. Consider the tree OPT which only the first k
edges of Enew. We prove there is another OPT’ with same cost which has the
first k+1 edges of Enew. Now let (u, v) be the (k+1)-th edge that we add to
Enew (and thus to the tree) where u ∈ vnew and v /∈ vnew. Now let us add
(u,v) to the tree OPT. There should be a cycle and there is an edge (u’,v’) where
u ′ ∈ vnew and v ′ /∈ vnew. Since we checked all edges going out of vnew we have
w(u ′, v ′) ≥ w(u, v). So we add (u,v) instead of (u ′, v ′), preserve connectivity,
maybe lower the total weight and still have k+1 edges in common with new
OPT’.

The problem is much harder if we have directed graphs. It is in fact NP-
complete.

3 NP-completeness

3.1 Easy and Hard Problems

So far we have seen many algorithms. All of them had polynomial running
times, i.e., O(nk) for some constant k. Lots of them were indeed linear O(n) or
quadratic O(n2). These problems are easy problems. But are there problems
which are hard, i.e., they need exponential time like O(2n) or O(n!). The
answer is YES. There are some weird problems for which we know we cannot
solve them in polynomial time and we need exponential time, but for lots of
normal problems, still we do not know the answer. These problems lie in the
class of NP-complete problem. Note that NP stands for “Non-deterministic
polynomial” and not “Not in polynomial” for now, but the conjecture is that
indeed it is true. If you can solve this problem, you will get Millennium Prize
of US $ 1,000,000 by Clay Mathematics Institute. Let us be a bit more formal
now.

3.2 Decision Problems

Decision problems are problems for which the answer is either YES or NO, e.g,,
can we find a shortest path or an MST of cost w. Note that if we can solve such
problems then we can solve lots of optimization problems as well by a binary
search.

P is the class of all decision problems that can be solved in polynomial time,
i.e., O(nk) for some constant k.

2

Lecture 21 REFERENCES

EXP is the class of all decision problems that can be solved in exponential
time, i.e., O(2poly(n)) where poly(n) is some polynomial in n.

3.3 Polynomial-time Verification

For many problems that may be very hard to solve, we might have the property
that it is easy to verify whether its answer is correct. For example, consider
the coloring problem: Given an undirected graph G, find the min number of
colors needed so that we can color each vertex with one of these colors and have
a valid coloring, i.e., an assignment of colors to vertices such that each vertex
is assigned one color and no two adjacent vertices have the same color. The
3-Coloring problem asks if we can have a valid coloring with 3 colors. Note
that though finding a 3-coloring of a given graph is not easy, however if you
somehow obtain a solution with 3-colors it is easy for someone to convince
that you did: just check that you did not use more than 3 colors in O(|V |) time
and check validity of coloring in |E| time. Thus though we do not know any poly
time algorithm to decide if a given graph has a valid 3-coloring, there is a very
efficient way to verify if a given graph has your answer as a valid 3-coloring.
The solution that you provide is called as a certificate. This is some piece of
information which allows us to check whether the graph has a valid 3-coloring.
If it is possible to verify the accuracy of a certificate in poly time, we say that
the problem is polynomial-time verifiable.

NP is the set of all decision problems that can be verified by a polynomial
time algorithm.

Note that poly-time verifiable and solving in poly time are two very different
things, e.g., 3-coloring problem is NP-complete (as we will see later) but is
verifiable in poly time. Also note that polynomial verification is not always
easy. For example, consider the problem of deciding whether the graph has
exactly one valid 3-coloring. It is easy to check that there is one but not clear
to show that this is the only one.

Then why do we say NP (non-deterministic poly time) instead of VP (verifi-
able in poly time)? Due to history, here we are referring to a non-deterministic
computer which can make guesses for the certificates and thus we only need to
verify the certificate in poly time. You can learn more on this topic in other
courses such as Complexity Theory and Formal Language Theory.

Note that it is clear that P ⊆ NP, since for any problem that we can solve
in poly time, we can surely verify it in poly time. But we still do not know
the reverse, i.e., whether NP ⊆ P, and this is the big open problem mentioned
before in the lecture. Many experts believe that NP * P and thus P 6= NP.

References

[1] Udi Manber, Introduction to Algorithms - A Creative Approach

3

