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1 Introduction

In this lecture we will look at algorithms for Single-Source Shortest Paths prob-
lem.

2 The Problem

Given a directed graph G = (V, E) with weights (length) associated with the
edges, find the shortest paths from v to all the other vertices of G. Here we talk
about lengths instead of weights, since the problem is traditionally called as the
shortest path (rather than the lightest path) problem. The length of a path is
the sum of lengths of its edges.

3 Solution for DAGs

We know how to compute a topological sort for a DAG in O(|V | + |E|) time. If
z is a vertex with label k then

1. There are no paths from z to vertices with labels < k.

2. There are no paths from vertices with labels > k to z.

Thus without loss of generality, we assume that v is the vertex with label 1.
Now we use induction as follows:

Induction Hypothesis
Given a topological ordering, we know how to find the lengths of the shortest
paths from v to the first n− 1 vertices.
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Algorithm 1 Shortest-Paths for DAGs

1: SP[v] = 0;
2: SP[w] = ∞ for w 6= v;
3: for i = 1 to n do
4: for all w such that (w, z) ∈ E do
5: if SP[w] + length(w, z) < SP[z] then
6: SP[z] := SP[w] + length(w, z);

We remove the n-th vertex and solve the reduced problem by induction,
then take the min of values SP[w]+ length(w,z) over all edges (w, z) ∈ E as the
value of SP[z]. The algorithm can be written using only “for” loops.

Time Complexity: Topological sort needs O(|V |+|E|) time. We check every
vertex and every edge only once. Thus the total running time is O(|V |+ |E|).

4 Solution for General Directed Graphs

Note that we can replace each edge uv with bidirected edges. This directed
graphs are more general than undirected graphs. This fact is usually true. Since
general graphs may not have a topological order, the same induction hypothesis
as before does not work. A similar idea works however.

Induction Hypothesis
Given a graph and a vertex v, we know the k vertices that are closest to v
and the lengths of the shortest paths to them.

Denote the set containing v and the k closest vertices to v by vk. The
problem is to find a vertex w that is closest to v from among the vertices not
in vk, and to find the shortest path from v to w that can go through only the
vertices in vk. It cannot included vertices outside of vk since they would be
closer to v than w. Therefore to find w, it is sufficient to consider only edges
connecting vertices from vk to vertices not in vk; all other edges can be ignored
for now. Let (u, z) be an edge such that u ∈ vk and z /∈ vk. Such an edge
corresponding to a path from v to z, which consists of the shortest path from v
to u (already known by induction) and the edge (u, z). We only need to compare
all such paths and take the shortest among them.

The algorithm implied by the induction hypothesis is the following: At each

iteration, a new vertex w is added such that minu∈vk

(
SP[u]+length(v,w)

)
is

the minimal over all w /∈ vk. By the argument above, w is indeed the (k+ 1)-th
closest vertex to v; thus adding it extends the induction hypothesis. This greedy
algorithm is known as Djikstra’s Algorithm.

Implementation and Complexity: A heap is a good data structure for
finding minimum elements and updating lengths of elements. We always keep
all vertices not yet in vk in the heap. Initially all vertices are there with v on
the top (all other vertices have shortest paths ∞). We find the minimum easily
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Algorithm 2 Djikstra(G,v)

1: SP[v] = 0;
2: (SP[w] = ∞ and mark[w]=false) for w 6= v;
3: while There exists an unmarked vertex do
4: Let w be an unmarked vertex such that SP[w] is minimal;
5: mark[w]=true;
6: for All edges (w, z) such that z is unmarked do
7: if SP[w] + length(w, z) < SP[z] then
8: SP[z] := SP[w] + length(w, z);

and delete it in O(log |V |) with total O(|V | log |V |). Say w is the minimum. Now
we update all (w, z) ∈ E. If SP[z] is updated and changed, then the position of
z may change in the heap. First we need to locate z in the heap by another data
structure, say an array with pointers to their location in the heap. We can access
z in the heap in O(1) and update its position in the heap by exchanging and
moving up until its appropriate position is found (note that the path lengths
only decrease). This is essentially the same as heap insert and can be done
in O(log |V |). Since there are at most |E| updates and each takes O(log |V |)
leading to |E| log |V | comparisons in the heap. Hence the total running time is

O
(
(|V | + |E|) log |V |

)
instead of O(|V | + |E|) that we had for DAGs. All edges

selected in the process (from z to its parent w) form the Shortest-Path-Tree
(similar to BFS-Tree and DFS-Tree).
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