
CMSC 351 - Introduction to Algorithms

Spring 2012

Lecture 18

Instructor: MohammadTaghi Hajiaghayi
Scribe: Rajesh Chitnis

1 Introduction

In this lecture we will look at DAGs and Topological Sorting.

2 Topological Sorting for DAGs

DAGs (directed acyclic graphs) are directed graphs with no directed cycles.
Suppose there is a set of tasks that need to be performed one at a time. Some
tasks depends on other tasks and they cannot be started until the other tasks are
completed. All the dependencies are known and we want to arrange a schedule
for performing the tasks which is consistent with the dependencies. We can
associate a directed graph whose vertices are the tasks and whose edges are
the dependencies. The graph must be acyclic otherwise the tasks can never be
completed. This problem is known as topological sorting. More formally, the
problem is as follows: Given a DAG with n vertices, label the vertices from 1
to n such that if v is labeled k, then all vertices that can be reached from v by
a directed path are labeled with labels > k. First we have a small observation:
A DAG always contains a vertex of indegree 0. The proof is similar to the one
which shows that every tree has a leaf. Otherwise we can traverse the graph
forever which contradicts the fact that we do not have a cycle. Note that the
same argument gives the existence of a vertex of outdegree 0 as well. Thus the
algorithm is as follows: First we find a vertex of indegree 0. Once we find it,
we label it with 1 and remove its adjacent edges and label the rest of the graph
(which is still acyclic) by induction.

Time Complexity: Initializing indegrees with DFS takes O(|V |+ |E|) time.
Finding a vertex of indegree 0 takes constant time using a queue. We consider
each edge (v,w) exactly once we bring v out of the queue. Thus we update
the Indegree variable at most |E| times and hence the total running time is
O(|V |+ |E|).

1

Lecture 18 REFERENCES

Algorithm 1 Topological-Sorting

Input: A DAG G.
Output: A topological sort of G.

1: Initialize v.Indegree for all vertices by DFS;
2: G-label:=0;
3: for i = 1 to n do
4: if vi.Indegree=0 then
5: Put vi in the queue;
6: while Queue is not empty do
7: Remove a vertex v from the queue;
8: G-label:=G-label+1; v.label:=G-label;
9: for all edges (v,w) do

10: w.Indegree:=w.Indegree-1;
11: if w.Indegree =0 then
12: Put w in the queue.

References

[1] Udi Manber, Introduction to Algorithms - A Creative Approach

2

